① 钢铁炼的过程,不要专业术语,分为几个过程,每个过程要有小标题!网上抄的也可以
炼铁:高炉中加入:铁矿石+石灰石等炼铁辅料+焦炭→高温→铁水+炉渣→铸铁锭+炉渣
炼钢:电弧炉或者转炉中加入:废铁、铸铁锭→高温(通电吹氧等)→钢水+钢渣→铸锭(或者连轧)+钢渣
根据所炼钢种的要求把生铁中的含碳量去除到规定范围,并使其它元素的含量减少或增加到规定范围的过程。简单地说,是对生铁降碳、去硫磷、调硅锰含量的过程。这一过程基本上是一个氧化过程,是用不同来源的氧(如空气中的氧、纯氧气、铁矿石中的氧)来氧化铁水中的碳、硅、锰等元素。化学反应主要是:
2FeO+Si 2Fe+SiO2
FeO+Mn Fe+MnO
反应生成的一氧化碳很容易从铁水排至炉气中而被除掉。生成的二氧化硅、氧化锰、氧化亚铁互相作用成为炉渣浮在钢水面上。生铁中硫、磷这两种元素在一般情况下对钢是有害的,在炼钢过程中必须尽可能除去。在炼钢炉中加入石灰(CaO),可以去除硫、磷:
2P+5FeO+3CaO 5Fe+Ca2(PO4)2(入渣)
在使碳等元素降到规定范围后,钢水中仍含有大量的氧,是有害的杂质,使钢塑性变坏,轧制时易产生裂纹。故炼钢的最后阶段必须加入脱氧剂(例如锰铁、硅铁和铝等),以除去钢液中多余的氧:
Mn+FeO MnO+Fe
Si+2FeO SiO2+2Fe
Al+3FeO Al2O3+3Fe
同时调整好钢液的成分和温度,达到要求可出钢,把钢水铸成钢锭。
炼钢的方法主要有转炉、电炉和平炉三种。平炉炼钢的主要特点是可搭用较多的废钢(可搭用钢铁料的20~50%的废钢),原料适应性强,但冶炼时间多。我国目前主要采用平炉炼钢。转炉炼钢广泛采用氧气顶吹转炉(见图),生产速度快(1座300吨的转炉吹炼时间不到20分钟,包括辅助时间不超过1小时,而300吨平炉炼1炉钢要7个小时),品种多、质量好,可炼普通钢,也可炼合金钢。电炉炼钢是用电能作热源进行冶炼。可以炼制化学工业需要的不锈耐酸钢,电子工业需要的高牌号硅钢、纯铁,航空工业需要的滚珠钢、耐热钢,机械工业用轴承钢、高速切削工具钢,仪表工业需要的精密合金等。
把铁矿石和焦碳,石灰石,萤石等原料按比例投入高炉,吹入热风,加热到1000多度。这样单质铁就在碳的还原作用下被还原出来了。这是炼铁的过程。接着就把炼出来的铁水注入炼钢转炉中,然后加入一定量的费钢,向转炉中吹入氧气,这就是炼钢中最具有决定性的工作,氧气可以把铁水中多余的碳元素氧化掉,变成气体。然后会在氧化完毕的钢水中投入一些锰铁或硅铁,与钢水中残留的氧发生氧化,然后把钢水铸成钢锭或浇注成零件,或者是直接进入轧钢厂,轧成可以使用的型材。这就是炼钢的全过程。
简单一点说就是把铁的纯度炼到98%<好像>要炼成这样,必须不断地敲打
淬火,让杂质C于氧气充分接触,生成CO2,所以古代炼钢铁,就是不断敲打,不断烧烤,不断放水里淬火。
现代炼钢步骤如下
造渣
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过 钢铁高炉
渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,能够向金属液面中传递足够的氧,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉 钢花伴我炼钢忙
料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。 连铸机出坯
还原期
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量, 炼钢车间
缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物*上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟), 转炉炼钢
精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。
钢包精炼
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理
惰性气体处理:向钢液中吹入惰性气体Ar,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中也叫脱氧合金化。
② 钢铁是怎么炼成的要详细过程
炼铁:
输料系统把烧结矿(由烧结厂烧成的)、焦碳、石灰石等原料输入到高炉顶的布料系统,由布料系统均匀的按一定比例布入炉内。热风系统将风吹进高炉,焦碳燃烧形成一定的高温(1150--1200度)化学气氛,烧结矿中铁的氧化物在这种温度和环境下发生还原反应。
矿石中的氧一部分形成二氧化碳,一部分变成一氧化碳,还有一些杂质气体被高温排走,进入除尘净化系统和高炉燃气回收系统,无用的二氧化碳被排走,一氧化碳被回收再利用。矿石中的铁被还原后在高温下行成液态铁水。
铁水又叫生铁。生铁可分三类:一类是供炼钢用的钢铁(硅SI含量小于1.25%);一类是供浇铸机件和工具的铸造铁(硅含量大于1.25%);还有一类是铁合金(主要是锰铁和硅铁)。
炼钢:
实质上是将铁水(生铁)加温并添加不同的元素,通过吹氧等手段,使铁的含碳量降低到0.2-1.7%的冶炼过程。可炼出多种不同质地的钢。如加锰,就炼出锰钢;加镍、铬、钛就炼出不易生锈的钢。
(2)炼钢中如何控制微合金元素扩展阅读:
铁碳合金分为钢与生铁两大类,钢是含碳量为0.03%~2%的铁碳合金。碳钢是最常用的普通钢,冶炼方便、加工容易、价格低廉,而且在多数情况下能满足使用要求,所以应用十分普遍。按含碳量不同,碳钢又分为低碳钢、中碳钢和高碳钢。随含碳量升高,碳钢的硬度增加、韧性下降。
合金钢又叫特种钢,在碳钢的基础上加入一种或多种合金元素,使钢的组织结构和性能发生变化,从而具有一些特殊性能,如高硬度、高耐磨性、高韧性、耐腐蚀性,等等。经常加入钢中的合金元素有Si、W、Mn、Cr、Ni、Mo、V、Ti等。
合金钢的资源相当丰富,除Cr、Co不足,Mn品位较低外,W、Mo、V、Ti和稀土金属储量都很高。21世纪初,合金钢在钢的总产量中的比例将有大幅度增长。
含碳量2%~4.3%的铁碳合金称生铁。生铁硬而脆,但耐压耐磨。根据生铁中碳存在的形态不同又可分为白口铁、灰口铁和球墨铸铁。白口铁中碳以Fe3C形态分布,断口呈银白色,质硬而脆,不能进行机械加工,是炼钢的原料,故又称炼钢生铁。
碳以片状石墨形态分布的称灰口铁,断口呈银灰色,易切削,易铸,耐磨。若碳以球状石墨分布则称球墨铸铁,其机械性能、加工性能接近于钢。在铸铁中加入特种合金元素可得特种铸铁,如加入Cr,耐磨性可大幅度提高,在特种条件下有十分重要的应用。
钢铁中碳的来源:炼铁的原料之一是铁矿石,铁矿石主要成份是Fe2O3,没有碳。炼铁的原料之二是焦碳。炼铁过程部分焦碳留在了铁水中,导致铁水中含碳。钢铁的生产 由铁矿石炼生铁。
由生铁作原料炼钢,炼钢的过程主要是除碳的过程.还不能将碳除尽,钢需要有一定量的碳,性能才达到最佳。
按冶炼设备分
⑴转炉钢 用转炉吹炼的钢,可分为底吹、侧吹、顶吹和空气吹炼、纯氧吹练等转炉钢;根据炉衬的不同,又分酸性和碱性两种。
⑵平炉钢 用平炉炼制的钢,按炉衬材料的不同分为酸性和碱性两种,一般平炉钢多为碱性。
⑶电炉钢 用电炉炼制的钢,有电弧炉钢、感应炉钢及真空感应炉钢等。工业上大量生产的,是碱性电弧炉钢。
按钢的品质分
⑴普通钢 钢中含杂质元素较多,含硫量ws一般≤O.05%,含磷量wP≤0.045%,如碳素结构钢、低合金结构钢等。
⑵优质钢 钢中含杂质元素较少,含硫及磷量ws、wp,一般均≤0.04%,如优质碳素结构钢、合金结构钢、碳素工具钢和合金工具钢、弹簧钢、轴承钢等。
⑶高级优质钢 钢中含杂质元素极少,含硫量ws一般≤O.03%,含磷量wP≤0.035%,如合金结构钢和工具钢等。高级优质钢在钢号后面,通常加符号“A”或汉字“高”以便识别。
③ 炼钢的具体工艺流程是什么
炼钢利用转炉内的氧化性环境将铁水中过量的碳氧化成一氧化碳和二氧化碳,达到钢水要求的碳含量。当然在炼钢厂房内一般来说还要有转炉之前的铁水脱硫预处理,转炉出钢后的钢水精炼(LF或LF+RH或LF+VD,VOD等),完成精炼后用行车调运至连铸机的大包回转台,进行连铸浇铸的工序环节,为后续的轧钢厂提供钢坯原料。x0dx0ax0dx0a整个联合钢铁厂的工艺流程为:原料码头(各种原料集中卸载存放区域)——烧结(矿石造块或造球团)——高炉(炼铁)——炼钢(铁水预处理-转炉或电炉-精炼-连铸)-轧钢 x0dx0ax0dx0a炼钢工艺过程 x0dx0a 造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。 x0dx0a 出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。 x0dx0a 熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。 x0dx0a 电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。 x0dx0a 熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。 x0dx0a 氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。 x0dx0a 精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。 x0dx0a 还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。 x0dx0a 炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。 x0dx0a 钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物*上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。 x0dx0a 钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。 x0dx0a 钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。 x0dx0a 钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。 x0dx0a 惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。 x0dx0a 预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。 x0dx0a 成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。 x0dx0a 增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。 x0dx0a 终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。 x0dx0a 出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
④ 合金化是什么
提高钢的强度既简便又便宜的方法是增加碳含量。然而,这种方法使其他所希望的性能遭到消弱,如成型性,焊接性,韧性和其他一些性能。几个性能都重要的情况下的几种应用,碳含量必须保持在低水平。在低碳钢中为了获得高强度并同时保持高水平的综合性能最经济的方法是应用微合金化技术。
为什么要高强度
应用高强度钢可以降低板厚度从而在许多应用中降低重量。在汽车工业,车体减轻可以节省燃油从而保护环境(减少排气量)。在造船工业,船体减轻可以装载更多的货物。图3显示的是管道在管线结构中的应用。对于一个18m长,外径1000mm的管道,当用高强度钢X70代替低强度钢时其重量可以从14t降低到6t。另一个重要的例子是民用建筑,如图4所示,的建筑形式,用460MPa的高强度钢代替低强度钢(235MPa)可以节省材料40%,重量降低超过50%,焊接材料可以节约超过70%。
微合金化的效果
图5表明了主要微合金化元素Nb,V和Ti对提高强度和韧性的作用以及其强化机理。这三个元素均是通过细化晶粒和沉淀强化提高强度,但每种机理强化程度不同。Nb具有最强的晶粒细化强化效果,而V具有最强的沉淀强化效果,Ti介于上述两者之间。如图6所示,晶粒细化是唯一的能够同时提高韧性的强化机理。因此,当同时需要高强度和高韧性综合性能时就需要添加铌,譬如管线钢和结构钢。在图5中还可以反映出铌是经济有效的。如要使低碳钢的屈服强度提高100MPa,需要添加0.02%的铌,而钒则需要添加两倍的量。
铌的晶粒细化引起的强烈效果与其在轧制时通过固溶,特别是碳氮化铌析出延迟奥氏体再结晶有关系。图7显示了分别含Nb,V,Ti钢的效果。铌阻止在轧制最后阶段奥氏体的再结晶,促进了扁平晶粒的变形,从而导致非常细的铁素体晶粒。
铌的另一个重要影响是在中低碳钢中降低转变温度促使贝氏体组织的形成,这一研究已经比较多了,如图8所示。降低转变温度是由于在轧制过程中仍有一部分铌留在固溶体中而没有发生沉淀反应。这一效果在同时加入Nb和Mo或同时加入Nb和B时由于协同作用而加强,如图所示。其中一个实际例子是X80管线钢,铁素体-低珠光体组织在得到韧性要求的同时却达不到强度级别。
微合金化不仅仅对轧制产品有作用。V可以在热处理级别钢种提高强度,而铌可以细化晶粒。如图9所示,在正常热处理之后,铌明显的细化了晶粒。
为了得到所希望的高水平性能,在炼钢时很好的控制杂质含量如S、N、P等也是非常重要的,特别是对需要高韧性的板材产品。图10表明了S是如何影响冲击性能的。为了把S含量控制在低的水平,应用硫化物形状控制(通常用钙处理)对于避免生成对横向韧性有损害的延长硫化镁是非常重要的。
如图11所示,氮对热影响区的韧性的损害是非常大的,因此低氮是值得提倡的。这一损害可以用钛固定游离的氮以降低其影响。氮化钛在高温时非常稳定,因此它可以阻止晶粒的增长。图12显示了钛固氮处理提高热影响区韧性的益处。然而用钛需要很好的控制手段。加入到钢中的钛的量要以固定氮所需要的量为上限。如果多加了钛将促使形成碳化钛,这样对热影响区的韧性有损害,如图13所示。氮对焊接金属的韧性也是有影响的,如图14。
板材产品的微合金化
板材产品方面的技术进展可以作如下描述:
50年代后期: Nb的引入
60年代: 控制轧制的试验探索
70年代: 全面实行微合金化和控制轧制
80年代: 实行加速冷却
90年代: 实行直接淬火
图15表示的是微合金化元素Nb、V和Ti在不同的冷却工艺下在板材中的强化效果,Nb的提高强韧性的效果尤为突出。
微合金化板材有着非常广泛的应用,如管线钢,造船钢,海洋平台,民用建筑(桥梁、高架桥,建筑)以及其它领域。
如表1所示,管线钢产品的发展,表明虽然碳的含量在不断降低,但其强度却在增加,这一原因前面已经说明。提高到X80级的产品已经进行商业生产,一些钢铁公司已经开发了X100级别。提高抗氢致裂纹需要更严格的炼钢工艺并需要非常低的碳和硫含量,如表2所列的工业产品。
最后,表3对几种管线钢进行了总结,包括热轧和炉卷产品。在表中我们可以注意到一些钢中的含铌量高于正常情况的含铌量,在0.07~0.09%之间。这些钢最近几年在北美已经进行商业生产。高铌含量可以把奥氏体再结晶延迟到更高的温度(如图7所示),这使控轧工艺更加宽松,如高的终轧温度,这对有功率限制的钢板轧机是有益的。而且,这些超低碳高Nb钢具有非常好的韧性特性。
对于海洋平台和造船业来讲,自70年代以来的趋势是降低含碳量,特别是在高焊接工作量并需要提高焊接性能的情况下。表4显示的是分别通过正常的热处理和加速冷却工艺生产的335MPa级的典型的化学成分。
在民用建筑方面,图16表明了在瑞典现代桥梁应用的高强度微合金化钢。用高强度钢,屈服强度460MPa级,热机械工艺(TMCP)可以降低重量15,000t,降低费用2500万美元。表5显示的是50mm厚结构板材产品典型的化学成分,工艺分别为正常情况(N),控轧(TM),淬火和回火(QT),热机械工艺(TMCP)和直接淬火(DQ)。最近几年,安全防火变得越来越重要。如图17所示,防火结构钢已经发展起来,该钢添加Nb和Mo以提高高温强度。
汽车工业用热轧和冷轧薄钢板
在70年代初第一次石油危机之后,微合金化热轧和冷轧薄钢板在汽车工业获得了广泛应用。用高强度钢代替低强度钢过去是现在依然是降低汽车车重的有效方法,以节省燃料。安全方面的需要也激发了高强度钢的应用。
热轧薄钢板
热轧低合金高强度钢(HSLA)薄钢板主要用于卡车的底盘部分,也用于大客车的车轮,轮毂等部件。传统的屈服强度水平在350MPa到550MPa之间,具有铁素体加少量珠光体组织。表6列出了一些典型的化学成分。过去,这些钢也用Ti作为主要微合金化元素来生产,尤其是在过去钢的含硫水平比较高。加入钛的另外一个主要作用是控制硫化物的形状。但是由于其碳化物形成的动力学原因,轧制工艺十分复杂,大部分情况下是不允许的,以避免出现典型的最终产品性能大范围的分散,图18。在铁素体-少量珠光体钢中,当薄板的厚度方向需要使用两种微合金化元素来获得更高的强度时,Nb和V的结合将使性能分散范围小些。以上考虑涉及到Ti的碳化物沉淀强化作用。如果只用来固定N,则Ti很有效。在含Nb钢中,强度进一步提高,因为更多的Nb将使铸造性能也得到改善。
最近,开发出690MPa级卡车大梁用钢,它利用了在由热带轧机直接轧出的贝氏体钢中所有的强化机理,图19。表7列出了两种欧洲产品的合金设计。
铁素体-贝氏体钢,含10~30%的贝氏体,用于车轮、轮毂和底盘,它比铁素体-珠光体钢具有更优越的凸缘压边延伸性能。与铁素体-马氏体——双相钢相反,当焊接的轮毂轮箍被拉伸时,使用这种钢不会出现局部颈缩。如图20所示,当合金设计、轧制参数——卷取温度——得到控制从而第二相主要为贝氏体相时,就可达到强度和成型性的最优配合。
冷轧薄钢板
传统的微合金高强度冷轧薄板用钢在汽车工业已使用了25年,但部分汽车零件不需要高的成型性。图21显示了罩式退火钢板的典型化学成分。传统的微合金钢也可在连续退火线上生产,此时,对于给定的钢种,可以获得更高的强度。例如,如图22所示的用于汽车侧挡板的双相钢。
更复杂形状的产品——汽车车体(integrated
panels)的开发以及传统钢达不到罩式退火同样的成型性而引入连续退火生产薄钢板,需要开发一种新的类型钢,即无间隙钢——超低碳IF钢。
无间隙钢添加Ti、Nb或Ti+Nb生成无间隙原子。尤其在镀锌产品中,TiNb无间隙钢可获得最优配合的机械性能以及更好的表面质量,如图23、24、25、26、27、28所示。仅添加Ti的无间隙钢易于产生表面缺陷。
匹兹堡大学的最新研究工作已经表明,当铌在铁素体晶界溶解时,它能起到重要的作用。晶界处溶解的铌改善冷加工脆性,并能降低镀锌产品的粉化趋势。
用于锻造的微合金钢
微合金化技术在锻造汽车零件钢中的应用允许除掉传统的淬回火热处理生产汽车零件,从而显著节省生产成本。表8列出了一些在市场上出现的钢种。
现已生产了仅含微合金元素V、仅含Nb以及Nb、V复合微合金钢。研究表明,复合添加Nb和V对提高强度比单独添加这两种微合金元素中的任何一种更有效。Nb提高了V的析出潜能。
在这种产品上,最新成果包括有直接淬火(马氏体)或空冷获得的低碳马氏体+贝氏体或贝氏体钢,它们表现出韧性得到改善。表9给出了一个例子。
高强度紧固件与悬挂弹簧
传统的冷锻高强度紧固件用钢为中碳钢,由淬回火得到最终产品所需的性能。用低碳微合金钢替代中碳钢,不需要热处理就能得到最终所需的机械性能,并且消除了在收线过程中的中间球化处理。表10给出了8.8级钢(铁素体—珠光体)与10.9级钢(铁素体—贝氏体)的化学成分。
悬挂弹簧是另一种使用微合金化技术而达到减重的产品。北美生产出热处理后抗拉强度为2000MPa级、HRc为53-55的钢。化学成分与机械性能在表11中列出。
渗碳钢
在渗碳处理钢中,尤其在温锻条件下,晶粒非正常长大较为普遍。这些钢中加入铌抑制晶粒非正常长大,这项技术已在日本使用多年,最近在北美也取得应用。微合金元素添加到这些钢中而带来的另一个好处是通过更高的加热温度而有可能减少渗碳时间。铌的加入抑制晶粒长大,因而使在更高温度渗碳成为可能。
结构用型钢
在结构用型钢技术上的最新主要进展是仅使用一种化学成分就可满足几种技术条件的含铌结构型钢/横梁钢已工业化。这种由Chaparral钢铁公司开发的“多级别”钢,典型的成分仅含0.01-0.02%Nb(目标为0.015%),这足够将ASTM
A36的屈服强度提高到345MPa以上而抗拉强度限制在550MPa以下,从而既能满足ASTM A36又能满足 ASTM
A572-50的技术条件。铌是选择性添加微量元素,因为为了满足50级钢的最低屈服强度要求,可能要多添加一些V,为0.02-0.03%(与0.015%Nb相比),这会提高结构型钢的抗拉强度,使它接近或超过550MPa,而当满足A572-50的技术要求时,又超过了A36所允许的要求。其它ASTM钢的技术要求可由A572-42、A572-50、A529-42、A5290-50、A709-36与A709-50等多级别钢满足。
钢筋
该产品用于大型混凝土结构以提高抗拉能力。大直径高强度级别钢筋添加了V和Nb。一些现代轧钢厂采用水冷技术取代微合金化提高强度。图29为V和Nb在焊接用钢筋中的强化效果。
世界微合金化钢的发展
世界微合金化钢的发展可由Nb的总消耗量来描述,因为Nb是一种主要微合金化元素,并且75%的Nb用于微合金化钢,见图30。70年代Nb的消耗量急剧上升。当时控轧工艺在全世界范围内被采用,同时汽车工业使用量也在增加。80年代是稳定期,但微合金化钢产量继续增加。Nb消耗量的稳定是因为钢铁厂效率的提高,如连铸设备的安装、加速冷却,对给定量的最终产品,这可节省原材料。然而在Nb消耗量达到饱和点后,在90年代Nb的需求又显著增加。这是受许多重要的钢铁公司产品结构调整的影响,他们的品种集中在附加值产品,包括微合金化钢。图31很好的显示出在欧洲微合金化钢增加情况。从图中明显看出,在该地区,与粗钢相比,FeNb的消耗量显著增加。在欧洲,每吨钢中的FeNb为60g。
除了微合金钢产量增加外,Nb使用领域也在增加。如图32所示,在70年代中期,Nb主要用在管线钢产品。为开发该产品中而发展起来的微合金化技术在随后的时间里被应用在其他领域,如该图所示的2000年情况。
结论
微合金化技术是一条生产高强度和其它所需性能的高质量产品的经济有效途径。
世界范围内的微合金化钢的产量不断增加。新的钢种已开发出来,并应用在许多领域,保持着钢在材料领域的良好竞争能力。
⑤ 调质钢中常用哪些合金元素这些合金元素各起什么作用
1、 碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、 硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅.如果钢中含硅量超过0.50-0.60%,硅就算合金元素。硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢.在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。硅量增加,会降低钢的焊接性能。
3、 锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%.在碳素钢中加入0.70%以上时就算“锰钢”,较一扒缓般钢量的钢不但有足够的韧春粗模性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等.锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、 磷(P):在一般情况下,磷是钢中凳桐有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、 硫(S):硫在通常情况下也是有害元素.使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、 铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
7、 镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。
8、 钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。还可以抑制合金钢由于火而引起的脆性.在工具钢中可提高红性。
9、 钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。
10、 钒(V):钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力。
11、 钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。
12、 铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降.在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力.铌可改善焊接性能.在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。
13、 钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料。
14、 铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。
15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。
16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。
17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。
18、 稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土.钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能.在犁铧钢中加入稀土,可提高耐磨性。
19、气体元素O,氧与钢中某些元素形成氧化物夹杂,使钢易发生热裂、脆性和实效等现象。
⑥ 炼钢的过程有哪三个主要阶段
炼钢过程实质就是通过氧化反应脱碳、升温、合金化的过程。它的主要任务是脱碳、脱氧、升温、去除气体和非金属夹杂、合金化。 主要包括造渣、出渣、熔池搅拌、电炉底吹、熔化期、氧化期和脱炭期、精炼期、还原期、炉外精炼、钢液搅拌、钢包喂丝、钢包处理、钢包精炼、惰性气体处理、预合金化、成分控制、增硅、终点控制、出钢等过程。
炼钢工艺过程
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物*上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、 TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有 “气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。
⑦ 如何炼钢
1、按冶炼方法分类:
平炉钢:包括碳素钢和低合金钢。按炉衬材料不同又分酸性和碱性平炉钢两种。
转炉钢:包括碳素钢和低合金钢。按吹氧位置不同又分底吹、侧吹和氧气顶吹转炉钢三种。
电炉钢:主要是合金钢。按电炉种类不同又分电弧炉钢、感应电炉钢、真空感应电炉钢和电渣炉钢四种。
沸腾钢、镇静钢和半镇静钢:按脱氧程度和浇注制度不同区分。
2、按化学成分分类:
碳素钢:是铁和碳的合金。据中除铁和碳之外,含有硅、锰、磷和硫等元素。按含碳量不同可分 为低碳(C<0.25%)、中碳(C:0.25%-0.60%)和高碳(C>0.60%)钢三类。碳含量小于0.04%的钢称工业纯铁。
普通低合金钢:在低碳普碳钢的基础上加入少量合金元素(如硅、钙、钛、铌、硼和稀土元素等,其总量不超过3%)。而获得较好综合性能的钢种。
合金钢:是含有一种或多种 适量合金元素的钢种,具有良好和特殊性能。按合金元素总含量不同可分为低合金(总量<5%)、中合金(合金总量在5%-10%)和高合金(总量>10%)钢三类。
3、按用途分类:
结构钢:按用途不同分建造用钢和机械用钢两类。建造用钢用于建造锅炉、船舶、桥梁、厂房和其他建筑物。机械用钢用于制造机器或机械零件。
工具钢:用于制造各种工具的高碳钢和中碳钢,包括碳素工具钢、合金工具钢和高速工具钢等。
特殊钢:具有特殊的物理和化学性能的特殊用途钢类,包括不锈耐酸钢、耐热钢、电热合金和磁性材料等。
常用冶炼方法
1、转炉炼钢:
一种不需外加热源、主要以液态生铁为原料的炼钢方法。其主要特点是靠转炉内液态生铁的物理热和生铁内各组分,如碳、锰、硅、磷等与送入炉内的氧气进行化学反应所产生的热量作冶炼热源来炼钢。炉料除铁水外,还有造渣料(石灰、石英、萤石等);为了调整温度,还可加入废钢以及少量的冷生铁和矿石等。转炉按炉衬耐火材料性质分为碱性(用镁砂或白云为内衬)和酸性(用硅质材料为内衬);按气体吹入炉内的部分分为底吹顶吹和侧吹;按所采用的气体分为空气转炉和氧气转炉。酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而应用范围受到限制。碱性转炉适于用高磷生铁炼钢,曾在西欧获得较大发展。空气吹炼的转炉钢,因其含氮量高,且所用的原料有局限性,又不能多配废钢,未在世界范围内得到推广。1952年氧气顶吹转炉问世,现已成为世界上的主要炼钢方法。在氧气顶吹转炉炼钢法的基础上,为吹炼高磷生铁,又出现了喷吹石灰粉的氧气顶吹转炉炼钢法。随氧气底吹的风嘴技术的发展成功,1967年德国和法国分别建成氧气底吹转炉。1971年美国引进此项技术后又发展了底吹氧气喷石灰粉转炉,用于吹炼含磷生铁。1975年法国和卢森堡又开发成功顶底复合吹炼的转炉炼钢法。
2、氧气顶吹转炉炼钢:
用纯氧从转炉顶部吹炼铁水成钢的转炉炼钢方法,或称LD法;在美国通常称BOF法,也称BOP法。它是现代炼钢的主要方法。炉子是一个直立的坩埚状容器,用直立的水冷氧枪从顶部插入炉内供氧。炉身可倾动。炉料通常为铁水、废钢和造渣材料;也可加入少量冷生铁和铁矿石。通过氧枪从熔池上面向下吹入高压的纯氧(含O299.5%以上),氧化去除铁水中的硅、锰、碳和磷等元素,并通过造渣进行脱磷和脱硫。各种元素氧化所产生的热量,加热了熔池的液态金属,使钢水达到现定的化学成分和温度。它主要用于冶炼非合金钢和低合金钢;但通过精炼手段,也可用于冶炼不锈钢等合金钢。
3、氧气底吹转炉炼钢:
通过转炉底部的氧气喷嘴把氧气吹入炉内熔池,使铁水冶炼成钢的转炉炼钢方法。其特点是;炉子的高度与直径比较小;炉底较平并能快速拆卸和更换;用风嘴、分配器系统和炉身上的供氧系统代替氧气顶吹转炉的氧枪系统。由于吹炼平稳、喷溅少、烟尘量少、渣中氧化铁含量低,因此氧气底吹转炉的金属收得率比氧气顶吹转炉的高1%~2%;采用粉状造渣料,由于颗粒细、比表面大,增大了反应界面,因此成渣快,有利于脱硫和脱磷。此法特别适用于吹炼中磷生铁,因此在西欧用得最广。
4、连续炼钢:
不分炉次地将原料(铁水、废钢)从炉子一端不断地加入,将成品(钢水)从炉子的另一端不断地流出的炼钢方法。连续炼钢工艺的设想早在19世纪就已出现。由于这种工艺具有设备小、工艺过程简单而且稳定等潜在优越性,几十年来许多国家都作了各种各样方法的大量试验,其中主要有槽式法、喷雾法和泡沫法三类,但迄今为止都尚未投入工业化生产。
5、混合炼钢:
用一个炉子炼钢、另一个电炉炼还原渣或还原渣与合金,然后在一定的高度下进行冲混的炼钢方法。用此法处理平炉、转炉及电炉所炼钢水,可提高钢的质量。冲混可增加渣、钢间的接触面积,加速化学反应以及脱氧、脱硫,并有吸附和聚合气体及夹杂物的作用,从而提高钢的纯结度和质量。
6、复合吹炼转炉炼钢:
在顶吹和底吹氧气转炉炼钢法的基础上,综合两者的优点并克服两者的缺点而发展起来的新炼钢方法,即在原有顶吹转炉底部吹入不同气体,以改善熔池搅拌。目前,世界上大多数国家用这种炼钢法,并发展了多种类型的复吹转炉炼钢技术,常见的如英国钢公司开发的以空气+N2或Ar2作底吹气体、以N2作冷却气体的熔池搅拌复吹转炉炼钢法——BSC——BAP法,德国克勒克纳——马克斯冶金厂开发的用天然保护底枪、从底部向熔池分别喷入煤和氧的KMS法、日本川崎钢铁公司开发的将占总氧量30%的氧气混合石灰粉一道从炉底吹入熔池的K——BOP法以及新日本钢铁公司开发的将占总氧量10%——20%的氧气从底部吹入,并用丙烷或天然气冷却炉底喷嘴的LD——OB法等。
7、顶吹氧气平炉炼钢:
从50年代中期开始,在平炉生产中采用1~5支水冷氧枪由炉顶插入熔炼室,直接向熔池吹氧的炼钢方法。该法改善了熔池反应的动力学条件,使碳氧反应的热效应由原来的吸热变为放热,并改善了热工条件;生产率大幅度地得到提高。
8、电弧炉炼钢:
利用电弧热效应熔炼金属和其他物料的一种炼钢方法。炼钢用三相交流电弧炉是最常见的直接加热电弧炉。炼钢过程中,由于炉内无可燃气体,可根据工艺要求,形成氧化性或还原性气氛和条件,故可以用于冶炼优质非合金钢和合金钢。按电炉每吨炉容量的大小,可将电弧炉分为普通功率电弧炉、高功率电弧炉和超高功率电弧炉。电弧炉炼钢向高功率、超高功率发展的目的是为了缩短冶炼时间、降低电耗、提高生产率、降低成本。随着高功率和超高功率电炉的出现,电弧炉已成为熔化器,一切精炼工艺都在精炼装置内进行。近十年来直流电弧炉由于电极消耗低、电压波动小和噪音小而得到迅速发展,可用于冶炼优质钢和铁合金。
9、STB法:
原文为Sumitomo Top and Bottom blowing process,由日本住友金属公司开发的顶底复吹转炉炼钢法。该法综合了氧气顶吹转炉炼钢法和氧气底吹转炉炼钢法两者的优点。用于吹炼低碳钢,脱磷效果好且成本下降显著。所用的底吹气体为O2、CO2、N2等。在STB法基础上又开发了从顶部喷吹粉末的STB—P法,进一步改善了高碳钢的脱磷条件,并用于精炼不锈钢。
10、RH法:
又称循环法真空处理。由德国Ruhrstahl/Heraeus二公司共同开发。真空室下方装有两个导管,插入钢水,抽真空后钢水上升至一定高度,再在上升管吹入惰性气体Ar、Ar上升带动钢液进入真空室接受真空处理,随后经另一导管流回钢包。真空室上装有加合金的加料系统。此法已成为大容量钢包(>80t)的钢水主要真空处理方法。
11、RH—OB:
RH吹氧法。是在真空循环脱气(RH)法中加上吹氧操作(Oxygen Blowing)来升温。用于精炼不锈钢,是利用减压下可优先进行脱碳反应;用于精炼普通钢则可减轻转炉负荷。也可采用加铝升温。
12、OBM—S法:
原文为Oxygen Bottom Maxhutte—Scarp,由德国Maxhutte-Klockner厂发明的以天然气或丙烷作底吹氧枪冷却介质的氧气底吹转炉炼钢法。OBM—S是在OBM氧气底吹转炉的炉帽上安装侧吹氧枪,底部氧枪吹煤气、天然气预热废钢,从而达到增加废钢比的目的。
13、NK—CB法:
原文为NKK Combined Blowing System,由日本钢管公司于1973年建立的顶底复吹转炉炼钢法,即在顶吹的同时,从炉底吹入少量气体(Ar,CO2,N2),以加强钢渣的搅拌,并控制钢水中的CO分压。该法采用多孔砖喷嘴,用于炼低碳钢可降低成本;用于炼高碳钢则有利于脱磷。该法应与铁水预处理工艺结合起来
14、MVOD:
在VAD法的设备上增设水冷氧枪,使之在真空下可吹氧脱碳的方法,由于真空下脱碳为放热反应,可省去VAD法的真空加热措施。操作过程与VOD法相同。
15、LF法:
原文为Ladle Furnace,是1971年日本特殊钢公司(大同钢特殊钢公司)开发的钢包炉精炼法。其设备和工艺由氩气搅拌、埋弧加热和合金加料系统组合而成。这种工艺的优点是:能精确地控制钢水化学成分和温度;降低夹杂物含量;合金元素收得率高。LF炉已成为炼钢炉与连铸机之间不可缺少的一种炉外精炼设备。
16、LD炼钢法:
1952年奥钢联林茨(Linz)厂与奥地利阿尔卑斯矿冶公司多纳维茨(Donawitz)厂最早在工业上开发成功的氧气顶吹转炉炼钢法,并以该两厂的第一个字母而命名。该法问世后在全世界范围迅速得到推广。美国称此法为BOF或BOP法,即Basic Oxygen Furnace 或Process 的简称。详见氧气顶吹, 转炉。
17、LD—OTB法:
原文为LD—Oxgyen Top an Bottom Process,由日本神户制钢公司加古川厂开发的顶底复合吹炼转炉炼钢工艺。其特点是使用了专门的底吹单环缝形喷嘴(SA喷嘴),因而底吹气体能控制在很宽的范围内。底部吹入惰性气体。
18、LD—HC法:
原文为LD—Hainaut Saubre CRM,系比利时开发的用于吹炼高磷铁水的顶底复合吹炼转炉炼钢法,即LD+底吹氧,用碳氢化合物保护喷嘴。
19、LD-AC法:
原文为LD - Arbed - Centre National,法国钢铁研究所开发的顶吹氧气喷石灰粉炼钢法,用于吹炼高磷铁水。
20、KS法:
原文Klockner Steelmaking,系采用100%固体料操作的底部喷煤粉氧气转炉炼钢工艺。底吹氧比率为60%~100%。
21、K—ES法:
将底吹气体技术、二次燃烧技术和喷煤粉技术结合起来的电弧炉炼钢法,它是由日本东京炼钢公司和德国Kiokner公司共同开发的技术,可以以煤代电。
22、FINKL—VAD法:
电弧加热钢包脱气法或称真空电弧脱气法。其特点是在真空室的盖上增设有电弧加热装置,并在真空下用氩气搅拌。该法的脱气效果稳定,而且能脱硫、脱碳和加入大量合金。设备主要由真空室、电弧加热系统、合金加料装置、抽真空系统及液压系统组成。
23、DH法:
德国Dortmund Horder联合冶金公司开发的一种真空处理装置。内衬耐火材料的真空室,下部装上有耐火衬的导管插入钢包,真空室或钢包周期性地放下与提升,使一部分钢水进入真空室,处理后返回钢包。上部有加合金料装置和真空加热保温装置。目前已不再建造这种设备。
24、CLU法:
一种不锈钢的精炼方法。其原理与AOD法相同,物点是采用水蒸气代替氩气。该方法是法国Creusot-Loire公司和瑞典Uddeholm公司共同研制成功的,并于1973年正式投入生产。水蒸气与钢液接触后分解为H2和O2;H2使CO分压降低。同时,该分解反应为吸热反应,因而可抑制钢液温度上升。但铬的氧化烧损比AOD法的严重。
25、CAS法:
原文为Composition adjustment by sealed argonbubbling,是在氩气密封下进行合金成分微调的炉外精炼方法。该法由钢包底部吹氩,将渣排开后,下降浸渍罩,继续吹氩,然后加合金微调成分。其优点是可精确控制成分,且合金收得率高。
26、CAS—OB法:
原文为Compositon adjustment by sealed argon bubbling with oxygen blowing,是在CAS设备上增设吹氧枪的炉外精炼方法。降可微调合金成分外,它还可加铝并吹氧升温(化学热法),升温速度为5~13℃/分。这种方法可使钢水温度精确地控制在±3℃,从而有利于配合连铸生产。
27、ASEA-SKF法:
瑞典开发的一种钢包精炼法。它采用低频电磁搅拌,在常压下进行电弧加热,在钢包中造渣精炼,在另一工位真空除气,并设有氧枪,可在减压下吹氧脱碳。为了提高精炼效果,它还可在钢包底部通过多孔砖吹氩搅拌,并能加入合金调整钢液成分。
28、AOD法:
氩氧脱碳法和简称,原文为Argon-Oxygen Decarburisation,是冶炼低碳不锈钢的主要精炼法。1964年由美国碳化物公司研制成功,1968年用于实际生产。其冶金原理是用Ar稀释CO,使其分压降低,达到真空的效果,从而使碳脱到很低的水平。AOD炉体和传动装置与转炉相类似,风眼安放在接近炉底的侧壁上,向炉内吹入的是Ar+O2混合气体,原料为初炼炉熔化的钢水。吹炼过程分为氧化期、还原期、精炼期。它已成为不锈钢的主要生产工艺。
特殊冶金法
包括电渣重熔、真空冶金、等离子冶金、电子束熔炼、区域熔炼等多种炼钢方法的总称。某些高新技术或特殊用途要求特高纯度的钢,若用普通炼钢方法加炉外精炼达不到要求时,则可采用特殊冶金方法炼制。
电渣重熔:将冶炼好的钢铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺,也称ESR。它的热源来自熔渣电阻热,重熔时自耗电极浸入熔渣中,电流通过电离后的熔渣,使熔渣升温达到比被熔自耗电极熔点高得多的温度。插入熔渣中的自耗电极端头熔化后形成熔滴,并靠自重穿越渣池,得到渣洗精炼而后在减少空气污染的情况下进入金属熔池。钢锭与结晶器壁之间形成薄的渣皮,既减缓了径向冷却,也改善了成品钢锭表面质量,借助结晶器底部水冷,凝固成轴向结晶倾向和偏析少的重熔钢锭,改善了热加工塑性。
等离子冶金:以等离子流为热源的冶金过程,即利用等离子枪将电能转变为定向等离子射流中的热能。等离子射流具有电弧稳定、热量高度集中、可达到非常高的温度等特点。有的等离子枪的工作温度高达5000~20000℃。等离子枪可用惰性气体(Ar)、还原性气体(H2)等为介质,以达到不同的冶金目的。等离子炉可用于熔炼高熔点金属和活泼金属以及金属或合金的提纯。等离子体技术也已用于钢铁厂废尘处理和铁合金生产工艺。
喷射冶金:为加速液体金属与物料的物理化学反应,用气体喷射的方法把粉末物料送入液体金属,完成冶金反应的工艺,亦称喷粉冶金。该工艺广泛用于铁水予处理和钢包精炼,以达到脱硫、脱氧、成分微调、使夹杂物变性的目的。此工艺的反应速度快,物料利用率高。
区域熔炼:1952年W.G.Pfann提出的一种利用液固相中杂质元素溶解度不同的特点提炼金属的工艺。其操作原理是:设一个均匀的固态金属棒中有一小段金属被熔化成液体,那么,若这一小段液态区域自左向右缓慢移动,则每移动一次,杂质都会重新分布,其效果就相当于把杂质驱赶到右端。经过多次这样的重复,左端金属便可达到很高的纯度。
真空冶金:在低于0.1MPa至超高真空条件下[133.3×(<760~10-12)Pa]进行的冶金过程,包括金属及合金的提炼、冶炼、重熔、精炼、成形和热处理。目的主要在于:①减少金属受气相的污染;②降低溶解于金属中的气体或易挥发的杂质含量;③促进有气态产物的化学反应;④避免由耐火材料容器带来的污染。以适应高性能金属材料及新型金属材料的需要。随着生产电热材料、电工合金、软磁合金以及高温镍基合金等高性能和新型金属材料的需要,发展了各种真空熔炼方法,主要有真空电阻熔炼、真空感应熔炼、真空电弧重熔、电子束熔炼及电渣重熔等。
真空电弧熔炼:在真空(10-2~10-1Pa)下借助电弧供热重熔金属和合金的工艺,也称VAR法。其过程是:以水冷铜坩埚为正极,被熔自耗电极接在经滑动密封进入炉体的假电极上为负极,输入低压直流电流在电极与坩埚底之间引弧,借助电弧供热重熔金属和合金。伴随自耗电极的熔化,通过控制电极的下降速度,将自耗电极重熔为成分均匀、组织致密、纯净度高和偏析少的重熔钢锭。它不仅用于重熔活性金属和耐热难熔金属,而且也用于重熔使用要求较严格的高温合金和特殊钢。
真空电子束熔炼:在较高真空(133.3×10-4~133.3×10-8Pa)下用电子枪发射电子束,轰击被熔炼物料(作为阳极),使之熔化并滴入水冷铜结晶器凝固成锭的熔炼方法。锭由机械装置连续抽出。此法可以调节能量分布,控制熔化速度。电子束重熔材料的纯净度比其他真空熔炼法的更高。它适于熔炼钨、钼等金属及其合金、高级合金钢、高温合金和超纯金属。
真空电阻熔炼:在真空下以电流通过导体所产生的热为热源的熔炼方法。一般采取间接加热,由电热体把热能传给炉中物料。根据需要,电阻炉内的气氛可以是惰性或保护性的。真空电阻炉可设计成熔炼炉或热处理炉。
真空感应熔炼:在真空下利用感应电热效应熔炼金属和合金的工艺。按炉料和容量选择电源频率。它有高频(>104Hz)和中频(50~104Hz)以及工频(50或60Hz)两类。感应炉又分有芯(闭槽式)和无芯(坩埚式)两大类。前者电热效率高,功率因数高,但要有起熔体,熔炼温度低,适用于单一品种的连续熔炼;后者熔炼温度高,电热效率低,适于特殊钢和镍基合金等的熔炼。真空感应熔炼在高温合金、高强度钢和超高强度钢等生产中得到广泛应用。
炼钢工艺过程
造渣:调整钢、铁生产中熔渣成分、碱度和粘度及其反应能力的操作。目的是通过渣——金属反应炼出具有所要求成分和温度的金属。例如氧气顶吹转炉造渣和吹氧操作是为了生成有足够流动性和碱度的熔渣,以便把硫、磷降到计划钢种的上限以下,并使吹氧时喷溅和溢渣的量减至最小。
出渣:电弧炉炼钢时根据不同冶炼条件和目的在冶炼过程中所采取的放渣或扒渣操作。如用单渣法冶炼时,氧化末期须扒氧化渣;用双渣法造还原渣时,原来的氧化渣必须彻底放出,以防回磷等。
熔池搅拌:向金属熔池供应能量,使金属液和熔渣产生运动,以改善冶金反应的动力学条件。熔池搅拌可藉助于气体、机械、电磁感应等方法来实现。
电炉底吹:通过置于炉底的喷嘴将N2、Ar、CO2、CO、CH4、O2等气体根据工艺要求吹入炉内熔池以达到加速熔化,促进冶金反应过程的目的。采用底吹工艺可缩短冶炼时间,降低电耗,改善脱磷、脱硫操作,提高钢中残锰量,提高金属和合金收得率。并能使钢水成分、温度更均匀,从而改善钢质量,降低成本,提高生产率。
熔化期:炼钢的熔化期主要是对平炉和电炉炼钢而言。电弧炉炼钢从通电开始到炉料全部熔清为止、平炉炼钢从兑完铁水到炉料全部化完为止都称熔化期。熔化期的任务是尽快将炉料熔化及升温,并造好熔化期的炉渣。
氧化期和脱炭期:普通功率电弧炉炼钢的氧化期,通常指炉料溶清、取样分析到扒完氧化渣这一工艺阶段。也有认为是从吹氧或加矿脱碳开始的。氧化期的主要任务是氧化钢液中的碳、磷;去除气体及夹杂物;使钢液均匀加热升温。脱碳是氧化期的一项重要操作工艺。为了保证钢的纯净度,要求脱碳量大于0.2%左右。随着炉外精炼技术的发展,电弧炉的氧化精炼大多移到钢包或精炼炉中进行。
精炼期:炼钢过程通过造渣和其他方法把对钢的质量有害的一些元素和化合物,经化学反应选入气相或排、浮入渣中,使之从钢液中排除的工艺操作期。
还原期:普通功率电弧炉炼钢操作中,通常把氧化末期扒渣完毕到出钢这段时间称为还原期。其主要任务是造还原渣进行扩散、脱氧、脱硫、控制化学成分和调整温度。目前高功率和超功率电弧炉炼钢操作已取消还原期。
炉外精炼:将炼钢炉(转炉、电炉等)中初炼过的钢液移到另一个容器中进行精炼的炼钢过程,也叫二次冶金。炼钢过程因此分为初炼和精炼两步进行。初炼:炉料在氧化性气氛的炉内进行熔化、脱磷、脱碳和主合金化。精炼:将初炼的钢液在真空、惰性气体或还原性气氛的容器中进行脱气、脱氧、脱硫,去除夹杂物和进行成分微调等。将炼钢分两步进行的好处是:可提高钢的质量,缩短冶炼时间,简化工艺过程并降低生产成本。炉外精炼的种类很多,大致可分为常压下炉外精炼和真空下炉外精炼两类。按处理方式的不同,又可分为钢包处理型炉外精炼及钢包精炼型炉外精炼等。
钢液搅拌:炉外精炼过程中对钢液进行的搅拌。它使钢液成分和温度均匀化,并能促进冶金反应。多数冶金反应过程是相界面反应,反应物和生成物的扩散速度是这些反应的限制性环节。钢液在静止状态下,其冶金反应速度很慢,如电炉中静止的钢液脱硫需30~60分钟;而在炉精炼中采取搅拌钢液的办法脱硫只需3~5分钟。钢液在静止状态下,夹杂物靠上浮除去,排除速度较慢;搅拌钢液时,夹杂物的除去速度按指数规律递增,并与搅拌强度、类型和夹杂物的特性、浓度有关。
钢包喂丝:通过喂丝机向钢包内喂入用铁皮包裹的脱氧、脱硫及微调成分的粉剂,如Ca-Si粉、或直接喂入铝线、碳线等对钢水进行深脱硫、钙处理以及微调钢中碳和铝等成分的方法。它还具有清洁钢水、改善非金属夹杂物形态的功能。
钢包处理:钢包处理型炉外精炼的简称。其特点是精炼时间短(约10~30分钟),精炼任务单一,没有补偿钢水温度降低的加热装置,工艺操作简单,设备投资少。它有钢水脱气、脱硫、成分控制和改变夹杂物形态等装置。如真空循环脱气法(RH、DH),钢包真空吹氩法(Gazid),钢包喷粉处理法(IJ、TN、SL)等均属此类。
钢包精炼:钢包精炼型炉外精炼的简称。其特点是比钢包处理的精炼时间长(约60~180分钟),具有多种精炼功能,有补偿钢水温度降低的加热装置,适于各类高合金钢和特殊性能钢种(如超纯钢种)的精炼。真空吹氧脱碳法(VOD)、真空电弧加热脱气法(VAD)、钢包精炼法(ASEA-SKF)、封闭式吹氩成分微调法(CAS)等,均属此类;与此类似的还有氩氧脱碳法(AOD)。
惰性气体处理:向钢液中吹入惰性气体,这种气体本身不参与冶金反应,但从钢水中上升的每个小气泡都相当于一个“小真空室”(气泡中H2、N2、CO的分压接近于零),具有“气洗”作用。炉外精炼法生产不锈钢的原理,就是应用不同的CO分压下碳铬和温度之间的平衡关系。用惰性气体加氧进行精炼脱碳,可以降低碳氧反应中CO分压,在较低温度的条件下,碳含量降低而铬不被氧化。
预合金化:向钢液加入一种或几种合金元素,使其达到成品钢成分规格要求的操作过程称为合金化。多数情况下脱氧和合金化是同时进行的,加入钢中的脱氧剂一部分消耗于钢的脱氧,转化为脱氧产物排出;另一部则为钢水所吸收,起合金化作用。在脱氧操作未全部完成前,与脱氧剂同时加入的合金被钢水吸收所起到的合金化作用称为预合金化。
成分控制:保证成品钢成分全部符合标准要求的操作。成分控制贯穿于从配料到出钢的各个环节,但重点是合金化时对合金元素成分的控制。对优质钢往往要求把成分精确地控制在一个狭窄的范围内;一般在不影响钢性能的前提下,按中、下限控制。
增硅:吹炼终点时,钢液中含硅量极低。为达到各钢号对硅含量的要求,必须以合金料形式加入一定量的硅。它除了用作脱氧剂消耗部分外,还使钢液中的硅增加。增硅量要经过准确计算,不可超过吹炼钢种所允许的范围。
终点控制:氧气转炉炼钢吹炼终点(吹氧结束)时使金属的化学成分和温度同时达到计划钢种出钢要求而进行的控制。终点控制有增碳法和拉碳法两种方法。
出钢:钢液的温度和成分达到所炼钢种的规定要求时将钢水放出的操作。出钢时要注意防止熔渣流入钢包。用于调整钢水温度、成分和脱氧用的添加剂在出钢过程中加入钢包或出钢流中。