A. 吕合金和铁放在一起有什么反应
铝金属的活泼性比铁强,但平时铝表面有氧化膜,所以铝不容易发生反应。这两个紧贴着放在一起,如果暴露在潮湿空气中或者酸性、碱性及含盐的溶液里,会形成原电池,潮湿空气中因为铝不易发生反应,所以会加快铁的氧化(生锈),溶液中铝比铁更易反应,所以在溶液中会加快铝的氧化
B. 什么能溶化铝合金
下午好,铝合金属于多种金属单质的混合结构,一般不存在单独的有机溶剂像溶解树脂一样的可以溶解它。可以使用金属汞(水银)作为金属溶解成份,在锉去铝合金表面的磷化层之后按需要滴上去,就会看到它开始侵蚀铝合金并大量发热生成硬脆的铝汞齐四散,可以溶穿较薄的铝合金工件厚度,请酌情参考。此反应中水银是定额消耗品,溶解后不可再回收的(水银对除了含铁元素之外的多种合金均有强力溶解效果,但对纯铁板、铁皮没有任何反应)。
C. 哪些金属元素可以影响铝合金型材的性能
1、金属元素:铜元素的影响
铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着显著的时效强化效果。铝板中铜含量通常在2.5%-5%,铜含量在4%——6.8%时强化效果较好,所以大部门硬铝合金的含铜量处于这范围。
2、金属元素:硅元素的影响
Al-Mg2Si合金系合金平衡相图富铝部门Mg2Si在铝中的较大溶解度为1.85%,且随温度的降低而减速小,变形铝合金中,硅单独加入铝板中只限于焊接材料,硅加入铝中亦有一定的强化作用。
3、金属元素:镁元素的影响
镁对铝的强化是显著的,每增加1%镁,抗拉强度大约升高瞻远34MPa。假如加入1%以下的锰,可能增补强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物平均沉淀,改善抗蚀性和焊接机能。
4、金属元素:锰元素的影响
锰在固溶体中的较大溶解度为1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达较大值。Al-Mn合金长短时效硬化合金,即不可热处理强化。
5、金属元素:锌元素的影响
Al-Zn合金系平衡相图富铝部门275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。锌单独加入铝中,在变形前提下对铝合金强度的进步十分有限,同时存在应力侵蚀开裂、倾向,因而限制了它的应用。
6、金属元素:铁和硅的影响
铁在Al-Cu-Mg-Ni-Fe系锻铝合金中,硅在Al-Mg-Si系锻铝中和在Al-Si系焊条及铝硅锻造合金中,均作为合金元素加的,在基它铝合金中,硅和铁是常见的杂质元素,对合金机能有显著的影响。它们主要以FeCl3和游离硅存在。在硅大于铁时,形成β-FeSiAl3(或Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3Si2Al12)。当铁和硅比例不当时,会引起铸件产生裂纹,铸铝中铁含量过高时会使铸件产生脆性。
7、金属元素:钛和硼的影响
钛是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。钛与铝形成TiAl2相,成为结晶时的非自发核心,起细化锻造组织和焊缝组织的作用。Al-Ti系合金产生包反应时,钛的临界含量约为0.15%,假如有硼存在则减速小到0.01%。
8、金属元素:铬和锶的影响
铬在铝板中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力侵蚀开裂敏感性。但会场增加淬火敏感性,使阳极氧化膜呈黄色,铬在铝合金中的添加量一般不超过0.35%,并随合金中过渡元素的增加而降低,锶对挤压用铝合金中加入0.015%——0.03%锶,使铸锭中β-AlFeSi相变成汉字形α-AlFeSi相,减少了铸锭平均化时间60%——70%,进步材料力学机能和塑性加工性;改善制品表面粗拙度。对于高硅(10%——13%)变形铝合金中加入0.02%——0.07%锶元素,可使初晶减少至较低限度,力学机能也明显进步,抗拉强度бb由233MPa进步到236MPa,屈服强度б0.2由204MPa提高到210MPa,延伸率б5由9%增至12%。在过共晶Al-Si合金中加入锶,能减小初晶硅粒子尺寸,改善塑性加工机能,可顺利地热轧和冷轧。
D. 终于找到了!各种元素在铝合金中的作用
铜元素
铝铜合金富铝部分548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。
硅元素
Al—Si合金系富铝部分在共晶温度577 时,硅在 固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。镁和硅的质量比为1.73:1。设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅的含量。有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。
Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。
镁元素
Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。如果加入1%以下的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。
锰元素
Al-Mn合金系平平衡相图部分在共晶温度658时,锰在 固溶体中的最大溶解度为1.82%。合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。Al-Mn合金是非时效硬化合金,即不可热处理强化。锰能阻止铝合金的再结晶过程,提高再结晶温度,并能显著细化再结晶晶粒。再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。MnAl6的另一作用是能溶解杂质铁,形成(Fe、Mn)Al6,减小铁的有害影响。锰是铝合金的重要元素,可以单独加入形成Al-Mn二元合金,更多的是和其它合金元素一同加入,因此大多铝合金中均含有锰。
锌元素
Al-Zn合金系平衡相图富铝部分275时锌在铝中的溶解度为31.6%,而在125时其溶解度则下降到5.6%。锌单独加入铝中,在变形条件下对铝合金强度的提高十分有限,同时存在应力腐蚀开裂、倾向,因而限制了它的应用。在铝中同时加入锌和镁,形成强化相Mg/Zn2,对合金产生明显的强化作用。Mg/Zn2含量从0.5%提高到12%时,可明显增加抗拉强度和屈服强度。镁的含量超过形成Mg/Zn2相所需超硬铝合金中,锌和镁的比例控制在2.7左右时,应力腐蚀开裂抗力最大。如在Al-Zn-Mg基础上加入铜元素,形成Al-Zn-Mg-Cu系合金,基强化效果在所有铝合金中最大,也是航天、航空工业、电力工业上的重要的铝合金材料。
铁和硅
铁在Al-Cu-Mg-Ni-Fe系锻铝合金中,硅在Al-Mg-Si系锻铝中和在Al-Si系焊条及铝硅铸造合金中,均作为合金元素加的,在基它铝合金中,硅和铁是常见的杂质元素,对合金性能有明显的影响。它们主要以FeCl3和游离硅存在。在硅大于铁时,形成β-FeSiAl3(或 Fe2Si2Al9)相,而铁大于硅时,形成α-Fe2SiAl8(或Fe3Si2Al12)。当铁和硅比例不当时,会引起铸件产生裂纹,铸铝中铁含量过高时会使铸件产生脆性。
钛和硼
钛是铝合金中常用的添加元素,以Al-Ti或Al-Ti-B中间合金形式加入。钛与铝形成 TiAl2相,成为结晶时的非自发核心,起细化铸造组织和焊缝组织的作用。Al-Ti系合金产生包反应时,钛的临界含量约为0.15%,如果有硼存在则减速小到0.01%。
铬
铬在Al-Mg-Si系、Al-Mg-Zn系、Al-Mg系合金中常见的添加元素。600℃时,铬在铝中溶解度为0.8%,室温时基本上不溶解。铬在铝中形成(CrFe)Al7和(CrMn)Al12等金属间化合物,阻碍再结晶的形核和长大过程,对合金有一定的强化作用,还能改善合金韧性和降低应力腐蚀开裂敏感性。但会场增加淬火敏感性,使阳极氧化膜呈黄色。铬在铝合金中的添加量一般不超过0.35%,并随合金中过渡元素的增加而降低。
锶
锶是表面活性元素,在结晶学上锶能改变金属间化合物相的行为。因此用锶元素进行变质处理能改善合金的塑性加工性和最终产品质量。由于锶的变质有效时间长、效果和再现性好等优点,近年来在Al-Si铸造合金中取代了钠的使用。对挤压用铝合金中加入0.015% 0.03%锶,使铸锭中β-AlFeSi相变成汉字形α-AlFeSi相,减少了铸锭均匀化时间60% 70%,提高材料力学性能和塑性加工性;改善制品表面粗糙度。对于高硅(10% 13%)变形铝合金中加入0.02% 0.07%锶元素,可使初晶减少至最低限度,力学性能也显著提高,抗拉强度бb 由233MPa提高到236MPa,屈服强度б0.2由204MPa提 高到210MPa,延伸率б5由9%增至12%。在过共晶Al-Si合金中加入锶,能减小初晶硅粒子尺寸,改善塑性加工性能,可顺利地热轧和冷轧。
锆
锆也是铝合金的常用添加剂。一般在铝合金中加入量为0.1%~0.3%,锆和铝形成ZrAl3化合物,可阻碍再结晶过程,细化再结晶晶粒。锆亦能细化铸造组织,但比钛的效果小。有锆存在时,会降低钛和硼细化晶粒的效果。在Al-Zn-Mg-Cu系合金中,由于锆对淬火敏感性的影响比铬和锰的小,因此宜用锆来代替铬和锰细化再结晶组织。
稀土元素
稀土元素加入铝合金中,使铝合金熔铸时增加成分过冷,细化晶粒,减少二次晶间距,减少合金中的气体和夹杂,并使夹杂相趋于球化。还可降低熔体表面张力,增加流动性,有利于浇注成锭,对工艺性能有着明显的影响。各种稀土加入量约为0.1%at%为好。混合稀土(La-Ce-Pr-Nd等混合)的添加,使Al-0.65%Mg-0.61%Si合金时效G?P区形成的临界温度降低。含镁的铝合金,能激发稀土元素的变质作用。
杂质元素
钒 在铝合金中形成VAl11难熔化合物,在熔铸过程中起细化晶粒作用,但比钛和锆的作用小。钒也有细化再结晶组织、提高再结晶温度的作用。
钙 在铝合金中固溶度极低,与铝形成CaAl4化合物,钙又是铝合金的超塑性元素,大约5%钙和5%锰的铝合金具有超塑性。钙和硅形成CaSi,不溶于铝,由于减小了硅的固溶量,可稍微提高工业纯铝的导电性能。钙能改善铝合金切削性能。CaSi2不能使铝合金热处理强化。微量钙有利于去除铝液中的氢。
铅、锡、铋 元素是低熔点金属,它们在铝中固溶度不大,略降低合金强度,但能改善切削性能。铋在凝固过程中膨胀,对补缩有利。高镁合金中加入铋可防止钠脆。
锑 主要用作铸造铝合金中的变质剂,变形铝合金很少使用。仅在Al-Mg变形铝合金中代替铋防止钠脆。锑元素加入某些Al-Zn-Mg-Cu系合金中,改善热压与冷压工艺性能。
铍 在变形铝合金中可改善氧化膜的结构,减少熔铸时的烧损和夹杂。铍是有毒元素,能使人产生过敏性中毒。因此,接触食品和饮料的铝合金中不能含有铍。焊接材料中的铍含量通常控制在8μg/ml以下。用作焊接基体的铝合金也应控制铍的含量。
钠 在铝中几乎不溶解,最大固溶度小于0.0025%,钠的熔点低(97.8℃),合金中存在钠时,在凝固过程中吸附在枝晶表面或晶界,热加工时,晶界上的钠形成液态吸附层,产生脆性开裂时,形成NaAlSi化合物,无游离钠存在,不产生“钠脆”。当镁含量超2%时,镁夺取硅,析出游离钠,产生“钠脆”。因此高镁铝合金不允许使用钠盐熔剂。防止“钠脆”的方法有氯化法,使钠形成NaCl排入渣中,加铋使之生成Na2Bi进入金属基体;加锑生成Na3Sb或加入稀土亦可起到相同的作用。
E. 铝合金5356中铁元素的作用
铁在铸造铝合金中一直被认为是一种主要的有害杂质,各个国家、专业标准均对其作了明确的限制,各企业标准对其控制更为严格。这主要是由于随铁含量增加,在金相组织中会形成本身硬度很高的针、片状脆性铁相,它的存在割裂了铝合金的基体,降低了合金的力学性能,尤其是韧性,并且使零件机械加工难度增加,刀、刃具磨损严重,尺寸稳定性差等等,但是,低品质铝合金锭中铁含量本身就高,随着合金炉料的回用,生产中铁质坩埚、工具、置预件等的使用使合金增铁在所难免。多年来一直吸引着广大铸造工作者去研究,下面就铁在Al-Si合金中的作用及其减弱消除对策进行讨论。
1铸造Al-Si系合金中铁的作用
1.1铸造Al-Si合金中铁的存在形态
表1是铝硅系合金中铁的存在形态,其中α-AlFeSi和β-AlFeSi是常见的二种形态。而ρ-AlMgFeSi和δ-AlFeSi不是很常见。其中AlFeSi和Al(Fe,Cr)Si的结晶结构特征目前还不甚祥细。至于形成什么样的相,除与合金中的含铁量有关外,还与铸件的冷却速度、合金元素的数量、种类等密切相关。汉字状的α-AlFeSi相对Al-Si系合金可提高强度、硬度,对韧性降低不多,而针状的β-AlFeSi相则严惩割裂基体,显著降低合金的韧性,尤其冲击韧性,据报道,当Fe>1%时,可使整个合金本身变脆。
表1Al-Si系合金中铁相形态
类别晶体结构熔化温度/℃形状α-AlFeSi六方晶体860汉字状β-AlFeSi单晶体870针、片状ρ-AlMgFeSi立方晶体δ-AlFeSi四方晶体1.2铁对铝硅合金机械性能的影响
1.2.1对室温机械性能的影响
对Al-Si二元合金,当Fe>0.5%时,片状β相可提高合金的强度并稍降低其延伸率;当Fe>0.8%时,延伸率开始较大幅度降低,当合金中的Fe从0.4%增加到1.2%时,对强度值的增加是微乎其微的,但却显著降低其延伸率从4%降到1%,对Na变质的Al-Si共晶合金是每增加Fe0.1%可使延伸率降低1%多。
1.2.2对高温性能的影响
铁虽然降低了Al-Si活塞合金的室温机械性能,但却提高了它的高温机械性能,这主要由于高温时基体本身强度随温度升高下降很多,而此时以网状、汉字状和细小针状存在的铁相,它们在316℃左右时基本不变,是稳定的化合物相,正是它的存在提高高温下试样的抗拉强度。对Al-Si-Cu-Mg合金,当Fe>0.95%时,σ300℃为92MPa。
1.2.3对耐磨、耐腐性的影响
铁提高Al-Si系合金的耐磨性,这是由于硬质针状铁相使基体得以强化,抵抗变形能力,同时又起到支承作用,使耐磨性提高。同时铁相使合金表面的氧化膜失去连续性,易发生电化学腐蚀,铁降低合金的耐腐性。
1.2.4对铸造性能的影响
随着铁含量增加,在合金结晶时,由于β相干扰枝晶间流动,所以会使疏松增加,同时增加合金的热裂倾向,但是对压铸铝合金一定Fe量可防止粘膜,但也有报道称一定Fe量增加合金的流动性。
1.2.5对机械加工性能的影响
铁相使机械加工性能恶化,增加刀刃具的磨损量,使尺寸稳定性变差。
2铁的有害作用消除、抑制方法
2.1机械方法
常用的机械去铁法有过滤法、沉淀法、离心铸造法等,它们均是采用在熔体中加入Mn、Cr、Ni、Zr等合金元素使之与铁形成大的化合物,由于其密度与铝合金不同会产生沉淀,使用沉淀的方法称为沉淀法,它可使铁降低0.5%。将通过过滤布,过滤网、板,使大块化合物得以过滤的方法,称为过滤法,它可使Fe降低0.7%,将加入合金元素的熔体,在离心力作用下,由于密度d的差异使铁相移向边缘,而内部铁含量可由2.07%降低到0.27%,降低效率达87%。不同转速、不同Fe/Mn比对除铁效率也有影响。生产中应用的机械方法一般均联合使用,如过滤法与沉淀法,先沉淀后过滤,以及过滤与离心铸造结合会取得更加好的效果。
2.2熔体处理方法
2.2.1加入合金元素中和Fe的作用(变质处理)
熔体中加入合金元素来改变铁相形貌,减弱铁的作用,提高合金强度,改善延伸率,通常加入的元素有:Mn、Cr、Co、Be、Mo、Ni、S、Mg、Re等,下面逐个分析:
a.Mn:是最常用和用得最多的元素,加Mn能显著减少铁相的数量和尺寸,甚至使铁相完全消失,由于Mn的加入扩大了α铁相区,从而使得铁相向α铁相转化,中和铁相的Mn的加入量多少现还不能定论。据称在Al-Si13合金中加入0.5%的Mn,就能使含1.5%Fe的合金中针、片状铁相转变为α铁。有人推荐按Mn%=2(%Fe-0.5)添加Mn,总之通过添加Mn可逐渐使β-Fe相的数量减少,尺寸变小,直到不出现为止。
b.Cr:在ZAlSi7Mg合金中加Cr可使粗片状的β相转变为汉字状的α铁相,加0.2%~0.6%Cr能防止含Fe>1%的Al-Si13合金的脆断,在Al-5Si-1.5Cu-0.5Mg合金中加入0.2%~0.3%Cr使含铁为0.4%合金的伸长率由1.7%增加到3.8%,加0.4Cr可使含Fe0.75%的合金伸长率由0.8%提高到2.6%。
c.Co:Co的作用与Mn相似,但需要稍加入以使富铁相成球形,有人建议Fe/Co的比率应为1∶2,同时Co的加入于其本身的偏析体小,所以其效果优于Mn。
d.Be:也可作为一种中和剂,当Be加入量>0.4%时,能形成一种AlFeBe紧密相,同时由于Be是一种很好的抗氧化剂,能提高Al合金的性能,在砂型铸造件能使AlSi0.6Mg合金的抗拉强度提高5%~10%,同时不降低其延伸率,另据报道,在Al-6Si合金中加入0.05%~0.5%Be会使Fe杂质相的形态由长针改变为危害较小的园球形或近园球形,从而提高合金的塑性。
e.Mo:可用来中和Fe的有害作用,其效果比Mn好,它是Al-Si合金中Fe的有效变质剂,在含Fe1.2%的合金中加入0.2%的Mo和0.1%的S能使合金的延伸率由1%增加到2.8%,抗拉强度由160MPa增到180MPa。
f.Mg:也可起到中和杂质铁的有害作用,当含量在一定程度时会形成AlFeSiMg化合物相,从而减少β铁相的形成。
g.Ni和S:也是铁有害作用的中和剂,其中S还能作为铝合金的变质剂,据报道加入硫磺可使铁相大部分变为短杆状及汉字状,有少量是团球状、块状。但单独加时效果不理想,须与其它元素如Mn、Cr、稀土等配合,其效果明显。
h.稀土RE:稀土是一种很好的Fe相变质剂,据报道,对413合金加入0.04%~0.06%Sr,可有效减少β铁相的数量和尺寸,对6063合金,当加入0.05%Sr后,所存在铁相化合物呈汉字状,且细化。日本专利也曾报道加入0.005%~0.10%Sr及相同量的Zn,可减少β铁的数量和尺寸,并且在许多Al-Si系及型材合金中得到证实,这主要是由于RE本身是一种变质剂,合金净化剂,它的加入可有效去除铁的有害作用。
总之,对于变质中和剂,它能减少消除β铁相的形成,但它本身并不能去除Fe的有害作用,只起减缓作用,且随Fe量增加使用的变质剂量也增多,一定程度上降低合金的韧性,并且,由于其形成各种复杂化合物会带来其它相关的副作用,因此,我们提倡使用变质剂,且使用复合的综合性能变质剂,尽可能加入量少。
2.2.2熔体过热和快冷处理
a.熔体过热
据报道,过热处理可减少富铁相的形核核心,这是由于在高温时β富铁相的形核核心是γ(Al),而γ(Al)在低温时存在,当温度高到一定程度时(≥85℃),γ(Al)相就转变为α(Al),不利于β铁相的形核,从而抑制了β铁相的出现。同时发现随熔体过热度的增加,铸件中富铁的晶间化合物变的越细,当浇注温度大于800℃时,合金中的片状β铁相就转变为α铁相,且这个过程不可逆转,即一旦熔体过热到足以产生α相的温度随后的处理和静置对铁相形态无影响,并且当铁量愈高时,用过热方法改变就越来越困难。在实际操作中由于过热后熔体吸气,氧化严重,所以一般很少采用。
b.快速冷却处理
快速冷却处理可减弱铁的有害作用,这是大家所共认的,国家专业标准中规定的砂型铸造的质量小于金属型也就是这个道理。快速冷却时合金液中形核核心多,界面推进速度快,形成的有害铁相在同等条件下要短、要细,甚至看不到针状相,同时合金中中和Fe相所需的Mn量也随凝固过程中冷速的变化而变化,冷却速度对Fe相形态也有很大影响。当冷速<0.1℃/s时,有助于β铁相的形成,当冷速>10℃/s时,会抑制β铁的产生。
3讨论
(1)合金中Fe含量是否应符合国标?
在合金化处理方法和提高冷却速度条件下,我们可以减少甚至消除针状铁相的危害作用,使其组织性能达到国标规定的要求,此时合金中铁含量已超标,甚至严重超标,那么此时应以成分为主呢,还是以性能为主?我们主张Fe的有害作用消除了,其含量或者说铁含量当量(即此时的铁含量以平常的国标相当的量)应仅作参考,主要以组织性能为依据,成分不应具有否决权,与国外铸造发达国家相比,我国国标规定的Fe含量明显严于国外,因此我们希望我国专业行业标准能出现相应的标准。
(2)减少铁的有害作用在生产中如何操作?
在生产实际中过热处理,由于会带来元素的严重烧损,吸气严重,所以不太采用,而离心浇注需要离心机等设备,对专业合金生产厂犹可,而一般厂家也无法为了它而上设备。最实用且可行的就是合金化变质处理和提高冷却速度,变质处理中应提倡使用具有复合作用效果的加入量可小,一种元素多种功能的元素或几种元素复合剂,同时提倡机械与变质方法复合处理。