① 钛合金碰到铁会腐蚀么
不会,有不少铁钛合金呢,还有一种“钛铁”。这二种都是“钛”和“铁”混合物,如果钛合金碰到铁就会腐蚀就不会有“钛铁“了。
钛合金是以钛为基础加入其他元素组成的合金。钛合金具有密度低、比强度高、抗腐蚀性能好、工艺性能好等优点,是理想的航天工程结构材料。在实际生产环境中,会发生不同种类的腐蚀,主要有以下几类:
1、缝隙腐蚀
在金属构件缝隙或者缺陷处,由于电解质的滞流构成电化学电池而引起局部腐蚀现象,在中性和酸性溶液中,钛合金缝隙处发生接触腐蚀概率远大于碱性溶液,接触腐蚀并不发生在整个缝隙面,而是最终导致局部穿孔破坏。
2、点蚀现象
钛在多数盐溶液中无点蚀现象,其多发生在非水溶液以及沸腾的高浓氯化物溶液中,溶液中卤素离子对钛表面的钝化膜进行腐蚀,并向钛内部扩散而发生点蚀,点蚀孔径小于其深度。某些有机介质也会和钛合金在卤素溶液中发生点蚀现象,钛合金在卤素溶液中的点蚀一般发生在高浓度高温环境下,此外,在硫化物和氯化物中的点蚀需要特定的条件且有限。
3、 氢脆
氢脆(HE)又称氢致开裂或氢损伤,是钛合金早期损伤失效原因之一,钛及其钛合金表面的钝化膜有很高的强度,氢脆的敏感随强度的升高而增加,所以钝化膜氢脆很敏感。
4、接触腐蚀
钛表面的钝化氧化膜促进钛电位移向正电位,提高了钛材耐酸性和水介质的腐蚀。由于钛合金表面较高的电位,势必造成与其接触的其他金属形成电化学回路而造成接触腐蚀。钛合金易在下面两类介质中发生接触腐蚀:第一类是自来水、盐溶液、海水、大气、HNO3、醋酸等,该溶液Cd、Zn、Al 的稳定电极电位比Ti 更负,阳极腐蚀的速率激增6~60倍曰第二类是H2SO4、HCl 等,Ti 在这些溶液中,可能处于钝化态,也可能处于活化态,实际接触腐蚀过程中常见的为第一类溶液腐蚀。通常采用阳极化处理在基体表面形成改性层,阻碍接触腐蚀。
② 钛金属在氢氧化钠溶液中怎样反应,也就是钛金属被碱腐蚀的机理
我翻了下无机化学,上面是这么说的钛不与冷无机酸反应,也不与热碱溶液反应,但它能溶于HF、HCl、H2SO4和H3PO4中,一般是酸浓度越大溶解速度越快。
这个是网络上找的
金属钛在高温环境中的还原能力极强,能与氧、碳、氮以及其他许多元素化合,还能从部分金属氧化物(比如氧化铝)中夺取氧。常温下钛与氧气化合生成一层极薄致密的氧化膜,这层氧化膜常温下不与绝大多数强酸、强碱反应,包括酸中之王——王水。它只与氢氟酸、热的浓盐酸、浓硫酸反应,因此钛体现了抗腐蚀性。
所以我认为不会和碱反应。
③ 钛合金怎么烧蓝
合金或钢制品上叫发蓝,也叫发黑,不叫烧蓝。
发蓝和发黑的工艺是完全相同的,只是处版理结果不同而已,权发蓝在钢材表面上最终形成的的氧化膜是深蓝色的,发黑形成的是黑色的氧化膜,成分都是磁性氧化铁。
至于工艺,则是在腐蚀性不强的工作环境中,将钢制品浸入热的(温度高至130摄氏度或更高)、加有亚硝酸钠的浓碱(氢氧化钠)溶液中处理,钢材表面就能生成深蓝色或黑色的磁性氧化铁(四氧化三铁)膜。这种处理就叫“发蓝”或“发黑”。
处理中发生的反应如下:
3Fe+NaNO2+5NaOH=3Na2FeO2+H2O+NH3(气体符号)
6Na2FeO2+NaNO2+5H2O=3Na2Fe2O4+NH3(气体符号)+7NaOH
Na2FeO2+Na2Fe2O4+2H2O=Fe3O4+4NaOH
④ 钛合金怎么溶解
溶解钛和钛合金中富氮夹杂物的方法一种从含钛电极中除去富氮夹杂物的方法,它包括下列步骤:将含钛电极的底表面与坩埚中的助熔剂接触;以足够大的电流通过电极和助熔剂,以熔化该电极的底表面,与此同时在能使电极底表面熔化的温度下将助熔剂电阻性加热;以及借助于把助熔剂中的氮分压保持得比夹杂物中的氮分压为低,来溶解暴露于助熔剂中的富氮夹杂物
⑤ 钛合金TC17金相试验腐蚀剂是什么
常用钛及钛合金的腐蚀溶液是氢氟酸/硝酸/水的混合溶液,比例为2:1:17,1:1:7和1:6:193
⑥ 盐酸溶液中钛合金的腐蚀
钛合金按组织可分三类.(1钛中加入铝和锡元素.2钛中加入铝铬钼钒等合金元素.3钛中加入铝和钒等元素.)钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好.另外:钛合金的工艺性能差,切削加工困难.在热加工中,非常容易吸收氢氧氮碳等杂质.还有抗磨性差,生产工艺复杂.
titanium alloys
以钛为基加入其他元素组成的合金。钛的工业化生产是1948年开始的。航空工业发展的需要,使钛工业以平均每年约 8%的增长速度发展。目前世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。使用最广泛的钛合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。
钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的冷凝器,石油精炼和海水淡化的加热器以及环境污染控制装置等。钛及其合金已成为一种耐蚀结构材料。此外还用于生产贮氢材料和形状记忆合金等。
中国于1956年开始钛和钛合金研究;60年代中期开始钛材的工业化生产并研制成TB2合金。
特点 钛合金与其他金属材料相比,有下列优点:①比强度(抗拉强度/密度)高(见图),抗拉强度可达100~140kgf/mm2,而密度仅为钢的60%。②中温强度好,使用温度比铝合金高几网络,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作。③耐蚀性好,在大气中钛表面立即形成一层均匀致密的氧化膜,有抵抗多种介质侵蚀的能力。通常钛在氧化性和中性介质中具有良好的耐蚀性,在海水、湿氯气和氯化物溶液中的耐蚀性能更为优异。但在还原性介质,如盐酸等溶液中,钛的耐蚀性能较差。④低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。⑤弹性模量低,热导率小,无铁磁性。
合金元素 钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。③对相变温度影响不大的元素为中性元素,有锆、锡等。
氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。
类别 钛合金根据相的组成可分为三类:α合金,(α+β)合金和β合金,中国分别以TA、TC、TB表示。
① α合金含一定量的稳定α相的元素,平衡状态下主要由α相组成。α合金比重小,热强性好、具有良好的焊接性和优异的耐蚀性,缺点是室温强度低,通常用作耐热材料和耐蚀材料。α合金通常又可分为全α合金(TA7)、近α合金 (Ti-8Al-1Mo-1V)和有少量化合物的α合金(Ti-2.5Cu)。② (α+β)合金含一定量的稳定α相和β相的元素,平衡状态下合金的组织为α相和β相。(α+β)合金有中等强度、并可热处理强化,但焊接性能较差。(α+β)合金应用广泛,其中Ti-6Al-4V合金的产量在全部钛材中占一半以上。
③ β合金含大量稳定β相的元素,可将高温β相全部保留到室温。β合金通常又可分为可热处理β合金(亚稳定β合金和近亚稳定β合金)和热稳定β合金。可热处理β合金在淬火状态下有优异的塑性,并能通过时效处理使抗拉强度达到130~140kgf/mm2。β合金通常作高强度高韧性材料使用。缺点是比重大,成本高,焊接性能差,切削加工困难。
钛合金按用途可分为耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。典型合金的成分和性能见表。
热处理 钛合金通过调整热处理工艺可以获得不同的相组成和组织。一般认为细小等轴组织具有较好的塑性、热稳定性和疲劳强度;针状组织具有较高的持久强度、蠕变强度和断裂韧性;等轴和针状混合组织具有较好的综合性能。
常用的热处理方法有退火、固溶和时效处理。退火是为了消除内应力、提高塑性和组织稳定性,以获得较好的综合性能。通常α合金和(α+β)合金退火温度选在(α+β)—→β相转变点以下120~200℃;固溶和时效处理是从高温区快冷,以得到马氏体α′相和亚稳定的β相,然后在中温区保温使这些亚稳定相分解,得到α相或化合物等细小弥散的第二相质点,达到使合金强化的目的。通常(α+β)合金的淬火在(α+β)—→β相转变点以下40~100℃进行,亚稳定β合金淬火在(α+β)—→β相转变点以上40~80℃进行。时效处理温度一般为450~550℃。此外,为了满足工件的特殊要求,工业上还采用双重退火、等温退火、β热处理、形变热处理等金属热处理工艺。
⑦ 钛合金 变色
阳极化处理(Anodizing)
一种金属表面处理工艺,金属材料在电解质溶液中,通过外施阳极电流使其表面形成氧化膜的一种材料保护技术。又称表面阳极氧化。金属材料或制品经过表面阳极化处理后,其耐蚀性、硬度、耐磨性、绝缘性、耐热性等均有大幅度提高。实施阳极化处理最多的金属材料是铝。铝的阳极氧化一般在酸性电解液中进行,以铝为阳极。在电解过程中,氧的阴离子与铝作用产生氧化膜。这种膜初形成时不够细密,虽有一定电阻,但电解液中的负氧离子仍能到达铝表面继续形成氧化膜。随着膜厚度增大,电阻也变大,从而电解电流变小。这时,与电解液接触的外层氧化膜发生化学溶解。当铝表面形成氧化物的速度逐渐与化学溶解的速度平衡时,这一氧化膜便可达到这一电解参数下的最大厚度。铝的阳极氧化膜外层多孔,容易吸附染料和有色物质,因而可进行染色,提高其装饰性。氧化膜再经热水、高温水蒸气或镍盐封闭处理后,还能进一步提高其耐蚀性和耐磨性。除铝外,工业上采用表面阳极化处理的金属还有镁合金、铜和铜合金、锌和锌合金、钛合金、钢、镉、钽、锆等。
以上引用自网络。钛合金的阳极化是一样的道理。我从事相关行业,有不明白的可以继续问我。
⑧ tc4钛合金怎样热处理提高其硬度
您好!钛合金TC4材料的组成为Ti-6Al-4V,属于(a+b)型钛合金,具有良好的综合力学机械性能。
比强度大。 TC4的强度sb=1,012MPa,密度g=4.4×103,比强度sb/g=23.5,而合金钢的比强度sb/g小于18。
钛合金热导率低。 钛合金的热导率为铁的1/5、铝的1/10,TC4的热导率l=7.955W/m·K。
钛合金的弹性模量较低。 TC4的弹性模量E=110GPa,约为钢的1/2,故钛合金加工时容易产生变形。
TC4(Ti-6Al-4V)和TA7(Ti-5Al-2.5Sn)钛合金,采用两种注入方案进行表面改性,试验表明,钛合金经离子注入后,提高了显微硬度,显著地降低了滑动摩擦系数,有效地提高了耐磨性.为探明其改性机理,对注入与未注入样品进行了X射线光电子能谱(XPS)分析,获得满意的结果.
1 试件制备及注入条件
1.1 试件制备
选航空用的TC4、TA7钛合金,试件制成圆盘状,尺寸为?40×5mm,所有试件表面均抛光至镜面.
1.2 离子注入条件
两种钛合金都分别采用两种注入方案:
① 在TC4及TA7钛合金试件上溅射镀Ti,Ti膜总厚度为540nm(5400A).在镀Ti膜过程中,同时用(N+ +N+2)进行动态反冲注入,束流能量为50keV,束流密度为45μA/cm2,剂量为7×1017/cm2,靶室真空度为1.33×10-2Pa;
② 在①的基础上,再注入C+,束流能量为40keV,剂量为3×1017/cm2.
2 硬度测量
用HXD-1000数字式显微硬度计测量了注入与未注入试件的显微硬度,测量载荷为4.9×10-2N,测量结果列于表1.
表1 显微硬度测量结果
材料 表面状态 显微硬度/MPa 硬度提高倍数
未注入 2690 0
TC4 注入(N+ +N+2) 6399 1.38
注入(N+ +N+2)+C+ 3436 0.28
未注入 3133 0
TA7 注入(N+ +N+2) 4276 0.36
注入(N+ +N+2)+C+ 4073 0.30
从表1看出,离子注入后,试件的显微硬度都有不同程度的提高,其中TC4钛合金注入(N+ +N+2)混合束后硬度约提高1.4倍。谢谢阅读!
⑨ 钛合金的缺点
钛合金的缺点:
钛及钛合金主要限制是在高温与其它材料的化学反应性差。此性质迫使钛合金与一般传统的精炼、熔融和铸造技术不同,甚至经常造成模具的损坏;结果,使的钛合金的价格变的十分昂贵。因此它们刚开始大多用在飞机结构、航空器,以及用在石油和化学工业等高科技工业。
不过由于太空科技的发达、人民生活质量的提升,所以钛合金也渐渐地用来制成民生用品,造福人民的生活,只是这些产品价格仍然偏高,多属于高价位的产品,这是钛合金无法发扬光大的最大的致命伤。
(9)如何将钛合金转化为溶液扩展阅读:
钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:
1、稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。
2、稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。
3、对相变温度影响不大的元素为中性元素,有锆、锡等。
氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。
氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。