㈠ 提高高温合金性能的途径和方法有哪些
途径是:固溶强化 加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。 沉淀强化 通过时效处理,从过饱和固溶体中析出第二相(γ’、γ"、碳化物等),以强化合金。γ‘相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。γ’相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ‘相为Ni3(Al,Ti)。γ’相的强化效应可通过以下途径得到加强: ①增加γ‘相的数量; ②使γ’相与基体有适宜的错配度,以获得共格畸变的强化效应; ③加入铌、钽等元素增大γ’相的反相畴界能,以提高其抵抗位错切割的能 高温合金 高温合金 力; ④加入钴、钨、钼等元素提高γ‘相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化。
㈡ 阐述高温合金的定义
科技名词定义
中文名称:高温合金 英文名称:superalloy 定义:指在650°C以上温度下具有一定力学性能和抗氧化、耐腐蚀性能的合金。目前常是镍基、铁基、钴基高温合金的统称。 所属学科:航空科技(一级学科);航空材料(二级学科) 本内容由全国科学技术名词审定委员会审定公布
网络名片
高温合金在600-1200℃高温下能承受一定应力并具有抗氧化或抗腐蚀能力的合金。
目录
简介
发展
提高强度固溶强化
沉淀强化
晶界强化
氧化物弥散强化
制造工艺
发展趋势
技术开发
物质应用简介
发展
提高强度 固溶强化
沉淀强化
晶界强化
氧化物弥散强化
制造工艺
发展趋势
技术开发
物质应用
展开 编辑本段简介
按基体元素主要可分为铁基高温合金、镍基高温合金和钴基高温合金。按制备工艺可分为变形高温 高温合金
合金、铸造高温合金和粉末冶金高温合金。按强化方式有固溶强化型、沉淀强化型、氧化物弥散强化型和纤维强化型等。高温合金主要用于制造航空、舰艇和工业用燃气轮机的涡轮叶片、导向叶片、涡轮盘、高压压气机盘和燃烧室等高温部件,还用于制造航天飞行器、火箭发动机、核反应堆、石油化工设备以及煤的转化等能源转换装置。
编辑本段发展
发展过程从20世纪30年代后期起,英、德、美等国就开始研究高温合金。第二次世界大战期间,为了满足新型航空发动机的需要,高温合金的研究和使用进入了蓬勃发展时期。40年代初,英国首先在80Ni-20Cr合金中加入少量铝和钛,形成γ相以进行强化,研制成第一种具有较高的高温强度的镍基合金。同一时期,美国为了适应活塞式航空发动机用涡轮增压器发展的需要,开始用Vitallium钴基合金制作叶片。 此外,美国还研制出Inconel镍基合金,用以制作喷气发动机的燃烧室。以后,冶金学家为进一步提高合金的高温强度,在镍基合金中加入钨、钼、钴等元素,增加铝、钛含量,研制出一系列牌号的合金,如英国的“Nimonic”,美国的“Mar-M”和“IN”等;在钴基合金中,加入镍、钨等 高温合金
元素,发展出多种高温合金,如X-45、HA-188、FSX-414等。由于钴资源缺乏,钴基高温合金发展受到限制。 40年代,铁基高温合金也得到了发展,50年代出现A-286和Incoloy901等牌号,但因高温稳定性较差,从60年代以来发展较慢。苏联于1950年前后开始生产“ЭИ”牌号的镍基高温合金,后来生产“ЭП”系列变形高温合金和ЖС系列铸造高温合金。中国从1956年开始试制高温合金,逐渐形成“GH”系列的变形高温合金和“K”系列的铸造高温合金。70年代美国还采用新的生产工艺制造出定向结晶叶片和粉末冶金涡轮盘,研制出单晶叶片等高温合金部件,以适应航空发动机涡轮进口温度不断提高的需要。 北京融品科技有限公司提供高温合金锻件产品
编辑本段提高强度
固溶强化
加入与基体金属原子尺寸不同的元素(铬、钨、钼等)引起基体金属点阵的畸变 高温合金
,加入能降低合金基体堆垛层错能的元素(如钴)和加入能减缓基体元素扩散速率的元素(钨、钼等),以强化基体。
沉淀强化
通过时效处理,从过饱和固溶体中析出第二相(γ、γ"、碳化物等),以强化合金。γ相与基体相同,均为面心立方结构,点阵常数与基体相近,并与晶体共格,因此γ相在基体中能呈细小颗粒状均匀析出,阻碍位错运动,而产生显著的强化作用。γ相是A3B型金属间化合物,A代表镍、钴,B代表铝、钛、铌、钽、钒、钨,而铬、钼、铁既可为A又可为B。镍基合金中典型的γ相为Ni3(Al,Ti)。γ相的强化效应可通过以下途径得到加强: ①增加γ相的数量; ②使γ相与基体有适宜的错配度,以获得共格畸变的强化效应; ③加入铌、钽等元素增大γ相的反相畴界能,以提高其抵抗位错切割的能 高温合金
力; ④加入钴、钨、钼等元素提高γ相的强度。γ"相为体心四方结构,其组成为Ni3Nb。因γ"相与基体的错配度较大,能引起较大程度的共格畸变,使合金获得很高的屈服强度。但超过700℃,强化效应便明显降低。钴基高温合金一般不含γ相,而用碳化物强化。
晶界强化
在高温下,合金的晶界是薄弱环节,加入微量的硼、锆和稀土元素可改善晶界强度。这是因为稀土元素能净化晶界,硼、锆原子能填充晶界空位,降低蠕变过程中晶界扩散速率,抑制晶界碳化物的集聚和促进晶界第二相球化。另外,铸造合金中加适量的铪,也能改善晶界的强度和塑性。还可通过热处理在晶界形成链状分布的碳化物或造成弯曲晶界,提高塑性和强度。
氧化物弥散强化
通过粉末冶金方法,在合金中加入高温下仍保持稳定的细小氧化物,呈弥散分布状 高温合金
态,从而获得显著的强化效应。通常加入的氧化物有ThO2和Y2O3等。这些氧化物是通过阻碍位错运动和稳定位错亚结构等因素而使合金得到强化的。
编辑本段制造工艺
不含或少含铝、钛的高温合金,一般采用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应采用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可采用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。 高温合金
固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可采用锻造开坯;含铝、钛高的合金一般要采用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。 合金化程度较高、不易变形的合金,目前广泛采用精密铸造成型,例如铸造涡轮叶片和导向叶片。为了减少或消除铸造合金中垂直于应力轴的晶界和减少或消除疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了消除全部晶界,还需研究单晶叶片的制造工艺。 粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性。 综合处理高温合金的性能同合金的组织有密切关系,而组织是受金属热处理控制的。高温合金一般需经过热处理。沉淀强化型合金通常经过固溶处理和时效处理。固溶强化型合金只经过固溶处理。有些合金在时效处理前还要经过一两次中间处理。固溶处理首先是为了使第二相溶入合金基体,以 高温合金
便在时效处理时使γ、碳化物(钴基合金)等强化相均匀析出,其次是为了获得适宜的晶粒度以保证高温蠕变和持久性能。 固溶处理温度一般为1040~1220℃。目前广泛应用的合金,在时效处理前多经过1050~1100℃中间处理。中间处理的主要作用是在晶界析出碳化物和γ膜以改善晶界状态,与此同时有的合金还析出一些颗粒较大的γ相与时效处理时析出的细小γ相形成合理搭配。时效处理的目的是使过饱和固溶体均匀析出γ相或碳化物(钴基合金)以提高高温强度,时效处理温度一般为700~1000℃。
编辑本段发展趋势
高温合金发展的趋势是进一步提高合金的工作温度和改善中温或高温下承受各种载荷的能力,延长合金寿命。就涡轮叶片材料而言,单晶叶片将进入实用阶段,定向结晶叶片的综合性能将得到改进。 此外,有可能采用激冷态合金粉末制造多层扩散连接的空心叶片,从而适应提高燃气温度的需要。就导向叶片和燃烧室材料而言,有可能使用氧化物弥散强化的合金,以大幅度提高使用温度。为了提高抗腐蚀和耐磨蚀性能,合金的防护涂层材料和工艺也将获得进一步发展。
编辑本段技术开发
高梯度定向凝固共晶高温合金的组织与性能 K4169高温合金组织细化及性能优化研究 高温合金
铸造镍基高温合金中Ni_5Zr的溶解和转变 定向工艺和铪含量对一种镍基高温合金的影响 Mg在高温合金GH220中的作用 GH2027铁基高温合金的第二相研究 Ni_3Al基高温合金添加碳化物质点的探索研究 MC和M_3B_2相在一种Ni-Cr-Co高温合金中的析出 镍基高温合金GH4145/SQ的高温低周疲劳行为 变形高温合金成型质量控制中的转换研究 高梯度定向凝固共晶高温合金的组 高温合金
织与性能 K4169高温合金组织细化及性能优化研究 铸造镍基高温合金中Ni_5Zr的溶解和转变 定向工艺和铪含量对一种镍基高温合金的影响 Mg在高温合金GH220中的作用 FGH95粉末高温合金应力时效的组织和相分析 Rene′88DT粉末高温合金组织及γ′相析出动力学研究 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究 镍基粉末高温合金中夹杂物的微观力学行为研究 粉末高温合金的研究与发展
编辑本段物质应用
高温合金是指以铁、镍、钴为基,能在600℃以上的高温及一定应力作用下长期工作的一类金属材料;并具有较高的高温强度,良好的抗氧化和抗腐蚀性能,良好的疲劳性能、断裂韧性等综合性能。高温合金为单一奥氏体组织,在各种温度下具有良好的组织稳定性和使用可靠性, 高温合金产品图片 融品科技提供
基于上述性能特点,且高温合金的合金化程度较高,又被称为“超合金”,是广泛应用于航空、航天、石油、化工、舰船的一种重要材料。按基体元素来分,高温合金又分为铁基、镍基、钴基等高温合金。铁基高温合金使用温度一般只能达到750~780℃,对于在更高温度下使用的耐热部件,则采用镍基和难熔金属为基的合金。 镍基高温合金在整个高温合金领域占有特殊重要的地位,它广泛地用来制造航空喷气发动机、各种工业燃气轮机最热端部件。若以150MPA-100H持久强度为标准,而目前镍合金所能承受的最高温度〉1100℃,而镍合金约为950℃,铁基的合金〈850℃,即镍基合金相应地高出150℃至250℃左右。所以人们称镍合金为发动机的心脏。目前,在先进的发动机上,镍合金已占总重量的一半,不仅涡轮叶片及燃烧室,而且涡轮盘甚至后几级压气机叶片也开始使用镍合金。与铁合金相比,镍合金的优点是:工作温度较高,组织稳定、有害相少及搞氧化搞腐蚀能力大。与钴合金相比,镍合金能在较高温度与应力下工作,尤其是在动叶片场合。 镍合金具有上述优点与其本身的某些卓越性能有关。镍为面心立方体,组织非常 高温合金生产用关键设备 真空炉
稳定,从室温到高温不发生同素异型转变;这对选作基体材料十分重要。众所周知,奥氏体组织比铁素体组织具有一系列的优点。 镍具有高的化学稳定性,在500度以下几乎不发生氧化,学温下也不受温气、水及某些盐类水溶液的作用。镍在硫酸及盐酸中溶解很慢,而在硝酸中溶解很快。 镍具有很大的合金能力,甚至添加十余种合金元素也不出现有害相,这就为改善镍的各种性能提供潜在的可能性。 纯镍的力学性能虽不强,但塑性却极好,尤其是低温下塑性变化不大
㈢ 高温合金都有哪些制备工艺
以镍为基体,在650~1000℃范围内具有较高强度和良好抗氧化、抗腐蚀能力的高温合金材料。
应用领域:航天 航空 石油 化工 机械 海洋 环保 能源 食品等。
进口高温合金牌号:哈氏系列C-276、C-22、C-2000、C-4、B-3、G-30、ALLOY59、Inconel600、Inconel601、Inconel625、Inconel718、Inconel X750、Incoloy800、Incoloy800H、Incoloy800HT、Incoloy825、Monel400、Monel k500、Alloy20、Alloy 28 、Alloy31、RA330、RA333、N02201、NIMONIC系列、MP35N、ELGILOY、HAYNES HR-120 / HR-160 、HAYNES 556/242/230等。
纯 镍NI201、NI200等。
变形高温合金牌号:GH1040、GH1131、GH1132、GH1140、GH2132、GH2136、GH2026、GH2696、GH2747、GH3128、GH3039、GH3030、GH3044、GH3536、GH4049、GH4090、GH4099、GH4141、GH4145、GH4169、GH4648、GH4738、GH4202、GH600、GH625、GH605、GH5188等。
铸造高温合金牌号:K213 、K403 、K417、K417G、 K418 、K418B、 K423、 K424、 K438 、K465、K4169、K4163、K644、MAR-M246、MA956等
耐蚀合金牌号:NS111、NS112、NS113、NS142、 NS143、 NS312、 NS313、NS315、 NS321、 NS322、 NS333、 NS334、 NS335、NS336 等。
主要规格:
无缝管、钢板、圆钢、锻件、法兰、圆环、焊管、钢带、直条、丝材及配套焊材、圆饼、扁钢、六角棒、大小头、弯头、三通、加工件、螺栓螺母、紧固件
篇幅有限,如需更多更详细介绍,欢迎咨询了解。
㈣ 高温合金常用的分类有哪
高温合金主要牌号:
固溶强化型铁基合金:
GH1015、GH1035、GH1040、GH1131、GH1140
时效硬化性铁基合金:
GH2018、GH2036、GH2038、GH2130、GH2132、GH2135、GH2136、GH2302、GH2696
固溶强化型镍基合金:
GH3030、GH3039、GH3044、GH3028、GH3128、GH3536、GH605,GH600
时效硬化型镍基合金:
GH4033、GH4037、GH4043、GH4049、GH4133、GH4133B、GH4169、GH4145、GH4090
国外的高温合金叫包含inconel系列 incoloy系列 Hastelloy系列
成分和性能
镍基合金是高温合金中应用最广、高温强度最高的一类合金。其主要原因,一是镍基合金中可以溶解较多合金元素,且能保持较好的组织稳定性;二是可以形成共格有序的 A3B型金属间化合物γ'[Ni3(Al,Ti)]相作为强化相,使合金得到有效的强化,获得比铁基高温合金和钴基高温合金更高的高温强度;三是含铬的镍基合金具有比铁基高温合金更好的抗yang化和抗燃气腐蚀能力。镍基合金含有十多种元素,其中Cr主要起抗yang化和抗腐蚀作用,其他元素主要起强化作用。根据它们的强化作用方式可分为:固溶强化元素,如钨、钼、钴、铬和钒等;沉淀强化元素,如铝、钛、铌和钽;晶界强化元素,如硼、锆、镁和稀土元素等。
㈤ 单晶铸造高温合金的工艺
选晶法是单晶高温合金叶片制备中最基本的工艺方法. Higginbotham把常用的单晶选晶器结构归纳为四种类型:螺旋型、倾斜型、转折型、尺度限制型(缩颈型)随着单晶高温合金研究的发展,螺旋型选晶器逐渐淘汰掉其他三种选晶器,成为目前应用最广泛也是最成功的选晶器类型。
选晶法的原理就是利用选晶器的这种狭窄界面,只允许一个晶粒长出它的顶部,然后这个晶粒长满整个型腔,从而得到单晶体. 其晶体竞争生长机制是:螺旋结构总的攀升走向正好与散热方向相反,致使螺旋体内散热均匀,因此在整个螺旋形生长过程中,位向最适合生长的那个晶粒将其他众多的初生晶粒一一淘汰,不断长出枝晶并最终进入试样本体成为单晶铸件.
至于镍基单晶合金,在镍的Gamma固溶态中,有大量分散结晶构造稍为不同的Gamma基本态,只要将这种结晶单晶化,在定向凝固合金中,增加Gamma基本态,提高高温强度。镍基单晶合金基本上消除定向凝固高温合金的限制。F119的涡轮叶片是用第三代单晶作的,DD3可能是第一代。
㈥ 请问奥氏体不锈钢如何通过热处理细化晶粒
可以,不锈钢的固溶处理就细化晶粒的作用,固溶处理的原理和目如下:
固溶处理(solution treatment):指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。
多种特殊钢,高温合金,特殊性能合金,有色金属。
尤其适用:1.热处理后须要再加工的零件。
2.消除成形工序间的冷作岁敬硬化。
3.焊接后工件。
固溶处理是为了溶解基体内碳化物、γ’相等以得到均匀的过饱和固溶体,便于时效时重新析出颗粒细小、分布均匀的碳化物和γ’等强化相,同时消除由于冷热加工产生的应力,使合金发生再结晶。其次,固溶处理是为了获得适宜的晶粒度,以保证合金高温抗蠕变性能。固溶处理的温度范围大约在980~1250℃之间,主要根据各个合金中相析出和溶解规律及使用要求来选择,以保证主要强化相必要的析出条件和一定的晶粒度。对于长期高温使用的合金,要求有较好的高温持久和蠕变性能,应选择较高的固溶温度以获得较大的晶粒度;对于中温使用并要求较好的室温硬度、屈服强度、拉伸强度、哪洞冲击韧性和疲劳强度的合金,可采用较低的固溶温度,保证较小的晶粒度。高温固溶处理时,各种析出相都逐步溶解,同时晶粒长大;低温固溶处理时,不仅有主要强化相的溶解,而且可能有某些相的析出。对于过饱和度低的合金,通常选择较快的冷却速度;对于过饱和度高的合金,通常为空气李雀枯中冷却。
㈦ 镍基高温合金的形态组织是怎样的
除腔大坦奥氏体基体外,还有分布在基体中的γ'相、晶界上的二次碳化物、凝固时析出的一次碳化物和硼化物等。随着合金化程度的提高,显微组织的变化有如下趋势:γ'相的数量和尺寸逐渐增加,从球形到立方体,同一合金中出现不同尺寸和形状的γ'相。凝固过程中形成的γ+γ'共晶也出现在铸造合金中。不连续的颗粒状碳化物在晶界处析出,并被γ'相薄膜包围。这些微观结构的变化改善了合金的性能。
定向晶体叶片消除了对空隙和裂纹敏感的横向晶界,使所有晶界与应力轴平行,从而提高了合金的使用性能。单晶叶片仿告消除了所有晶界,不需要添加晶界强化元素,使合金的初始熔化温度相对较高,提高了合金的高温强度,进一步提高了合金的综合性能。它在800℃以下具有较高的强度,在540℃以下具有良好的抗松弛性。它还具有良好的成型性和焊接性能。该合金主要用于制造在800℃以下工作、要求高强度耐腐蚀的环形零件、结构件和螺栓等零件,在540℃以下工作、具有中、低应力、要求抗松弛的平面弹簧和螺旋弹簧。也可用于制造涡轮机叶片等零件。
小编针对问题做得详细解小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,的点赞是对我最大的帮助,谢谢大家了。