㈠ 如何减少铸造气孔
一 产生原因及影响因素。首先是泡沫塑料膜在浇注时产生的热解气体未能顺利排出,而进入铸件中造成气孔。其次是模型和涂层干燥不良或模型粘结胶过多,造成浇筑时模型、涂层的水分蒸发,以及粘结胶发气量过大,侵入铸件中。再次是浇注时卷气,,如直浇道不能浇满,就会卷入
气体,铸件就有可能产生气孔。
二 防止措施 (1)采用低密度的泡沫塑料膜。消失模铝合金用密度为0.022-0.025克\立方厘米。铸钢和铸铁应使用0.016--0.022克\立方厘米。 (2)涂料发气量要小、透气性要高。 (3)模样和涂层应干燥。 (4)模样粘结胶发气量应小,粘结胶用量也应尽量少。 (5)正确设计浇注系统。直浇道不应卷入气体,浇口杯要有足够的容积,在浇注过程中一直处于充满状态,进入铸件模型后金属液应平稳推进,逐层置换,不产生紊流。(6)负压应合适。过小不能顺利排除模型热解产物,过大则会将模型块包裹在金属液中,引起铸造缺陷。 (7)掌握正确的浇注方法 参考铸业网
㈡ 铸造浇注前怎样对金属液除气处理
铁合金一般采取静置的方式来除气,铝合金比较复杂:先通过通氩气或者氮气配合石墨棒搅拌除气然后也是静置。
㈢ 铝合金铸件皮下气孔的解决方法
1、加强铝液体精炼除气;
2、增加铸件的加工余量,把气孔干掉;(重力铸造件)
3、改善浇注系统
㈣ 铝合金铸造针孔怎么解决
首先,是熔炼操作的改进,对那些带有有机物质、铝锈等杂物的回炉料要充分预热,防止熔化后增加铝水的含氢量;尽量缩短熔化时间,减少熔化过程中的吸氢;然后就是对铝水进行充分的精炼除气操作,最好的办法是采用旋转吹气精炼机对铝水进行精炼除气,并且最好是采用高纯氩气做气源;当然用高纯氮也行,但是在铝水温度过高或者镁成分含量很大情况下容易出现含渣过多的问题;关于模具方面,在不影响铸件成型完整的和产生其他缺陷的前提下,尽量提高模具冷却速度,使模腔中铝水凝固时间缩短,也有利于防止其中所含的氢元素析出成为针孔,不过终究不是个事,最好还是设法彻底除氢,包括一些细节都要注意...
找全国铸件订单、采购铸件、铸造厂接单、咨询铸造技术问题,就来
铸件订单网
㈤ 重力铸造铝合金的气孔怎样解决
铝液除气 尽量降低铝液浇注温度 保持砂芯尽量少的树脂含量以及含水量 保持磨具排气通畅
㈥ 铸造铝合金的解决措施
由于每一种缺陷的产生原因来自多个不同的影响因素,因此在实际生产中要解决问题,面对众多原因到底是非功过先调机?还是先换料?或先修改模具?建议按难易程度,先简后复杂去处理,其次序:
1) 清理分型面,清理型腔,清理顶杆;改善涂料、改善喷涂工艺;增大锁模力,增加浇注金属量。这些靠简单操作即可实施的措施。
2) 调整工艺参数、压射力、压射速度、充型时间、开模时间,浇注温度、模具温度等。
3) 换料,选择质优的铝合金锭,改变新料与回炉料的比例,改进熔炼工艺。
4) 修改模具,修改浇注系统,增加内浇口,增设溢流槽、排气槽等。
例如压铸件产生飞边的原因有:
1) 压铸机问题:锁模力调整不对。
2) 工艺问题:压射速度过高,形成压力冲击峰过高。
3)模具问题:变形,分型面上杂物,镶块、滑块有磨损不平齐,模板强度不够。解决飞边的措施顺序:清理分型面→提高锁模力→调整工艺参数→修复模具磨损部位→提高模具刚度。从易到难,每做一步改进,先检验其效果,不行再进行第二步。 在铸造铝合金中添加稀土可以有效的改善铸造铝合金的缺陷。
1.稀土在铝合金中的精炼作用
铝合金中添加适量稀土元素对精炼效果具有促进作用。稀土元素可以改善夹杂物形态,净化晶界。采用真空吸铸法研究了Al RE中间合金对A356合金 流动性的影响,实验结果证明合金熔体中加入适量的稀土元素,能够使固液相线温度差减少,减小合金的糊状凝固趋势,并且降低合金熔体表面张力,此外还有去气、除杂的精炼作用,这都会使熔体流动性提高,粘度降低,有利 于夹杂物和气体的排除。
已研究开发出一种含有稀土化合物的铝合金新型熔剂,该熔剂通过发生一系列的物理和化学反应,不仅可使A356合金熔体720℃时的含氢量由大于0.30ml/100g(Al)下降到0.10 ml/100g(Al)以下,除气效果显著,并使A356合金的室温抗拉强度提高7.27%,延伸率提高85.58%。但是,过量的稀土元素也会加剧富RE相的聚集,成为夹杂物,从而降低合金熔体的流动性。
2.稀土对铝合金的细化作用
有目的地抑制柱状晶和双柱状晶生长,促进细小等轴晶形成,这种工艺过程就叫作晶粒细化处理。由于晶粒得以细化,合金的性能得到提高,同时还使缩松、热裂、针孔等缺陷下降。细化处理的最基本方法是抑制形核,以及向熔体中添加晶粒细化剂的外来形核质点。目前,添加细化剂的方法成为最有效、最实用的方法。铸造铝合金中常用的共有三种类型的晶粒细化剂:二元Al-Ti合金、二元Al-B合金和三元Al-Ti-B合金。中间合金(晶粒细化剂)加入到铝合金熔体中发生溶解,释放出金属间化合物相,成为外来形核核心。
在铝合金中加入稀土,既可细化晶粒,也可明显细化枝晶组 织(减小二次枝晶间距),其最佳效果对应于不同的稀土含量。但是,其细化效果弱于Ti、B等元素。稀土加入的临界值与合金的 熔炼、浇铸条件有密切关系。只有在一定的生产工艺条件下,一定量的稀土才会有最好的细化效果。
采用一般细化剂,随着铝液 静置时间的延长,细化效果逐渐衰退;采用 Al-5Ti-1B-10RE中间合金,稀土元素能阻止细化元素发生聚集、沉淀,对Ti、B的细化作用有一定的促进作用,可有效抑制铝硅合金长时间静置过程中晶粒尺寸的衰退,适合于大批量生产汽车铝合金铸件。
3.稀土对铝硅合金的变质作用
铸造Al-Si合金中Si相在自然生长条件下会长成块状或片状的脆性相,它严重割裂基体,降低合金的强度和塑性,因而需要将它改变成有利的形态。变质处理使共晶Si由粗大的 片状变成细小纤维状或层片状,从而提高合金性能。迄今已发现,碱金属中的K、Na,碱土金属中的Ca、Sr,稀土元素Eu、La、Ce和混合稀土,氮族元素Sb、Bi,氧族元素S、Te等均 具有变质作用。在Al-Si合金中,添加铝 稀土中间合金或稀土氯化物和氟化物,可使共晶Si相由片条状变成球粒状。不同稀土的变质能力不同,大体上随着原子半径由大变小,变质能力由强变弱。
稀土变质剂具有很好的长效性和重熔稳定性,吸气倾向小,无污染、加入工艺简便、 无腐蚀作用。研究结果表明,含La为0.056%变质后的合金,重熔10次,每次取样进行金相检验,发现最终仍有变质效果,La的最终浓度仍有0.035%,仍处于最佳变质范围之内。0.3 %混合稀土变质合金,重熔5次,发现最终仍有良好变质效果。
变质工艺直接影响着稀土的变质效果。对Al-Si合金,获得稳定变质组织的关键是减 少稀土的烧损,并防止稀土的偏聚,使稀土迅速均匀地扩散到铝液中。稀土变质有一潜伏期 ,即必须在高温下保持一定时间,稀土才能发挥最大变质作用。
㈦ 如何避免铸造出现的气孔
避免铸造出现气孔的措施有:
1、控制金属液的含气量,熔炼金属时,要尽量减少气体元素溶入金属液中,主要取决于所用原材料,合理的熔炼操作和合适的熔炼设备。
2、减少砂型(芯)在浇注时的发气量。
3、采用一定的措施使浇注时产生的气体容易从砂型中排出。如保证砂型有必须的透气性,多扎出气孔,使用薄壁或空心和中间填焦炭的砂芯,避免大平面在水平浇注位置,设置出气口,适当的提高浇注温度和注意引气等。
4、提高气体进入金属液的阻力。例如保证直浇道有所需的高度和金属液在型内的上升速度,在砂芯(型)表面实用涂料以减小砂型(芯)表面孔隙等。
5、浇筑时保证受热均匀。例如呋喃树脂粘结剂铸型,对浇注温度很敏感,小于1350度不会出现热皮下气孔,型腔各部分受热程度不同也会在热区产生热皮下气孔,所以浇注系统应将金属液分散引入型腔,使其热场均匀,缩短充型金属液流动距离,不使型腔局部受热过剧而使呋喃树脂分解。
(7)铝合金铸造如何除气扩展阅读
一、侵入性气孔这种气孔的数量较少,尺寸较大,多产生在铸件外表面某些部位,呈梨形或圆球形。主要是由于铸型或砂芯产生的气体侵入金属液的未能逸出而造成。
防止措施:
(1)减少发气量:控制型砂或芯砂中发气物质的含量,湿型砂的含水量不能过高,造型与修模时脱模剂和水用量不宜过多。砂芯要保证烘干,烘干后的砂芯不宜存放太长时间,隔天使用的砂芯在使用前要回炉烘干,以防砂芯吸潮,不使用受潮、生锈的冷铁和芯撑等。
(2)改善型砂的透气性,选择合适的型空紧实度,合理安排出气眼位置以利排气,确保砂芯通气孔道畅通。
(3)适当提高浇注温度,开排气孔和排气冒口等,以利于侵入金属液的气体上浮排出。
二、析出性气孔这种气孔多而分散,一般位于铸件表面往往同批浇注的铸件大部分都发现有。这种气孔主要是由于在熔炼过程中,金属液吸收的气体在凝固前未能全部析出,便在铸件中形成许多分散的小气孔。
防止措施:
(1)采用洁净干燥的炉料,限制含气量较多的炉料使用。
(2)确保“三干”:即出铁槽、出铁口、过桥要彻底烘干。
(3)浇包要烘干,使用前最好用铁液烫过,包中有铁液,一定要在铁液表面放覆盖剂。
(4)各种添加剂(球化剂、孕育剂、覆盖剂)一不定期要保持干燥,湿度高的时候,要烘干后才能使用。
㈧ 铝合金铸造过程中如何排除气泡
浇注过程要做到:一快、就是快速封住浇道;二慢、就是匀速浇注不卷入气体;
再就是模具要排气通畅。
㈨ 铝合金铸造过程中出现针孔如何解决
首先,是熔炼操作的改进,对那些带有有机物质、铝锈等杂物的回炉料要充分预热,防止熔化后增加铝水的含氢量;尽量缩短熔化时间,减少熔化过程中的吸氢;然后就是对铝水进行充分的精炼除气操作,最好的办法是采用旋转吹气精炼机对铝水进行精炼除气,并且最好是采用高纯氩气做气源;当然用高纯氮也行,但是在铝水温度过高或者镁成分含量很大情况下容易出现含渣过多的问题;关于模具方面,在不影响铸件成型完整的和产生其他缺陷的前提下,尽量提高模具冷却速度,使模腔中铝水凝固时间缩短,也有利于防止其中所含的氢元素析出成为针孔,不过终究不是个事,最好还是设法彻底除氢,包括一些细节都要注意...
㈩ 铝合金铸造方式选择
一、铸造概论 铝合金铸造的种类如下: 由于铝合金各组元不同,从而表现出合金的物理、化学性能均有所不同,结晶过程也不尽相同。故必须针对铝合金特性,合理选择铸造方法,才能防止或在许可范围内减少铸造缺陷的产生,从而优化铸件。 1、铝合金铸造工艺性能 铝合金铸造工艺性能,通常理解为在充满铸型、结晶和冷却过程中表现最为突出的那些性能的综合。流动性、收缩性、气密性、铸造应力、吸气性。铝合金这些特性取决于合金的成分,但也与铸造因素、合金加热温度、铸型的复杂程度、浇冒口系统、浇口形状等有关。 (1) 流动性 流动性是指合金液体充填铸型的能力。流动性的大小决定合金能否铸造复杂的铸件。在铝合金中共晶合金的流动性最好。 影响流动性的因素很多,主要是成分、温度以及合金液体中存在金属氧化物、金属化合物及其他污染物的固相颗粒,但外在的根本因素为浇注温度及浇注压力(俗称浇注压头)的高低。 (2) 收缩性 收缩性是铸造铝合金的主要特征之一。一般讲,合金从液体浇注到凝固,直至冷到室温,共分为三个阶段,分别为液态收缩、凝固收缩和固态收缩。合金的收缩性对铸件质量有决定性的影响,它影响着铸件的缩孔大小、应力的产生、裂纹的形成及尺寸的变化。通常铸件收缩又分为体收缩和线收缩,在实际生产中一般应用线收缩来衡量合金的收缩性。 铝合金收缩大小,通常以百分数来表示,称为收缩率。 ①体收缩 体收缩包括液体收缩与凝固收缩。 铸造合金液从浇注到凝固,在最后凝固的地方会出现宏观或显微收缩,这种因收缩引起的宏观缩孔肉眼可见,并分为集中缩孔和分散性缩孔。集中缩孔的孔径大而集中,并分布在铸件顶部或截面厚大的热节处。分散性缩孔形貌分散而细小,大部分分布在铸件轴心和热节部位。显微缩孔肉眼难以看到,显微缩孔大部分分布在晶界下或树枝晶的枝晶间。 缩孔和疏松是铸件的主要缺陷之一,产生的原因是液态收缩大于固态收缩。生产中发现,铸造铝合金凝固范围越小,越易形成集中缩孔,凝固范围越宽,越易形成分散性缩孔,因此,在设计中必须使铸造铝合金符合顺序凝固原则,即铸件在液态到凝固期间的体收缩应得到合金液的补充,是缩孔和疏松集中在铸件外部冒口中。对易产生分散疏松的铝合金铸件,冒口设置数量比集中缩孔要多,并在易产生疏松处设置冷铁,加大局部冷却速度,使其同时或快速凝固。 ②线收缩 线收缩大小将直接影响铸件的质量。线收缩越大,铝铸件产生裂纹与应力的趋向也越大;冷却后铸件尺寸及形状变化也越大。 对于不同的铸造铝合金有不同的铸造收缩率,即使同一合金,铸件不同,收缩率也不同,在同一铸件上,其长、宽、高的收缩率也不同。应根据具体情况而定。 (3) 热裂性 铝铸件热裂纹的产生,主要是由于铸件收缩应力超过了金属晶粒间的结合力,大多沿晶界产生从裂纹断口观察可见裂纹处金属往往被氧化,失去金属光泽。裂纹沿晶界延伸,形状呈锯齿形,表面较宽,内部较窄,有的则穿透整个铸件的端面。 不同铝合金铸件产生裂纹的倾向也不同,这是因为铸铝合金凝固过程中开始形成完整的结晶框架的温度与凝固温度之差越大,合金收缩率就越大,产生热裂纹倾向也越大,即使同一种合金也因铸型的阻力、铸件的结构、浇注工艺等因素产生热裂纹倾向也不同。生产中常采用退让性铸型,或改进铸铝合金的浇注系统等措施,使铝铸件避免产生裂纹。通常采用热裂环法检测铝铸件热裂纹。 (4) 气密性 铸铝合金气密性是指腔体型铝铸件在高压气体或液体的作用下不渗漏程度,气密性实际上表征了铸件内部组织致密与纯净的程度。 铸铝合金的气密性与合金的性质有关,合金凝固范围越小,产生疏松倾向也越小,同时产生析出性气孔越小,则合金的气密性就越高。同一种铸铝合金的气密性好坏,还与铸造工艺有关,如降低铸铝合金浇注温度、放置冷铁以加快冷却速度以及在压力下凝固结晶等,均可使铝铸件的气密性提高。也可用浸渗法堵塞泄露空隙来提高铸件的气密性。 (5) 铸造应力 铸造应力包括热应力、相变应力及收缩应力三种。各种应力产生的原因不尽相同。 ①热应力 热应力是由于铸件不同的几何形状相交处断面厚薄不均,冷却不一致引起的。在薄壁处形成压应力,导致在铸件中残留应力。 ②相变应力 相变应力是由于某些铸铝合金在凝固后冷却过程中产生相变,随之带来体积尺寸变化。主要是铝铸件壁厚不均,不同部位在不同时间内发生相变所致。 ③收缩应力 铝铸件收缩时受到铸型、型芯的阻碍而产生拉应力所致。这种应力是暂时的,铝铸件开箱是会自动消失。但开箱时间不当,则常常会造成热裂纹,特别是金属型浇注的铝合金往往在这种应力作用下容易产生热裂纹。 铸铝合金件中的残留应力降低了合金的力学性能,影响铸件的加工精度。铝铸件中的残留应力可通过退火处理消除。合金因导热性好,冷却过程中无相变,只要铸件结构设计合理,铝铸件的残留应力一般较小。 (6) 吸气性 铝合金易吸收气体,是铸造铝合金的主要特性。液态铝及铝合金的组分与炉料、有机物燃烧产物及铸型等所含水分发生反应而产生的氢气被铝液体吸收所致。 铝合金熔液温度越高,吸收的氢也越多;在700℃时,每100g铝中氢的溶解度为0.5~0.9,温度升高到850℃时,氢的溶解度增加2~3倍。当含碱金属杂质时,氢在铝液中的溶解度显著增加。 铸铝合金除熔炼时吸气外,在浇入铸型时也会产生吸气,进入铸型内的液态金属随温度下降,气体的溶解度下降,析出多余的气体,有一部分逸不出的气体留在铸件内形成气孔,这就是通常称的“针孔”。气体有时会与缩孔结合在一起,铝液中析出的气体留在缩孔内。若气泡受热产生的压力很大,则气孔表面光滑,孔的周围有一圈光亮层;若气泡产生的压力小,则孔内表面多皱纹,看上去如“苍蝇脚”,仔细观察又具有缩孔的特征。 铸铝合金液中含氢量越高,铸件中产生的针孔也越多。铝铸件中针孔不仅降低了铸件的气密性、耐蚀性,还降低了合金的力学性能。要获得无气孔或少气孔的铝铸件,关键在于熔炼条件。若熔炼时添加覆盖剂保护,合金的吸气量大为减少。对铝熔液作精炼处理,可有效控制铝液中的含氢量。 二、砂型铸造 采用砂粒、粘土及其他辅助材料制成铸型的铸造方法称为砂型铸造。砂型的材料统称为造型材料。有色金属应用的砂型由砂子、粘土或其他粘结剂和水配制而成。 铝铸件成型过程是金属与铸型相互作用的过程。铝合金液注入铸型后将热量传递给铸型,砂模铸型受到液体金属的热作用、机械作用、化学作用。因此要获得优质的铸件除严格掌握熔炼工艺外,还必须正确设计型(芯)砂的配比、造型及浇注等工艺。 三、金属型铸造 1、简介及工艺流程 金属型铸造又称硬模铸造或永久型铸造,是将熔炼好的铝合金浇入金属型中获得铸件的方法,铝合金金属型铸造大多采用金属型芯,也可采用砂芯或壳芯等方法,与压力铸造相比,铝合金金属型使用寿命长。 2、铸造优点 (1) 优点 金属型冷却速度较快,铸件组织较致密,可进行热处理强化,力学性能比砂型铸造高15%左右。 金属型铸造,铸件质量稳定,表面粗糙度优于砂型铸造,废品率低。 劳动条件好,生产率高,工人易于掌握。 (2) 缺点 金属型导热系数大,充型能力差。 金属型本身无透气性。必须采取相应措施才能有效排气。 金属型无退让性,易在凝固时产生裂纹和变形。 3、金属型铸件常见缺陷及预防 (1) 针孔 预防产生针孔的措施: 严禁使用被污染的铸造铝合金材料、沾有有机化合物及被严重氧化腐蚀的材料。 控制熔炼工艺,加强除气精炼。 控制金属型涂料厚度,过厚易产生针孔。 模具温度不宜太高,对铸件厚壁部位采用激冷措施,如镶铜块或浇水等。 采用砂型时严格控制水分,尽量用干芯。 (2) 气孔 预防气孔产生的措施: 修改不合理的浇冒口系统,使液流平稳,避免气体卷入。 模具与型芯应预先预热,后上涂料,结束后必须要烘透方可使用。 设计模具与型芯应考虑足够的排气措施。 (3)氧化夹渣 预防氧化夹渣的措施: 严格控制熔炼工艺,快速熔炼,减少氧化,除渣彻底。Al-Mg合金必须在覆盖剂下熔炼。 熔炉、工具要清洁,不得有氧化物,并应预热,涂料涂后应烘干使用。 设计的浇注系统必须有稳流、缓冲、撇渣能力。 采用倾斜浇注系统,使液流稳定,不产生二次氧化。 选用的涂料粘附力要强,浇注过程中不产生剥落而进入铸件中形成夹渣。 (4) 热裂 预防产生热裂的措施: 实际浇注系统时应避免局部过热,减少内应力。 模具及型芯斜度必须保证在2°以上,浇冒口一经凝固即可抽芯开模,必要时可用砂芯代替金属型芯。 控制涂料厚度,使铸件各部分冷却速度一致。 根据铸件厚薄情况选择适当的模温。 细化合金组织,提高热裂能力。 改进铸件结构,消除尖角及壁厚突变,减少热裂倾向。 (5) 疏松 预防产生疏松的措施: 合理冒口设置,保证其凝固,且有补缩能力。 适当调低金属型模具工作温度。 控制涂层厚度,厚壁处减薄。 调整金属型各部位冷却速度,使铸件厚壁处有较大的激冷能力。 适当降低金属浇注温度。