① 目前的研究高熵合金与非晶态合金有何联系
高熵合帆搭金(HEAs)和非晶态合金(也称为金属玻璃或非晶金属)在某些方面具有相似之处,但它们之间也存在明显的差异。这两种类型的合金都在材料科学领域受到广泛关注,因为它们展示出与传统金属材料不同的性能和特点。
相似之处:
1. 组成复杂性:高熵合金和非晶态合金都是由多种元素组成的复杂合金。在高熵合金中,五个或更多的主要元素以接近等原子比例混合。非晶态合金则是由多种元素组成,但它们通常包含一种或几种主要元素,其他元素以较低的浓度存在。
2. 非晶态结构:在某些情况下,高熵合金和非晶态合金都可能呈现非晶态结构。对于非晶态合金,其特点是具有无序的原子排列,没有长程的晶格结构。在某些高熵合金中,也可能出现类似的非晶态结构。
差异:
1. 结构:尽管高熵合金和非晶态合金在某些情况下都可能呈现非晶态结构,但它们之间在结构上存在显著差异。高熵合金通常以固溶体形式存在,具有单一或多相的晶格结构。非晶态合金则表现为无序的原子排列,没有明确的晶格结构。
2. 制备方法:高熵合金和非晶态合金的制备方法有所不同。高熵合金主要通过熔炼、机械合金化、烧结等方法制备。非晶态合金通常采用快速淬火技术,如溅射、电子束熔化和单辊熔融旋铸等。
3. 性能差异:高熵合金和非晶态合金在性能上有明显的差异。高熵合金通常具有良好态迟拿的力学性能、耐腐蚀性和热稳定性。非晶态合金则表现出高强度、高硬度、良好的耐磨旦如性和耐腐蚀性,但韧性较低。
② 哈工大陈瑞润团队:高熵合金相形成对其力学性能的影响及其机理研究
导读: 本文报道了Cr7Mn25Co9Ni23Cu36高熵合金(HEA)在热处理条件下的相分解以及二次相的形成对其拉伸力学响应的影响。显微组织分析表明,800 C 2 h和600 C 8 h的热处理会导致σ相的形成,但在600 及2h以下的热处理中没有观察到σ相。将实验观察到的热稳定性和相与计算的相图进行比较,并借助热力学和动力学进行合理化。基于从头计算讨论了相分解的机理,结果表明分解成两个固溶体相在能量上优于具有标称组成的单一固溶体相。
对于金属结构材料,实现强度和延展性的良好结合是一个重要目标。常用方法包括优化合金成分和控制加工路线。多主合金或高熵合金的发现拓宽了合金设计的领域,是材料领域的重要突破。
目前,已经使用了许多方法来开发具有良好性能的热等静压合金,其中,热处理是一种简单、有效和廉价的提高合金力学性能的方法。近年来,学者们热衷于研究热处理对某些合金的显微组织和力学性能的影响。结果表明,当温度从0 升至1000 时,无相分离发生,说明HEA在较宽的温度区间内具有良好的相稳定性。
近日,哈工大陈瑞润教授团队通过电弧熔炼设计和制备了Cr7Mn25Co9Ni23Cu36 HEA,其在室温和铸态下展现出非常好的强度和延展性组合,研究成果发表于金属顶刊《Acta Materialia》,以 “Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy”为题。文中研究了200 1000 下热处理对合金显微组织和室温力学性能的影响,并将实验相组成和热稳定性与热力学计算进行比较。用计算相图法(CALPHAD)确定的生成吉布斯能分析了σ相和FCC相的稳定性。此外,讨论了高温下的相分解机理。
论文链接:https://doi.org/10.1016/j.actamat.2021.116763
SEM和TEM图像显示,合金800 热处理2h时,形成了富Cr和富Co的σ相,这与CALPHAD的预测相吻合。
在 600 的温度下热处理的样品中没有观察到σ相,但通过CALPHAD进行了预测。这种差异和动力学因素有关,600 热处理时间的延长证实了合金的显微组织变化。
EMTO-CPA的计算结果表明,在低温和高温下,与名义成分的合金相比,分解体系(FCC_1和FCC_2)在能量上是优选的。
热处理温度从200 提高到600 ,屈服强度和抗拉强度分别从401 MPa提高到581 MPa,以及从700 MPa提高到829 MPa,同时,伸长率从35%降低到22%。这些变化归因于600 C热处理时纳米沉淀的细化。
由于屈服和极限抗拉强度分别下降至303 MPa和530 MPa,延展性降低至断裂应变的15%,因此800 C热处理导致断裂韧性下降,强度的显著降低是由于形成的σ析出物分布不均,尺寸无明显变化。σ相的形成对合金的拉伸力学性能是有害的。
③ 高熵合金的简介
有人认为非晶或玻璃的原子混乱度高或熵高,而高熵必然导致高的玻璃化形成能力,所以有人提出一个混乱理论。但是,后来有学者发现高熵和高的玻璃化形成能力并不一致,倒是发现有些高混合熵合金可以形成单相固溶体。对此,叶均蔚等认为这种固溶体是高混合熵稳定的固溶体,因此命名为高熵合金。至于为什么高混合熵合金玻璃化形成能力并不高,张勇等统计了大量的高混合熵合金,从原子尺寸差,混合焓和混合熵角度作了系统分析,并用Adam-Gibbs方程作出了解释。
已有的研究报道发现,高熵合金具有一些传统合金所无法比拟的优异性能,如高强度、高硬度、高耐磨耐腐蚀性、高热阻、高电阻等,从而成为在材料科学和凝聚态物理领域中继大块非晶之后一个新的研究热点。目前,高熵合金的研究多是集中在铸态下的性能测试,我们知道铸态下的产品有着天然的性能缺陷(如由于热胀冷缩造成的空洞、疏松等),而对其热处理、热加工后的性能研究缺少有报道。有人曾预言,未来几十年内,最有发展潜力的三大研究热点是大块非晶、复合材料和高熵合金。
④ 高熵合金的定义
目前,高熵合金一般可以被定义为由五个以上的元素组元按照等原子比或接近于等原子比合金化,其混合熵高于合金的熔化熵,一般形成高熵固溶体相的一类合金。简言之,五元合金相图中,在中间位置存在固溶体相区,这种固溶体目前认为是混合熵稳定的固溶体。已经报道的典型合金有:叶均蔚等发现的以CoCrCuFeNi为代表的面心立方固溶体结构的合金;张勇等发现的以A1CoCrFeNi为代表的体心立方固溶体结构的合金。
⑤ 高熵合金,大家了解多少金属
高熵合金(High-entropy alloys)简称HEA,是由五种或五种以上等量或大约等量金属形成的合金。由于高熵合金可能具有许多理想的性质,因此在材料科学及工程上相当受到重视。以往的合金中主要的金属成分可能只有一至两种。例如会以铁为基础,再加入一些微量的元素来提升其特性,因此所得的就是以铁为主的合金。过往的概念中,若合金中加的金属种类越多,会使其材质脆化,但高熵合金和以往的合金不同,有多种金属却不会脆化,是一种新的材料。