『壹』 铁碳合金相图是什么
相图是反反映金属材料的化学成分、温度和组织状态之间关系的图解,铁碳合金相图就是反映铁与碳的成分、所存在的温度与组织状态的之间关系和规律的图解形式,横坐标表明化学成分,纵坐标表示温度。
『贰』 铁碳合金相图主要应用在哪些方面
铁碳合金相图总结了铁碳合金的成分、组织、性能之间的变化规律,所以,铁碳合金相图在实际生产中具有重要的指导意义,主要应用在钢铁材料的选用和热加工工艺的制定两个方面。
1.在钢铁材料的选用方面的应用
若需要塑性、韧性好的材料,可以选择低碳钢(碳质量分数为0.10%~0.25%);需要强度、塑性及韧性都较好地应该选择中碳钢(碳质量分数为0.25%~0.60%);需要硬度高、耐磨性好的材料要选择高碳钢(碳质量分数为0.60%~1.3%)。一般低碳钢和中碳钢主要用来制造建筑结构或制造机器零件;高碳钢用来制造各种工具。白口铸铁具有很高的硬度和脆性,难以切削加工,也不能锻造,因此,白口铸铁的应用受到一定的限制。但是白口铸铁具有很高的抗磨损能力。可以用来制作需要耐磨而不受冲击的零件,如拔丝模、球磨机的铁球等。
2.在热加工工艺方面的应用
①
在铸造工艺方面的应用
根据铁碳合金相图可以找出不同成分的钢铁的熔点,为制定铸造工艺提出基本数据,可以确定合适的出炉温度以及合理的浇注温度。浇注温度一般在液相线以上50~100℃。共晶成分以及接近共晶成分的铁碳合金,它们的结晶范围最小,因而流动性最好,所以铸造性能好。所以实际铸造生产中,铸铁的化学成分总是选在共晶成分附近。
②
在热锻、热轧工艺方面的应用
由于奥氏体强度低,塑性好,便于零件成型,因此,锻造与轧制通常选择在单相奥氏体区的适当温度进行。选择的原则是开始锻造或轧制温度不能过高,以免钢材严重氧化和发生奥氏体晶界熔化,而始锻温度也不能太低,以免钢材因温度低而塑性差,导致产生裂纹。一般始锻温度控制在固相线以下100℃~200℃范围内。
③
在焊接工艺方面的应用
焊接过程中,高温熔融焊缝与母材各区域的距离不同,导致各区域受到焊缝热影响的程度不同,可以根据铁碳合金相图来分析不同温度的各个区域,在随后的冷却过程中,可能会出现的组织和性能变化情况,从而采取措施,保证焊接质量,此外,一些焊接缺陷往往采用焊后热处理的方法加以改善。相图为焊接和焊后对应的热处理工艺提供了依据。
4.在热处理工艺方面的应用
热处理是通过对钢铁材料进行加热、保温和冷却过程来改善和提高钢铁材料的一种工艺方法,铁碳合金相图可以告诉我们,何种成分的铁碳合金,可以进行何种热处理,以及各种热处理方法的加热温度是多少,所以,铁碳合金相图是制定热处理工艺的重要参考依据。
『叁』 铁碳相图有什么作用
不管什么成分的合金,加热到什么温度,冷却下来以后不都还是原来的物质结构么?切削加工性能和材料特性也不会发生变化了啊,
这个说法不对,璧如钢材,加热的温度不同,冷却的速度不同,机械性能并不一样,而且差别特别大。这是由于金属内部组织即所谓的金相发生变化引起的,对钢和铸铁来说,在铁碳相图上反应是非常清楚。
从某种意义上讲,铁碳合金相图是研究铁碳合金的工具,是研究碳钢和铸铁成分、温度、组织和性能之间关系的理论基础,也是制定各种热加工工艺的依据。
『肆』 铁碳合金相图的具体分析过程
一丶铁碳合金相图分析如下:
Fe—Fe3C相图看起 来比较复杂,但它仍然是由一些基本相图组成的,我们可以将Fe—Fe3C相图分成上下两个部分来分析.
1.【共晶转变】
(1)在1148℃,2.11%C的液相发生共晶转变:Lc (AE+Fe3C),
(2)转变的产物称为莱氏体,用符号Ld表示.
(3)存在于1148℃~727℃之间的莱氏体称为高温莱氏体,用符号Ld表示,组织由奥氏体和渗碳体组成;存在于727℃以下的莱氏体称为变态莱氏体或称低温莱氏体,用符号Ldˊ表示,组织由渗碳体和珠光体组成.
(4)低温莱氏体是由珠光体,Fe3CⅡ和共晶Fe3C组成的机械混合物.经4%硝酸酒精溶液浸蚀后在显微镜下观察,其中珠光体呈黑色颗粒状或短棒状分布在Fe3C基体上,Fe3CⅡ和共晶Fe3C交织在一起,一般无法分辨.
2.【共析转变】
(1)在727℃,0.77%的奥氏体发生共析转变:AS (F+Fe3C),转变的产物称为珠光体.
(2)共析转变与共晶转变的区别是转变物是固体而非液体.
3.【特征点】
(1)相图中应该掌握的特征点有:A,D,E,C,G(A3点),S(A1点),它们的含义一定要搞清楚.根据相图分析如下点:
(2)相图中重要的点(14个):
1.组元的熔点: A (0, 1538) 铁的熔点;D (6.69, 1227) Fe3C的熔点
2.同素异构转变点:N(0, 1394)δ-Fe γ-Fe;G(0, 912)γ-Fe α-Fe
相图
3.碳在铁中最大溶解度点:
P(0.0218,727),碳在α-Fe 中的最大溶解度;E(2.11,1148),碳在γ-Fe 中的最大溶解度
H (0.09,1495),碳在δ-Fe中的最大溶解度;Q(0.0008,RT),室温下碳在α-Fe 中的溶解度
4.【三相共存点】
S(共析点,0.77,727),(A+F +Fe3C);C(共晶点,4.3,1148),( A+L +Fe3C)
J(包晶点,0.17,1495)( δ+ A+L )
5.【其它点】
B(0.53,1495),发生包晶反应时液相的成分;F(6.69,1148 ) , 渗碳体;K (6.69,727 ) , 渗碳体
6.【特性线】
(1)相图中的一些线应该掌握的线有:ECF线,PSK线(A1线),GS线(A3线),ES线(ACM线)
(2)水平线ECF为共晶反应线.
(3)碳质量分数在2.11%~6.69%之间的铁碳合金, 在平衡结晶过程中均发生共晶反应.
(4)水平线PSK为共析反应线
(5)碳质量分数为0.0218%~6.69%的铁碳合金, 在平衡结晶过程中均发生共析反应.PSK线亦称A1线.
(6)GS线是合金冷却时自A中开始析出F的临界温度线, 通常称A3线.
(7)ES线是碳在A中的固溶线, 通常叫做Acm线.由于在1148℃时A中溶碳量最大可 达2.11%, 而在727℃时仅为0.77%, 因此碳质量分数大于0.77%的铁碳合金自1148℃冷至727℃的过程中, 将从A中析出Fe3C.析出的渗碳体称为二次渗碳体(Fe3CII). Acm线亦为从A中开始析出Fe3CII的临界温度线.
(8)PQ线是碳在F中固溶线.在727℃时F中溶碳量最大可达0.0218%, 室温时仅为0.0008%, 因此碳质量分数大于0.0008%的铁碳合金自727℃冷至室温的过程中, 将从F中析出Fe3C.析出的渗碳体称为三次渗碳体(Fe3CIII).PQ线亦为从F中开始析出Fe3CIII的临界温度线.Fe3CIII数量极少,往往予以忽略.
(9)Ac1— 在加热过程中,奥氏体开始形成的温度。
(10)Ac3— 在加热过程中,奥氏体完全形成的温度
(11)Ar1— 在冷却过程中奥氏体完全转变为铁素体或铁素体加渗碳体的温度
(12)Ar3— 在冷却过程中奥氏体开始转变为铁素的温度
(13)Arcm— 在过共析钢冷却过程中渗碳体开始沉淀的温度,
·(14)Accm— 在过共析钢加热过程中,渗碳体完全转化为奥氏体的温度。
6.【相图相区】
1.单相区(4个+1个): L,δ,A,F ,(+ Fe3C)
2.两相区(7个):L + δ,L + Fe3C,L + A, δ+ A ,A + F ,A + Fe3C ,F + Fe3C.
『伍』 铁碳合金相图在工业生产中的作用
不同的合金元素对这几个点的影响是不同的,实际意义就是根据成分推算出各个关键温度点,进而设计热处理工艺。
『陆』 铁碳合金相图的作用
了解不同成分的钢、铁在不同温度时的内部组织结构。对不同性能的材料研究有重要的指导意义。
『柒』 根据铁碳合金相图讨论铁碳合金相图还有什么其他用途
其他用途?什么意思?铁碳合金相图当然只能够用于铁碳合金方面的啦,还能够有什么其他用途?肯定不能够当地图用,画着玩算不算其他用途?
『捌』 研究铁碳合金相图的意义
一切的生产、科研工作都要遵从科学的理论和方法,铁碳相图就是所有这些工作的基础。
『玖』 铁碳合金相图在选材方面的应用
在
选材方面的应用。
由铁碳合金相图可见,
铁碳合金中随着碳含量的不同,
其平衡组织也各不
相同,随着含碳量的升高,组织成分为铁素体
+珠光体、珠光体、珠光体+二次渗碳体、珠光体+二次渗碳体+莱氏体、莱氏体、一渗碳体+莱氏体。对其铁碳合金的名称为工业纯铁、亚共析钢、共析钢、过共析钢、
亚共晶白口铸铁、
共晶白口铸铁、
过共晶白口铸铁。
大体依次是强度硬度随之增强,
韧性塑性随
之减弱。所以,我们可以根据工件的不同性能要求来更好的选择合适的材料。
例如,
一些机器的底座、
要求不太高的外形复杂的箱体,
我们可以选用铸铁材
料,其含碳量高,流动性较好,熔点低,易于铸造;对于一些桥梁、船舶、锅
炉、
车辆及塔吊、
起重机等对塑性、
韧性要求较高的工件材料我们可以选用含
碳量低一些的亚共析钢,其有一定强度,但含碳量少,韧性塑性高;对于一些
活塞及机器内部一些受冲击载荷要求较高强度的零件材料,
多选用综合性能比
较好的亚共析钢,
即含碳量中等的亚共析钢,
其强度和韧性都比较好;
而制造
各种切削刀具,
各种模具,
量具时,
就要选用含碳量较高的共析钢、
过共析钢,
其含碳量较高,所以强度硬度很高,有很高的抗变形能力和耐磨性。