① 钢化玻璃是怎么钢化的
玻璃杯的钢化是化学钢化,不同于平板玻璃的物理钢化。
化学钢化是通过离子交换形成玻璃的表面压应力。
离子交换工艺的简单原理是:在400度左右碱盐溶液中,使玻璃表层中半径较小的钠离子与溶盐中半径较大的钾离子交换,利用碱离子体积上的差别,使得玻璃产生表层压应力,从而使玻璃具备抗外力冲击的能力,即钢化效果。
物理钢化则类似于金属淬火——将玻璃加热到软化点以上,然后用冷风急速冷却,使玻璃表层产生压应力。
② 什么是钢化玻璃它的原理、制作过程是怎样的
这是化学问题吧,,钢花玻璃是在玻璃制造的过程中提高了SiO2的含量,是玻璃的硬度增加
③ 玻璃钢化 需要多长时间
5mm20-30秒,6MM30-45秒,8MM40-60,10MM50-80,12MM90-120,15MM120-180,19MM240-360。镀膜玻璃时间要更长,不同的钢化炉用的时间也不一样,功率高的用的时间短,炉温高时间也可以缩短 从上线到下线,8分钟到40分钟不等,薄玻璃快,厚玻璃慢。是通过把玻璃加热到550度左右,然后吹风急冷,来达到钢化的。有点类似金属淬火,只是金属用水,玻璃用风。 从上线到下线8分钟到40分钟不等薄玻璃快厚玻璃慢是通过把玻璃加热到550度左右然后吹风急冷来达到钢化的有点类似金属淬火只是金属用水玻璃用风。
④ 玻璃钢化的工艺是怎样的
说实话,钢化玻璃具体的检测方法项目挺多的,整体写起来还挺多,粘贴个《钢化玻璃》质量标准给你吧,里面有详细的检测方法。
标准名称:建筑用安全玻璃 第2部分:钢化玻璃
英文名称:Safety glazing materials in building Part2: Tempered glass
中华人民共和国质量监督检验检疫总局2005-08-30发布 2006-03-01实施
标准编号:GB15763.2-2005
前 言
GB 15763《建筑用安全玻璃》目前分为两个部分:
——第一部分:防火玻璃;
——第二部分:钢化玻璃。
本部分为GB 15763的第2部分。
本部分的5.5,5.6,5.7为强制性条款,其它条款为推荐性条款。
本部分代替GB/T 9963-1998《钢化玻璃》和GB 17841-1999《幕墙用钢化玻璃和半钢化玻璃》中对幕墙用钢化玻璃的有关规定。
本部分与GB/T 9963-1998相比主要变化如下:
——本部分为强制性标准,GB/T 9963-1998为推荐性标准;
——修改了碎片试验的方法和要求;
——关于引用文件的规则修订为:区分注日期和不注日期的引用文件(GB/T 9963-1998的2,本部分的2);
——增加了垂直法钢化玻璃和水平法钢化玻璃的分类(本部分的3);
——纳入了GB 17841-1999中对幕墙用钢化玻璃的表面应力和耐热冲击性能要求,修改了表面应力的要求(GB 17841-1999的5.4.1,5.4.3,6.4,6.6;本部分的5.8,5.11,6.8,6.9);
——增加了对玻璃圆孔的尺寸要求(本部分的5.1.5);
——修改了外观质量的要求;
——删减了透射比和抗风压性能的方法和要求;
——修改了抽样规则;
——增加了对钢化玻璃应力斑和自爆现象的说明(本部分的附录A)。
本部分的附录A为资料性附录。
本部分由全国建筑玻璃与工业玻璃协会提出。
本部分由全国建筑用玻璃标准化技术委员会归口。
本部分负责起草单位:中国建筑材料科学研究院玻璃科学研究所、秦皇岛玻璃工业设计研究院、建材工业技术监督研究中心。
本部分参加起草单位:深圳南玻工程玻璃有限公司、广东金刚玻璃科技股份有限公司、宁波市江花新谊安全玻璃有限公司、无锡新惠玻璃制品有限公司。
本部分主要起草人:杨建军、邱国洪、韩松、莫娇、龚蜀一、王睿、刘志付 、李金平、朱梅、艾发智、邬德华、庄大建、夏卫文。
本部分所代替标准的历次发布情况为: JC 293-82《平型钢化玻璃》、GB 9963-88《钢化玻璃》、GB/T 9963-1998 《钢化玻璃》;GB 17841-1999《幕墙用钢化玻璃和半钢化玻璃》中有关幕墙用钢化玻璃的部分。
建筑用安全玻璃 第2部分:钢化玻璃
Safety glazing materials in building Part 2:Tempered glass
1 范围
GB15763的本部分规定了经热处理工艺制成的建筑用钢化玻璃的分类、技术要求、试验方法和检验规则。
GB15763的本部分适用于经热处理工艺制成的建筑用钢化玻璃。对于建筑以外用的(如工业装备、家具等)钢化玻璃,如果没有相应的产品标准,可根据其产品特点参照使用本标准。
2 2 规范性引用文件
下列文件中的条款通过本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。
GB 9962-1999 夹层玻璃
GB 11614 浮法玻璃
GB/T 18144 玻璃应力测试方法
3 定义及分类
3.1 定义
钢化玻璃:经热处理工艺之后的玻璃。其特点是在玻璃表面形成压应力层,机械强度和耐热冲击强度得到提高,并具有特殊的碎片状态。
3.2 分类
3.2.1 钢化玻璃按生产工艺分类,可分为:
垂直法钢化玻璃:在钢化过程中采取夹钳吊挂的方式生产出来的钢化玻璃。
水平法钢化玻璃:在钢化过程中采取水平辊支撑的方式生产出来的钢化玻璃。
3.2.2 钢化玻璃按形状分类,分为平面钢化玻璃和曲面钢化玻璃。
4钢化玻璃所使用的玻璃
生产钢化玻璃所使用的玻璃,其质量应符合相应的产品标准的要求。对于有特殊要求的,用于生产钢化玻璃的玻璃,玻璃的质量由供需双方确定。
5要求
钢化玻璃的各项性能及其试验方法应符合表1相应条款的规定。其中安全性能要求为强制性要求。
表1 技术要求及试验方法条款
名称 技术要求 实验方法
尺寸及外观要求 尺寸及其允许偏差 5.1 6.1
厚度及其允许偏差 5.2 6.2
外观质量 5.3 6.3
弯曲度4 5.4 6.4
安全性能要求 弯曲度 5.5 6.5
碎片状态 5.6 6.6
霰弹袋冲击性能 5.7 6.7
一般性能要求 表面应力 5.8 6.8
耐热冲击性能 5.9 6.9
5.1允许尺寸及允许偏差
5.1.1 长方形平面钢化玻璃边长允许偏差
长方形平面钢化玻璃的边长的允许偏差应符合表2的规定
表2 长方形平面钢化玻璃边长允许偏差 (单位为毫米)
厚度 边长(L)允许偏差
L≤1000 1000〈L≤2000 2000〈L≤3000 L>3000
3,4,5,6 +1
-2 ±3 ±4 ±5
8,10,12 +2
-3
15 ±4 ±4
19 ±5 ±5 ±6 ±7
>19 供需双方商定
5.1.2 长方形平面钢化玻璃的对角线差
应符合表3的规定。
表3 长方形平面钢化玻璃对角线差允许值 (单位为毫米)
玻璃公称厚度 边长(L)允许偏差
L≤2000 2000〈L≤3000 L>3000
3,4,5,6 ±3.0 ±4.0 ±5.0
8,10,12 ±4.0 ±5.0 ±6.0
15,19 ±5.0 ±6.0 ±7.0
>19 供需双方商定
5.1.3其他形状的钢化玻璃的尺寸及其允许偏差
由供需双方商定。
5.1.4 边部加工
边部加工形状及质量由供需双方商定.
5.1.5 圆孔
5.1.5.1 概述
本条只适用于公称厚度不小于4mm的钢化玻璃。圆孔的边部加工质量由供需双方商定。
5.1.5.2孔径
孔径一般不小于玻璃的公称厚度, 孔径的允许偏差应符合表4的规定。小于玻璃的公称厚度的孔的孔径允许偏差由供需双方商定,
表4孔径及允许偏差 (单位为毫米)
公称孔径 允许偏差
4≤D≤50 ±1.0
250<D≤100 ±2.0
D>100 供需双方商定
5.1.5.3 孔的位置
1)孔的边部距玻璃边部的距离a不应小于玻璃公称厚度的2倍。如图1所示。
图1孔的边部距玻璃边部的距离示意图
2) 两孔孔边之间的距离b不应小于玻璃公称厚度的2倍。如图2所示。
图2 两孔孔边之间的距离示意图
3) 孔的边部距玻璃角部的距离c不应小于玻璃公称厚度d的6倍。如图3所示。
注:如果孔的边部距玻璃角部的距离小于35mm,那么这个孔不应处在相对于角部对称的位置上。具体位置由供需双方商定。
图3 孔的边部距玻璃角部的距离示意图
4) 圆心位置表示方法及其允许偏差
圆孔圆心的位置的表达方法可参照图4进行。如图4建立坐标系,用圆心的位置坐标(x,y)表达圆心的位置。
圆孔圆心的位置x、y的允许偏差与玻璃的边长允许偏差相同(见表2)。
图4 圆心位置表示方法
5.2厚度及其允许偏差
5.2.1钢化玻璃的厚度的允许偏差应符合表5的规定。
表5厚度及其允许偏差 (单位为毫米)
玻璃公称厚度 厚度允许偏差
3,4,5,6 ±0.2
8,10 ±0.3
12 ±0.4
15 ±0.6
19 ±1.0
>19 供需双方商定
5.2.2 对于表5未作规定的公称厚度的玻璃,其厚度允许偏差可采用表5中与其邻近的较薄厚度的玻璃的规定,或由供需双方商定。
5.3 外观质量
钢化玻璃的外观质量应满足表6的要求。
5.4弯曲度
平面钢化玻璃的弯曲度,弓形时应不超过0.3%,波形时应不超过0.2%。
5.5抗冲击性
取6块钢化玻璃进行试验,试样破坏数不超过1块为合格,多于或等于3块为不合格。
破坏数为2块时,再另取6块进行试验, 试样必须全部不被破坏为合格。
缺陷名称 说明 允许缺陷数
爆边 每片玻璃每米边长上允许有长度不超过10mm,自玻璃边部向玻璃板表面延伸深度不超过2mm,自板面向玻璃厚度延伸深度不超过厚度1/3的爆边个数. 1个
划伤 宽度在0.1mm 以下的轻微划伤,每平方米面积内允许存在条数。 长≤100mm
4条
宽度大于0.1mm的划伤,每平方米面积内允许存在条数. 宽0.1~1mm
长≤100mm
4条
夹钳印 夹钳印与玻璃边缘的距离≤20mm,边部变形量≤2mm(见图5)
裂纹、缺角 不允许存在
1. 边部变形
2. 夹钳印与玻璃边缘的距离
3. 夹钳印
图5夹钳印示意图
5.6 碎片状态
取4块玻璃试样进行试验,每块试样在任何50mm×50mm区域内的最少碎片数必须满足表7的要求。且允许有少量长条形碎片,其长度不超过75mm。
玻璃品种 公称厚度/mm 最少碎片数/片
平面钢化玻璃 3 30
4~12 40
≥15 30
曲面钢化玻璃 ≥4 30
5.7 霰弹袋冲击性能
取4块平型钢化玻璃试样进行试验,必须符合下列(1) 或(2)中任意一条的规定。
(1) 玻璃破碎时, 每试样的最大10块碎片质量的总和不得超过相当于试样65m2面积的质量。
(2)散弹袋下落高度为1200mm时,试样不破坏。
5.8表面应力
钢化玻璃的表面应力不应小于90MPa。
以制品为试样,取3块试样进行试验,当全部符合规定为合格,2块试样不符合则为不合格,当2块试样符合时,再追加3块试样,如果3块全部符合规定则为合格。
5.9耐热冲击性能钢化玻璃应耐200℃温差不破坏。
取4块试样进行试验,当4块试样全部符合规定时认为该项性能合格。当有2块以上不符合时,则认为不合格。当有1块不符合时,重新追加1块试样,如果它符合规定,则认为该项性能合格。当有2块不符合时,则重新追加4块试样,全部符合规定时则为合格。
6. 试验方法
6.1 尺寸检验
尺寸用最小刻度为1mm的钢直尺或钢卷尺测量.
6.2厚度检验
使用外径干分尺或与此同等精度的器具,在距玻璃板边15mm内的四边中点测量。测量结果的算术平均值即为厚度值。并以毫米(mm)为单位修约到小数点后2位。
6.3外观检验
以制品为试样,按GB 11614方法进行。
6.4弯曲度测量
将试样在室温下放置4h以上, 测量时把试样垂直立放,并在其长边下方的1/4处垫上2块垫块。用一直尺或金属线水平紧贴制品的两边或对角线方向,用塞尺测量直线边与玻璃之间的间隙,并以弧的高度与弦的长度之比的百分率来表示弓形时的弯曲度。进行局部波形测量时,用一直尺或金属线沿平行玻璃边缘25mm方向进行测量,测量长度300mm。用塞尺测得波谷或波峰的高,并除以300mm后的百分率表示波形的弯曲度,如图6所示。
6.5抗冲击性试验
6.5.1试样为与制品同厚度、同种类的,且与制品在同一工艺条件下制造的尺寸为610 mm(-0mm,+5mm)×610mm(-0mm,+5mm)的平面钢化玻璃。
6.5.2试验装置应符合GB 9962-1999 附录A的规定。使冲击面保持水平。试验曲面钢化玻璃时,需要使用相应的辅助框架支承。
6.5.3使用直径为 63.5 mm(质量约 1040 g)表面光滑的钢球放在距离试样表面 1000 mm的高度,使其自由落下。冲击点应在距试样中心 25 mm的范围内。对每块试样的冲击仅限1次,以观察其是否破坏。试验在常温下进行。
6.6 碎片状态试验
6.6.1 以制品为试样
6.6.2试验设备
可保留碎片图案的任何装置。
6.6.3试验步骤
6.6.3.1将钢化玻璃试样自由平放在试验台上,并用透明胶带纸或其他方式约束玻璃周边,以防止玻璃碎片溅开。
6.6.3.2 在试样的最长边中心线上距离周边20mm左右的位置,用尖端曲率半径为0.2mm+0.05mm的小锤或冲头进行冲击,使试样破碎。
6.6.3.3保留碎片图案的措施应在冲击后10s后开始并且在冲击后3min内结束。
1. 弓形变形
2. 玻璃边长或对角线长
3. 波形变形;
4. 300mm
图6 弓形和波形弯曲度示意图
6.6.3.4 碎片计数时,应除去距离冲击点半径80mm以及距玻璃边缘或钻孔边缘25mm范围内的部分。从图案中选择碎片最大的部分,在这部分中用50mm×50mm的计数框计算框内的碎片数,每个碎片内不能有贯穿的裂纹存在,横跨计数框边缘的碎片按1/2个碎片计算。
6.7 散弹袋冲击性能试验
6.7.1 试样
试样为与制品相同厚度、且与制品在同一工艺条件下制造的尺寸为1930mm(-0mm,+5mm)×864mm(-0mm,+5mm)的长方形平面钢化玻璃。
6.7.2 试验装置
试验装置应符合GB 9962-1999 附录B的规定。
6.7.3试验步骤
6.7.3.1 用直径 3 mm的挠性钢丝绳把冲击体吊起,使冲击体横截面最大直径部分的外周距离试样表面小于 13 mm,距离试样的中心在 50 mm以内。
6.7.3.2 使冲击体最大直径的中心位置保持在 300 mm的下落高度,自由摆动落下,冲击试样中心点附近1次。若试样没有破坏,升高至 750 mm,在同一试样的中心点附近再冲击1次。
6.7.3.3 试样仍未破坏时,再升高至 1200 mm的高度,在同一块试样中心点附近冲击一次。
6.7.3.4 下落高度为300mm,750mm或1200mm试样破坏时,在破坏后5min之内,从玻璃碎片中选出最大的10块,称其质量。并测量保留在框内最长的无贯穿裂纹的玻璃碎片的长度。
6.8表面应力测量
6.8.1 试样以制品为试样,按GB/T 18144 规定的方法进行。
6.8.2 测量点的规定
如图7所示,在距长边100mm的距离上,引平行于长边的2条平行线,并与对角线相交于4点,这4点以及制品的几何中心点即为测量点。
图7测量点示意图
图8测量点示意图
若制品短边长度不足300mm时,见图8,则在距短边100mm的距离上引平行于短边的两条平行线与中心线相交于2点,这两点以及制品的几何中心点即为测量点。
不规则形状的制品,其应力测量点由供需双方商定。
6.8.3 测量结果
测量结果为各测量点的测量值的算术平均值。
6.9 耐热冲击性能将300mm×300mm的钢化玻璃试样置于200℃±2℃的烘箱中,保温4h以上,取出后立即将试样垂直浸入0℃的冰水混合物中,应保证试样高度的1/3以上能浸入水中,5min后观察玻璃是否破坏。
玻璃表面和边部的鱼鳞状剥离不应视作破坏。
7 检验规则
7.1检验项目
检验分为出厂检验和型式检验。
7.1.1型式检验技术要求中的安全性能要求为必检项目,其余要求由供需双方商定。
7.1.2出厂检验厚度及其偏差、外观质量、尺寸及其偏差、弯曲度。其他检验项目由供需双方商定。
7.2组批抽样方法
7.2.1产品的尺寸和偏差、外观质量、弯曲度按表8规定进行随机抽样。
表8 抽样表 (单位为片)
批量范围 样本大小 合格判定数 不合格判定数
1~8 2 1 2
9~15 3 1 2
16~25 5 1 2
26~50 8 2 3
51~90 13 3 4
91~150 20 5 6
151~280 32 7 8
281~500 50 10 11
501~1000 80 14 15
7.2.2 对于产品所要求的其他技术性能, 若用制品检验时,根据检测项目所要求的数量从该批产品中随机抽取;若用试样进行检验时,应采用同一工艺条件下制备的试样。当该批产品批量大于500块时,以每500块为一批分批抽取试样,当检验项目为非破坏性试验时可用它继续进行其他项目的检测。
7.3 判定规则
若不合格品数等于或大于表8 的不合格判定数,则认为该批产品外观质量、尺寸偏差、弯曲度不合格。
其他性能也应符合相应条款的规定,否则,认为该项不合格。
若上述各项中,有一项不合格,则认为该批产品不合格。
8 标志、包装、运输、贮存
8.1 包装
玻璃的包装宜采用木箱或集装箱(架)包装,箱(架)应便于装卸、运输。每箱(架)宜装同一厚度、尺寸的玻璃。玻璃与玻璃之间、玻璃与箱(架)之间应采取防护措施,防止玻璃的破损和玻璃表面的划伤。
8.2 包装标志
包装标志应符合国家有关标准的规定,每个包装箱应标明“朝上、轻搬正放、小心破碎、防雨怕湿”等标志或字样。
8.3 运输
运输时,玻璃应固定牢固,防止滑动、倾倒,应有防雨措施。
8.4 贮存
产品应贮存在不结露或有防雨设施的地方。
请采纳。
⑤ 钢化玻璃的制作工艺流程
玻璃的生产工艺包括:配料、熔制、成形、退火等工序。分别介绍如下:
1. 配料,按照设计好的料方单,将各种原料称量后在一混料机内混合均匀。玻璃的主要原料有:石英砂、石灰石、长石、纯碱、硼酸等。
2. 熔制,将配好的原料经过高温加热,形成均匀的无气泡的玻璃液。这是一个很复杂的物理、化学反应过程。玻璃的熔制在熔窑内进行。熔窑主要有两种类型:一种是坩埚窑,玻璃料盛在坩埚内,在坩埚外面加热。
3. 成形,是将熔制好的玻璃液转变成具有固定形状的固体制品。成形必须在一定温度范围内才能进行,这是一个冷却过程,玻璃首先由粘性液态转变为可塑态,再转变成脆性固态。成形方法可分为人工成形和机械成形两大类——
A. 人工成形。又有——
(1)吹制,用一根镍铬合金吹管,挑一团玻璃在模具中边转边吹。主要用来成形玻璃泡、瓶、球等。
(2)拉制,在吹成小泡后,另一工人用顶盘粘住,二人边吹边拉主要用来制造玻璃管或棒。
(3)压制,挑一团玻璃,用剪刀剪下使它掉入凹模中,再用凸模一压。主要用来成形杯、盘等。
(4)自由成形,挑料后用钳子、剪刀、镊子等工具直接制成工艺品。
B. 机械成形。因为人工成形劳动强度大,温度高,条件差,所以,除自由成形外,大部分已被机械成形所取代。机械成形除了压制、吹制、拉制外,还有——
(1)压延法,用来生产厚的平板玻璃、刻花玻璃、夹金属丝玻璃等。
(2)浇铸法,生产光学玻璃。
(3)离心浇铸法,用于制造大直径的玻璃管、器皿和大容量的反应锅。这是将玻璃熔体注入高速旋转的模子中,由于离心力使玻璃紧贴到模子壁上,旋转继续进行直到玻璃硬化为止。
(4)烧结法,用于生产泡沫玻璃。它是在玻璃粉末中加入发泡剂,在有盖的金属模具中加热,玻璃在加热过程中形成很多闭口气泡这是一种很好的绝热、隔音材料。
4. 退火。玻璃在成形过成中经受了激烈的温度变化和形状变化,这种变化在玻璃中留下了热应力。这种热应力会降低玻璃制品的强度和热稳定性。如果直接冷却,很可能在冷却过程中或以后的存放、运输和使用过程中自行破裂。
注意:
为了消除冷爆现象,玻璃制品在成形后必须进行退火。退火就是在某一温度范围内保温或缓慢降温一段时间以消除或减少玻璃中热应力到允许值。
玻璃是非晶无机非金属材料,一般是用多种无机矿物(如石英砂、硼砂、硼酸、重晶石、碳酸钡、石灰石、长石、纯碱等)为主要原料,另外加入少量辅助原料制成的。
它的主要成分为二氧化硅和其他氧化物。 普通玻璃的化学组成是Na2SiO3、CaSiO3、SiO2或Na2O·CaO·6SiO2等,主要成分是硅酸盐复盐,是一种无规则结构的非晶态固体。
⑥ 钢化玻璃工艺流程
化学钢化玻璃的工艺流程为:
白片成品—QC检验—清洗处理—化学钢化---保温冷却—清洗干燥—包装。
由于钾钠离子交换速度较慢,要使玻璃具有大的应力值和
⑦ 玻璃钢化是做什么样的处理
钢化玻璃 (Tempered glass/Reinforced glass) 属于安全玻璃。钢化玻璃其实是一种预应力玻璃,为提高玻璃的强度,通常使用化学或物理的方法,在玻璃表面形成压应力,玻璃承受外力时首先抵消表层应力,从而提高了承载能力,增强玻璃自身抗风压性,寒暑性,冲击性等。 生产钢化玻璃工艺有两种: 一种是将普通平板玻璃或浮法玻璃在特定工艺条件下,经淬火法或风冷淬火法加工处理而成。 另一种是将普通平板玻璃或浮法玻璃通过离子交换方法,将玻璃表面成分改变,使玻璃表面形成一层压应力层加工处理而成。 钢化玻璃具有抗冲击强度高(比普通平板玻璃高4~5倍)、抗弯强度大(比普通平板玻璃高5倍)、热稳定性好以及光洁、透明、等特点。在遇超强冲击破坏时,碎片呈分散细小颗粒状,无尖锐棱角,故属于安全玻璃。 其实钢化玻璃还存在一个缺陷,那就是光学畸变,因为玻璃在钢化的过程要经过720度左右, 急冷的风压3.2毫米是12800帕,4毫米急冷风压是7000-8000帕,玻璃已经处于软化的时候,在短短的3秒钟突然承受这样的风压,玻璃的表面会存在风斑,同时玻璃的表面会存在凹凸不平现象,严重的程度要根据设备的好坏来决定,所以钢化后的玻璃不能做镜面的原因。
⑧ 钢化玻璃的制作方法
1 化学钢化法 通过化学方法改变玻璃表面组分,增加表面层压应力,以增加玻璃的机械强度和热稳定性的钢化方法称为化学钢化法。由于它是通过离子交换使玻璃增强,所以又称为离子交换增强法。根据交换离子的类型和离子交换的温度又可分为低于转变点度的离子交换法(简称低温法)和高于转变点温度的离子交换法(简称高温法)。化学增强法的原理是:根据离子扩散的机理来改变玻璃的表面组成,在一定的温度下把玻璃浸入到高温熔盐中,玻璃中的碱金属离子与熔盐中的碱金属离子因扩散而发生相互交换,产生“挤塞”现象,使玻璃表面产生压缩应力,从而提高玻璃的强度“ 。 根据玻璃的网络结构学说,玻璃态的物质由无序的三维空间网络所构成,此网络是由含氧的离子多面体构成的,其中心被s Al 或P 离子所占据。这些离子同氧离子一起构成网络,网络中填充碱金属离子(;nNa ,K )和碱土金属离子。其中碱金属离子较活泼,很易从玻璃内部析出,化学钢化法就是基于离子自然扩散和相互扩散,以改变玻璃表面层的成分,从而形成表面压应力层的。但离子交换法所产生的表面压应力层比较薄,对表面微缺陷十分敏感,很小的表面划伤,就足以使玻璃强度降低。 优缺点:化学增强玻璃强度与物理增强玻璃接近,热稳定性好,处理温度低,产品不易变形,且其产品不受厚度和几何形状的限制,使用设备简单,产 品容易实现。但与物理钢化玻璃相比,化学钢化玻璃生产周期长(交换时间长达数十小时),效率低而生产成本高(熔盐不能循环利用,且纯度要求高),碎片与普通玻璃相仿,安全性差,且其性能不稳定(化学稳定性不好),机械强度和抗冲击强度等物理性能易于消退(也称松驰),强度随时问衰减很快。 适用范围:化学钢化玻璃广泛应用于不同厚度的平板玻璃,薄壁玻璃和瓶罐异形玻璃产品,还可用于防火玻璃。 2 物理钢化法 物理钢化的原理就是把玻璃加热到适宜温度后迅速冷却,使玻璃表面急剧收缩,产生压应力,而玻璃中层冷却较慢,还来不及收缩,故形成张应力,使玻璃获得较高的强度。一般来说冷却强度越高,则玻璃强度越大。物理钢化方法很多,按冷却介质来分,可分为:气体介质钢化法、液体介质钢化法、微粒钢化法、雾钢化法等 。 2.1 气体介质钢化法 气体介质钢化法,即风冷钢化法。包括水平气垫钢化、水平辊道钢化、垂直钢化等方法。所谓风冷钢化法就是将玻璃加热至接近玻璃的软化温度(650~700。C),然后对其两侧同时吹以空气使其迅速冷却,以增加玻璃的机械强度和热稳定性的生产方法。加热玻璃的淬冷是用物理钢化法生产钢化玻璃的一个重要环节,对玻璃淬冷的基本要求是快速且均匀地冷却,从而获得均匀分布的应力,为得到均匀的冷却玻璃,就必须要求冷却装置有效疏散热风、便于清除偶然产生的碎玻璃并应尽量降低其噪音 。 优缺点: 风冷钢化的优点是成本较低,产量较大,具有较高的机械强度、耐热冲击性(最大安全工作温度可达287.78。c)和较高的耐热梯度(能经受 204.44。C),而且风冷钢化玻璃除能增强机械强度外,在破碎时能形成小碎片,可减轻对人体的伤害。但是对玻璃的厚度和形状有一定的要求(国产设备所钢化的玻璃最小厚度一般在3 mm左右),而且冷却速度较慢,能耗高,对于薄玻璃,钢化过程中还存在玻璃变形的问题,无法在光学质量要求较高的领域内应用。 适用范围:目前空气钢化技术应用广泛,空气钢化的玻璃多用在汽车、舰船、建筑物上。 2.2 液体介质钢化法液体介质钢化法,即液冷法。所谓液冷法就是将玻璃加热到接近软化点后,放人盛满液体的急冷槽内进行钢化。此时作为冷却介质可以采用盐水,如硝酸钾、亚硝酸钾、硝酸钠、亚硝酸钠等的混合盐水。此外,还可以采用矿物油作为冷却介质,当然也可以向矿物油中加入甲苯或四氯化碳等添加剂。一些特制的淬冷油及硅酮油等也可以使用。在进行液体钢化时,由于玻璃板的边部先进入急冷槽,因此会出现应力不均引起的炸裂。为了解决这一问题,可先用风冷或喷液等进行预冷,然后再放入有机液中急冷。也可以在急冷槽中放入水和有机溶液,有机溶液浮于水上面,当把加热后的玻璃放入槽中时,有机溶液起到预冷作用,吸收一部分热量,然后进入水中快速冷却除了采用浸入冷却液体,也可以采用液体喷雾法,但一般多用浸入法。英国的Triplex公司,最早 在上世纪80年代就用液体介质法钢化出了厚度为 0.75~1.5 mm的玻璃,结束了物理钢化不能钢化薄玻璃的历史。液体钢化法的难点是建立起合理的液冷法工艺制度,在液冷钢化时应注意的两个问题:一是 产生的过高的压应力层,二是避免玻璃炸裂。 优缺点: 采用液体介质钢化法,由于水的比热较大,气化热高,因此用量大为减少,从而能耗降低,成本减少,而且冷却速度快,安全性能高,变 形较小。由于在冷却时是玻璃受热后插入液体介质中,因此对于面积较大的玻璃板来说容易受热不均而影响质量和成品率。 适用范围:主要适用于钢化各种面积不大的薄玻璃,如眼镜玻璃。液晶显示屏玻璃,光学仪器仪表用玻璃等。 2.3 微粒钢化法 此法是把玻璃加热到接近软化温度后,于流化床中经固体微粒一般为粒度小于200 m的氧化铝微粒淬冷而使玻璃获得增强的一种工艺方法。从理论上看用固体作为冷却介质可以制造出更薄、更轻、强度更高的钢化玻璃,故上个世纪70年代中期至80年代初期,英国、日本、比利时、德国等陆续将此技术应用于生产 。 优缺点: 微粒钢化法可钢化超薄玻璃。强度高、质量好。是目前制造高性能钢化玻璃的一项先进技术。微粒钢化新工艺与传统的风钢化工艺相比。冷却介质的冷却能大,适于钢化超薄玻璃,节能效果显著(节能约40%)。但微粒钢化工艺的冷却介质成本较高。 适用范围:高强度,高精度的薄玻璃和超薄玻璃。 2.4 雾钢化法 以雾化水做为冷却介质,利用喷雾排气装备,可使玻璃在钢化过程中冷却更均匀,能耗更小,钢化后的性能更好。喷雾排气装备由若干相互并列连接且排布在底板上的栅格形桶状结构构成,每个桶状结构由底板、隔板、喷嘴和若干排气孑L构成。类似于气体法,但使用的冷却介质不是空气,而是雾化水.特征在于以雾化水为冷却介质,对玻璃进行钢化处理。水的比热较大,所有的液体中水 的气化热也是最高的。在玻璃的钢化过程中,水雾连续不断地喷到加热后的玻璃表面,呈微粒状的雾化水迅速吸热成为100℃的水,再气化,利用水的比热大及气化热高这一特点。将玻璃表面的大量热瞬间带走(吸收),使玻璃淬火钢化,在玻璃表面造成永久性的压缩应力,从而提高玻璃的抗张能力,使玻璃钢化。水雾(雾化水)可由压缩空气喷吹法、蒸汽喷吹法或液压喷雾法等喷向被加热的玻璃表 面,由于雾化水接触到赤热的玻璃后会迅速吸热并气化膨胀,若令其自由扩散.则会影响玻璃的均匀冷却,易使玻璃炸裂。为此。需设计有独特的喷雾排气设备,使得已气化和膨胀的水气可就地抽走。而不会沿着玻璃表面扩散” ”。 雾钢化优缺点:冷却介质易得,成本低、不污染环境,还可钢化一般气体、液体及微粒钢化所不能钢化的薄玻璃。但冷却均匀性较难控制。适用范围:因其冷却制度较难控制,目前应用较少。 3 结束语 综上所述,化学钢化适用于对薄玻璃、要求精度高或形状复杂的玻璃进行钢化,其产品大都用于眼镜、航空玻璃、电子用基板玻璃等特殊用途。但是,化学钢化产品寿命较短,一般为3年以下,而物理钢化产品寿命超过30年;微粒钢化玻璃工艺可生产强度高、无应力斑纹的优质薄钢化玻璃,但会影响玻璃的表面质量;液体钢化玻璃工艺适用于小规格薄玻璃及超薄玻璃的钢化。 此外还有酸腐蚀对玻璃强度也会产生影响,酸腐蚀的原理是通过酸侵蚀除去玻璃表面裂纹层或使裂纹尖端钝化,减小应力集中,以恢复玻璃固有的高强特性。也可将上述几种玻璃增强技术有机的结合起来,发挥各自的长处,充分提高玻璃的强度,就形成了所谓的综合增强技术
⑨ 钢化玻璃制作时间需要几天谁能详细说一下制作流程
定做钢化玻璃需要十天左右。钢化玻璃生产工艺流程为:玻璃→切割→磨边→清洗干燥→钢化→包装。
制备玻璃的熔融阶段中会产生大量的气体。因此气泡是一种最常见的玻璃缺陷,会影响玻璃制品的外观、透明度、机械强度、光学均匀性等,最常见消除气泡的措施就是升高熔化温度和澄清温度。
浮法工艺制造的铝硅酸盐玻璃(Al2O3>12%)时,存在熔化、澄清均化较为困难、玻筋重、气泡缺陷多的缺点,在不添加澄清剂的状态下,一般玻璃正常熔化温度高于1540℃,澄清温度高于1640℃,才能满足熔化和澄清的需要,不仅能耗高,还会降低窑炉耐材的寿命。
(9)玻璃钢化的过程扩展阅读:
注意事项:
1、注意保护钢化玻璃的边角处:如果钢化玻璃的边角处有破损,玻璃自爆的风险就成倍增加。因为钢化玻璃的应力点全部集中在边角处,边角的保护显得尤为重要,对于边角破损的钢化玻璃无法处理时使用一定要谨慎。
2、避免让钢化玻璃长期处于受压状态:为了室内美观,很多家庭会选择使用钢化玻璃作为桌面的餐桌、茶几,一般钢化玻璃承受压力在70mpa至100mpa之间,这个压强乘上玻璃的受力面积就是它所能承受的最大压力。
3、避免冷热不均匀:如果在极端状态下,在一块玻璃的两端分别施以高温和低温,那么这块玻璃90%会自爆,例如在点亮的白炽灯上浇点凉水,白炽灯的玻璃就会破裂。虽然对于钢化玻璃来说这种情况发生的情况会很小,但是不怕一万就怕万一。