① 金属贮氢原理
某些过渡金属、合金和金属间化合物,由于特殊的晶体结构,使氢原子容易进入其晶格间隙中并形成金属氢化物,因此储氢量很大,可贮存比其本身体积大1000~1300倍的氢,当加热时氢就能从金属中释放出来。氢在金属中的这种吸入和释放,取决于金属和氢的相平衡关系并受温度、压力和组分的制约。通常,贮氢材料的贮氢密度都很大,比标准状态下的氢密度(5.4×1019at/cm3)高出几个数量级,甚至比液氢的密度(4.2×1022at/cm3)还高。由于贮氢材料具有上述特性,用它储运氢气既轻便又安全,不仅无爆炸危险,还有可贮存时间长又无损耗等优点。氢,普遍被认为是人类最理想的清洁的高密度能源,燃烧时只产生水而没有污染物,对环境保护有利。但要实现氢能源体系,氢的贮存问题首先要顺利解决,因此研究贮氢材料特别重要。
已实用和研究发展中的贮氢材料主要有:①镁系贮氢合金。主要有镁镍、镁铜、镁铁、镁钛等合金。具有贮氢能力大(可达材料自重的5.1%~5.8%)、价廉等优点,缺点是易腐蚀所以寿命短,放氢时需要250℃以上高温。②稀土系贮氢合金。主要是镧镍合金,其吸氢性好,容易活化,在40℃以上放氢速度好,但成本高。③钛系贮氢合金。有钛锰、钛铬、钛镍、钛铁、钛铌、钛锆、钛铜及钛锰氮、钛锰铬、钛锆铬锰等合金。其成本低,吸氢量大,室温下易活化,适于大量应用。④锆系贮氢合金。有锆铬、锆锰等二元合金和锆铬铁锰、锆铬铁镍等多元合金。在高温下(100℃以上)具有很好的贮氢特性,能大量、快速和高效率地吸收和释放氢气,同时具有较低的热含量,适于在高温下使用。 ⑤铁系贮氢合金。主要有铁钛和铁钛锰等合金。其贮氢性能优良、价格低廉。
贮氢材料(hydrogen storage material)是在一般温和条件下,能反复可逆地(通常在一万次以上)吸入和放出氢的材料。又称贮氢合金或储氢金属问化合物。这种材料在一定温度和氢气压强下能迅速吸氢,适当加温或减小氢气压强时又能放氢的材料。
贮氢材料多为易与氢起作用的某些过渡族金属、合金或金属间化合物。由于这些金属材料具有特殊的晶体结构,使得氢原子容易进入其晶格的间隙中并与其形成金属氢化物。其贮氢量可达金属本身体积的1000~1300倍。氢与这些金属的结合力很弱,一旦加热和改变氢气压强,氢即从金属中释放出来。
贮氢材料用途
贮氢材料用途广泛,除用于氢的存贮、运输、分离、净化和回收外,还可用于制作氢化物热泵;以贮氢合金制造的镍氢电池具有容量大、无毒安全和使用寿命长等优点;利用贮氢合金可制成海水淡化装置和用于空间的超低温制冷设备等。
特性
贮氢材料须具备以下基本特性:
1、在不太高的温度下,贮氢量大,释氢量也大。
2、氢化物的生成热,一般在29~46kJ/mol(7~11Keal/克分子)氢之间。
3、成本低,原料来源广。
4、经多次吸、放氢,性能不衰减,即使有衰减,经再生处理后也能恢复到原来水平。
5、有较平坦和较宽的平衡压平台区,即大部分氢均可在一稳定的压力范围内放出。(6)容易活化,反应动力学性能好。(7)吸入、放出氢的压力差小等。
功能
金属贮氢材料是一种多功能的功能材料,下述功能,可供开发出多种高新技术产品。
释放化学能
它所放出的氢可供直接燃烧产物,或供其他所需部门使用,如半导体生产,燃氢汽车,燃料电池发电,氢能电动车等。
热功能
贮氢材料在吸、放氢过程中,同时有热量的放出和吸入,利用这一吸、放热的功能,可开发出热泵、贮热、回收热等节能设备。
压力和机械能
金属贮氢材料吸、放氢时,有一定平衡压,随温度的升高,其平衡压将迅速升高。如某些贮氢材料贮氢后的平衡压在100℃时达5~12MPa的压力。
电化学功能
贮氢材料本身具有一定的电化学催化功能,同时,所释放出的氢也极易转化成电能,因此可利用此功能开发二次电池。
细化功能
贮氢材料在多次吸、放循环后,将自粉碎成细粉,利用这一功能可制成超细粉末,如制备超细合金和金属粉末等,在技术上有很大潜力。
催化功能
贮氢材料在某些有机化学加氢以及合成氨工业中作为催化剂已显示出有独特作用,可望研制成低温低压合成氨催化剂。其他如分离氢的同位素功能,吸气功能,净化功能等尚有待进一步开发。
种类
主要有钛铁系,镧镍系,镁镍系和钛铬系等。
钛铁系
属AB型,A代表钛,B代表铁、钴、镍等,最常见的为钛铁贮氢材料,贮氢量可达占材料自重的1.75%~1.89%。最初有一活化的难题,在高真空条件下,加热到300~400℃才开始吸氢。中国科学家解决了这一难题,在室温条件下一般真空度就可开始吸氢。此材料原料来源广,成本低,有利于大量使用。德国研制的氢能汽车、美国研制的燃料电池电动车,就是以钛铁贮氢罐供氢的。
镧镍系
属AB5型,A代表镧及混合稀土系金属,B代表镍、钴等,贮氢量为1.4%~1.5%,它可在室温下活化,吸、放氢平衡压为O.1~0.5MPa(20~30℃),放氢压力稳定。为降低成本,改善性能,现已广泛使用混合稀土金属或富镧混合稀土金属取代镧,也可以用铝、铁等取代部分镍。
镁镍系
属A2B型(。Mg2Ni),是一种较早研制成的贮氢材料,贮氢量可达3.4%~6.O%,但放氢温度要求在250~320℃之间,限制了其应用。在贮存太阳能等技术中可发挥其优越性。
钛铬系
典型代表是Ticr2,属AB2型,进一步发展为TiZrCrMnVFe,德国HWT公司有商品贮氢罐出售,他们已制成可贮存2000m3的大型贮氢罐,经改性后这类贮氢材料还可满足不同用途的需要。
钒系
里鲍茨(libowitz)提出的体心立方型钒系贮氢材料,它的熵值高,可用于设计成高效热泵,是新一类贮氢合金系列。
应用
贮氢材料应用很广,而且仍在不断发展中。
制作镍氢电池
金属氢化物可再充式电池(简写为Ni—MH电池)是贮氢材料应用取得最显著实际成就的新领域,日本在1994年已生产AA型镍氢电池2亿支,我国在1994年生产AA型Ni—MH电池近100万支,生产Ni—MH电池用的贮氢材料近100t。
贮氢922和净化氢
贮氢材料贮氢后,其体积浓度大于液氢,几种贮氢材料贮氢后的浓度(每立方厘米中的氢原子数×1022)分别为:液氢(20K)4.2,FeTiH 1.7 6.O,LaNi5H 6.7 6.1,ZrH27.3,TiH29.2同时,贮氢后一般只有O.5~2.0MPa的压力,比高压钢瓶贮氢安全,比液氢也安全,成本低。贮氢材料贮氢后放出的氢,纯度可达99.9999%。
制造热泵
为回收各种热能和贮热。过去用贮氢材料二段式热泵一次升温,发展到三段式热泵二次升温,可使65~75℃的废热水产生蒸汽用于再发电。并可利用环境热、太阳能热源制成空调机和贮热,或用于化工厂、冶金厂、发电厂的废热回收。
制造压缩机和致冷器
用贮氢材料可制成静态氢压缩机和深冷致冷器。已制成的25K致冷器可用于空间探测、红外探测系统中的冷源,它只须以水为介质和以太阳能作低级能源即可工作。还可以制成77K。液氮致冷器。利用贮氢材料制成的压缩机可用于高压氢装瓶,还可利用太阳能制成海水淡化装置等。
用于氢同位素分离
利用一种或几种新型贮氢材料,可分离同位素氘、氚,以及贮存氘、氚,这在军事工业中有很重要的作用。
用作催化剂
贮氢材料用作催化剂早有报导,如LaNis、TiFe等用于常温低压合成氨工艺以及某些有机化合物加氢工艺。
用作温度传感器
利用上述贮氢材料产生压力的功能以及不同贮氢材料的P—c一T曲线的不同数值,将一小型贮氢器上的压力表改成温度指示盘,经校正后即成温度指示器。它体积小,不怕震动,美国SystemDonier公司生产的这种温度指示器,广泛用于各种喷气飞机上。它还可以改制成火警报警器和窗户自动开闭器等。
作机器人的动力装置
也是利用贮氢材料的压力和机械能功能,某些贮氢材料加热到100℃即可达到6~13MPa的压力,则可用于机器人动力系统的激发器、动力源。其特点是没有旋转部件反应灵敏,便于控制,反弹和振动小。
用作吸气剂
由于某些贮氢合金有较强的吸气能力,特别对氢、COz、CO、水分、甲烷均有一定吸附能力,因此可作为吸气剂,以保持各种真空器件长时间的高真空,在技术上有重要作用。
发展电动车
电动汽车的关键技术是可移动式高效高密度蓄电池。可充式二次电池有多种多样,其中能量密度最高、寿命最长、成本最低、功率密度最大者首推带有高效供氢系统的质子交换膜式燃料电池,这种供氢系统就是由贮氢材料制成的贮氢罐。在21世纪初,这种清洁的电动车,将是城市交通的必然发展趋势,需求量将是极大的。
发展趋势
贮氢材料正向多元化,高容量,低成本方向发展,向复合材料过渡,正在采用新技术。例如有报道说经磁性技术搅拌贮氢量可大大提高。在改善贮氢材料的性能方面的技术还有: (1)表面微包覆技术;(2)表面化学处理技术;(3)薄膜技术,即将贮氢材料制成薄膜;(4)贮氢材料的浆料技术,即利用某些有机液体与贮氢材料混成均匀浆料,有利于改善贮氢材料的导热性能及流动性。
其他制备贮氢材料的新工艺有采用铝热还原法及自蔓延高温合成技术从钛铁矿、钒铁矿直接还原成贮氢材料,还有回收和再生贮氢材料的技术等。
② 贮氢合金中两种组分的功能
以镁基贮氢合金为例,纯镁能吸收多达76%(质量)的氢 ,但其吸放氢的速度很慢而且放氢温度太高(约600K) ,因而无法实用。加入另一种金属形成合金是为了降低镁氢化合物的稳定性,加快放氢速度,降低放氢温度,使其有研发价值。
③ 贮氢合金的化学价氢和金属分别是几价
这个贮氢合金贮氢后一般不叫化合物,而叫固溶体。可以看做氢气溶解在合金中。跟普通化合物相比,就是没有固定的组成。所以你要问分别是几价,这个对研究贮氢合金无意义。
④ 特殊金属
形状记忆合金是一种特殊的合金,存在一个记忆温度,在记忆温度以下可以任意加工,当温度回到记忆温度是,可以恢复到加工前的形状 形状记忆合金的研究、发现至今为止已有十几种记忆合金体系。包括Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、NiAl、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等
他们有两个共同特点:
1,弯曲量大,塑性高
2,在记忆温度以上恢复以前形状。
贮氢合金氢是21世纪要开发的新能源之一。氢能源的优点是发热值高、没有污染和资源丰富。贮氢合金是利用金属或合金与氢形成氢化物而把氢贮存起来。金属都是密堆积的结构,结构中存在许多四面体和八面体空隙,可以容纳半径较小的氢原子。如镁系贮氢合金如MgH2,Mg2Ni等;稀土系贮氢合金如LaNi5,为了降低成本,用混合稀土 Mm代替La,推出了MmNiMn, MmNiAl等贮氢合金;钛系贮氢合金如TiH2,TiMn1.5。贮氢合金用于氢动力汽车的试验已获得成功。随着石油资源逐渐枯竭,氢能源终将代替汽油、柴油驱动汽车,并一劳永逸消除燃烧汽油、柴油产生的污染。
非晶态合金非晶态合金又称为金属玻璃,具有拉伸强度大,强度、硬度高,高电阻率、高导磁率、高抗腐蚀性等优异性能。适合做变压器和电动机的铁芯材料。采用非晶态合金做铁芯,效率为97%,比用硅钢高出10%左右,所以得到推广应用。此外,非晶态合金在脉冲变压器、磁放大器、电源变压器、漏电开关、光磁记录材料、高速磁泡头存储器、磁头和超大规模集成电路基板等方面均获得应用。
参见:“金属的用途”http://..com/question/15798406.html?si=5
⑤ 什么是储氢合金的表面中毒如何解决这一问题
金属或合金,表面总会生成一层氧化膜,还会吸附一些气体杂质和水分。它们妨碍金属氢化物的形成,这种现象称为'中毒',因此必须进行活化处理。有的金属活化十分困难,因而限制了储氢金属的应用。
金属氢化物的生成伴随着体积的膨胀,而解离释氢过程又会发生体积收缩。经多次循环后,储氢金属便破碎粉化,使氢化和释氢渐趋困难。例如具有优良储氢和释氢性能的LaNi5,经10次循环后,其粒度由20目降至400目。如此细微的粉末,在释氢时就可能混杂在氢气中堵塞管路和阀门。金属的反复胀缩还可能造成容器破裂漏气。虽然有些储氢金属有较好的抗粉化性能,但减轻和防止粉化仍是实现金属氢化物储氢的前提条件之一。
杂质气体对储氢金属性能的影响不容忽视。虽然氢气中夹杂的O2、CO2、CO、H2O等气体的含量甚微,但反复操作,有的金属可能程度不同地发生中毒,影响氢化和释氢特性。
多数储氢金属的储氢质量分数仅1.5~4%,储存单位质量氢气,至少要用25倍的储氢金属,材料的投资费用太大。由于氢化是放热反应(生成焓),释氢需要供应热量(解离焓),实用中需装设热交换设备,进一步增加了储氢装置的体积和重量。因此这一技术走向实用和推广,仍有大量课题等待人们去研究和探索。
⑥ 什么是储氢合金储氢
20世纪60年代,材料王国里出现了能储存氢的金属和合金。
储氢合金储氢,比氢气瓶的本领大多了。它储氢量大,使用方便,还可免去庞大的钢制容器。用氢时,将储氢合金加热,氢就能及时释放出来,而且还可通过调节加热温度和合金的成分来控制合金释放氢的快慢和数量。
⑦ 贮氢合金的原理
金属贮氢的原理在于金属(M)与氢生成金属氢化物(MHx) :
M + xH2 → MHx + H(生成热)
金属与氢的反应,是一个可逆过程。正向反应,吸氢、放热;逆向反应,释氢、吸热。改变温度与压力条件可使反应按正向、逆向反复进行,实现材料的吸释氢功能。
目前在研和已投入使用的合金成分有:Mg, Ti, Nb, V, Zr和稀土类金属,添加成分有:Cr, Fe, Mn, Co, Ni, Cu等。
⑧ 储氢合金都包括哪些金属
主要包括元素周期表中镍附近的金属,如铂、铑等。
⑨ 贮氢合金的问题
一般还是共价键,即还是氢分子,只是简单吸附。
这个问题很复杂,一句半句说不清。
化合价,可认为都是0
⑩ 贮氢合金的特点
具备下列条件才有实用价值
具有实用价值的吸氢合金,一般应具备下列条件:
1)易活化,吸氢量大;
2)用于储氢时生成热尽量小,而用于蓄热时生成热尽量大;
3)在一个很宽的组成范围内应具有稳定的合适平衡分解压(室温储氢的分解压约2—3个大气压为宜);
4)氢吸收和分解过程中的平衡压差(即滞后)小;
5)氢的俘获和释放速度快;
6)金属氢化物的有效热导率大;
7)在反复吸放氢的循环过程中,合金的粉化小,性能稳定性好;
8)便宜。