导航:首页 > 合金材料 > 怎么查合金相图

怎么查合金相图

发布时间:2023-11-01 16:19:40

㈠ 铁碳合金相图的具体分析过程

一丶铁碳合金相图分析如下:

Fe—Fe3C相图看起 来比较复杂,但它仍然是由一些基本相图组成的,我们可以将Fe—Fe3C相图分成上下两个部分来分析.

1.【共晶转变】

(1)在1148℃,2.11%C的液相发生共晶转变:Lc (AE+Fe3C),

(2)转变的产物称为莱氏体,用符号Ld表示.

(3)存在于1148℃~727℃之间的莱氏体称为高温莱氏体,用符号Ld表示,组织由奥氏体和渗碳体组成;存在于727℃以下的莱氏体称为变态莱氏体或称低温莱氏体,用符号Ldˊ表示,组织由渗碳体和珠光体组成.

(4)低温莱氏体是由珠光体,Fe3CⅡ和共晶Fe3C组成的机械混合物.经4%硝酸酒精溶液浸蚀后在显微镜下观察,其中珠光体呈黑色颗粒状或短棒状分布在Fe3C基体上,Fe3CⅡ和共晶Fe3C交织在一起,一般无法分辨.

2.【共析转变】

(1)在727℃,0.77%的奥氏体发生共析转变:AS (F+Fe3C),转变的产物称为珠光体.

(2)共析转变与共晶转变的区别是转变物是固体而非液体.

3.【特征点】

(1)相图中应该掌握的特征点有:A,D,E,C,G(A3点),S(A1点),它们的含义一定要搞清楚.根据相图分析如下点:

(2)相图中重要的点(14个):

1.组元的熔点: A (0, 1538) 铁的熔点;D (6.69, 1227) Fe3C的熔点

2.同素异构转变点:N(0, 1394)δ-Fe γ-Fe;G(0, 912)γ-Fe α-Fe

相图

3.碳在铁中最大溶解度点:

P(0.0218,727),碳在α-Fe 中的最大溶解度;E(2.11,1148),碳在γ-Fe 中的最大溶解度

H (0.09,1495),碳在δ-Fe中的最大溶解度;Q(0.0008,RT),室温下碳在α-Fe 中的溶解度

4.【三相共存点】

S(共析点,0.77,727),(A+F +Fe3C);C(共晶点,4.3,1148),( A+L +Fe3C)

J(包晶点,0.17,1495)( δ+ A+L )

5.【其它点】

B(0.53,1495),发生包晶反应时液相的成分;F(6.69,1148 ) , 渗碳体;K (6.69,727 ) , 渗碳体

6.【特性线】

(1)相图中的一些线应该掌握的线有:ECF线,PSK线(A1线),GS线(A3线),ES线(ACM线)

(2)水平线ECF为共晶反应线.

(3)碳质量分数在2.11%~6.69%之间的铁碳合金, 在平衡结晶过程中均发生共晶反应.

(4)水平线PSK为共析反应线

(5)碳质量分数为0.0218%~6.69%的铁碳合金, 在平衡结晶过程中均发生共析反应.PSK线亦称A1线.

(6)GS线是合金冷却时自A中开始析出F的临界温度线, 通常称A3线.

(7)ES线是碳在A中的固溶线, 通常叫做Acm线.由于在1148℃时A中溶碳量最大可 达2.11%, 而在727℃时仅为0.77%, 因此碳质量分数大于0.77%的铁碳合金自1148℃冷至727℃的过程中, 将从A中析出Fe3C.析出的渗碳体称为二次渗碳体(Fe3CII). Acm线亦为从A中开始析出Fe3CII的临界温度线.

(8)PQ线是碳在F中固溶线.在727℃时F中溶碳量最大可达0.0218%, 室温时仅为0.0008%, 因此碳质量分数大于0.0008%的铁碳合金自727℃冷至室温的过程中, 将从F中析出Fe3C.析出的渗碳体称为三次渗碳体(Fe3CIII).PQ线亦为从F中开始析出Fe3CIII的临界温度线.Fe3CIII数量极少,往往予以忽略.

(9)Ac1— 在加热过程中,奥氏体开始形成的温度。

(10)Ac3— 在加热过程中,奥氏体完全形成的温度

(11)Ar1— 在冷却过程中奥氏体完全转变为铁素体或铁素体加渗碳体的温度

(12)Ar3— 在冷却过程中奥氏体开始转变为铁素的温度

(13)Arcm— 在过共析钢冷却过程中渗碳体开始沉淀的温度,

·(14)Accm— 在过共析钢加热过程中,渗碳体完全转化为奥氏体的温度。

6.【相图相区】

1.单相区(4个+1个): L,δ,A,F ,(+ Fe3C)

2.两相区(7个):L + δ,L + Fe3C,L + A, δ+ A ,A + F ,A + Fe3C ,F + Fe3C.

㈡ 铁合金三元相图怎么看,看不懂。帮我讲讲,谢谢了!

看三个三角形顶点是单质还是氧化物,单质是铁合金相图,氧化物是渣图
如果是铁合金相图,那么随便其中取一点,作三条平行于三个边的不平行线。与边上交界处会有一个百分比数值,这个数值就是这种状态下,三种元素的百分含量。同时在那一点上会有温度值,这样就决定你冶炼不同的铁合金所需要的温了

㈢ 铁碳合金相图中有几条线这个要怎么数

铁碳合金相图貌似理论,实际上它的实用价值非常大,指明了含碳量不同的黑色金属、在不同温度下的组织变化,掌握了这张图基本就掌握了热处理的内容。学习铁碳合金相图的目的,主要是看懂它,记住几个关键点,实在记不住也要会从这张图上查数据。主要的特征线有:
ACD---液相线,此线以上全部为液体、
AECF---固相线,此线以下全部为固态、
GS、ECF、PSK共5条线。

㈣ 二元金属相图一般用什么方法测定,“二元金属相图”是采用什么方法

提起二元金属相图一般用什么方法测定,大家都知道,有人问“二元金属相图”是采用什么方法,另外,还有人想问二元合金相图(很好很强大),你知道这是怎么回事?其实二组分金属相图的绘制思考题汇总,下面就一起来看看“二元金属相图”是采用什么方法,希望能够帮助到大家!

二元金属相图一般用什么方法测定

1、二元金属相图一般用什么方法测定:“二元金属相图”是采用什么方法

1、合金凝固过程有哪些相形成。2、可以计算各温度下,平衡相的相对含量。3、可以简单的看出合金的一些工艺性能和机械性能

2、二元金属相图一般用什么方法测定:二元合金相图(很好很强大)

3、二元金属相图一般用什么方法测定:二组分金属相图的绘制思考题汇总

内容来自用户:sunzhenguoyear

二组分金属相图的绘制思考题汇总

1.有一失去标签的Pb-Sn合金样品,用什么方以确定其组成?

答:将其熔融、冷却的同时记录温度,作出步冷曲线,根据步冷曲线上拐点或的温度,与温度组成图加以对照,可以粗略确定其组成。

2.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么?答:(1)混合物中含Sn越多,其步冷曲线水平段长度越长,反之,亦然。(2)因为Pb和Sn的熔化热分别为23.0和59.4jg-1,熔化热越大放热越多,随时间增长温度降低的越迟缓,故熔化热越大,样品的步冷曲线水平段长度越长。

3.有一失去标签的Pb-Sn合金样品,用什么方以确定其组成?

4.总质量相同但组成不同的Pb-Sn混合物的步冷曲线,其水平段的长度有什么不同?为什么?

(查表:Pb熔点℃,熔化热23.0jg-1,Sn熔点℃,熔化热59.4jg-1)

5、何谓热分析法?用热分析法绘制相图时应注意些什么?

热分析法是相图绘制工作中的一种常用的实验方法,按一定比例配制均匀的液相体系,让他们缓慢冷却,以体系温度对时间作图,则为步冷曲线。曲线的转折点表征了某一温度下发生的相变的信息。

6、为什么要控制冷却速度,不能使其迅速冷却?

答:使温度变化均匀,接衡态,必须缓慢降低温度,一般每分钟降低答:使混合液充分混融,减小测定误差。

4、二元金属相图一般用什么方法测定:第三章 金属的相变和相图

5、二元金属相图一般用什么方法测定:二组分金属相图的测定作图时应注意哪些问题

事先测出入射光的频率,然后由小频率逐渐改为大频率,当刚好有电子逸出时记录入射光的频率,根据w=hγ算出。

6、二元金属相图一般用什么方法测定:怎样用热分析法测绘Si-Bi二元合金相图?

有实验测量绘出渐冷曲线,然后有间歇点等作出相图

主要看图的共熔点,分析之

7、二元金属相图一般用什么方法测定:金属相图是做什么用的

金属相图应该是显示和分析金属的金相结构用的。

相同成分的金属,如果金相结构不同,机械性能会有显著不同。

以上就是与“二元金属相图”是采用什么方关内容,是关于“二元金属相图”是采用什么方法的分享。看完二元金属相图一般用什么方法测定后,希望这对大家有所帮助!

㈤ 怎么看合金相图

那就拿铝的说吧
一.Al-Mg-Si系合金的基本特点: 6063铝合金的化学成份在GB/T5237-93标准中为0.2-0.6%的硅、0.45-0.9%的镁、铁的最高限量为0. 35%,其余杂质元素(Cu、Mn、Zr、Cr等)均小于0.1%。这个成份范围很宽,它还有很大选择余地。
6063铝合金是属铝-镁-硅系列可热处理强化型铝合金,在AL-Mg-Si组成的三元系中,没有三元化合物,只有两个二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si伪二元截面为分界,构成两个三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如图一、田二所示:
在Al-Mg-Si系合金中,主要强化相是Mg2Si,合金在淬火时,固溶于基体中的Mg2Si越多,时效后的合金强度就越高,反之,则越低,如图2所示,在α(Al)-Mg2Si伪二元相图上,共晶温度为595℃,Mg2Si的最大溶解度是1.85%,在500℃时为1. 05%,由此可见,温度对Mg2Si在Al中的固溶度影响很大,淬火温度越高,时效后的强度越高,反之,淬火温度越低,时效后的强度就越低。有些铝型材厂生产的型材化学成份合格,强度却达不到要求,原因就是铝捧加热温度不够或外热内冷,造成型材淬火温度太低所致。
在Al-Mg-Si合金系列中,强化相Mg2Si的镁硅重量比为1.73,如果合金中有过剩的镁(即Mg:Si>1. 73),镁会降低Mg2Si在铝中的固溶度,从而降低Mg2Si在合金中的强化效果。如果合金中存在过剩的硅,即Mg:Si<1.73,则硅对Mg2Si在铝中的固溶度没有影响,由此可见,要得到较高强度的合金,必须Mg:Si<1.73。 二.合金成份的选择 1.合金元素含量的选择
6063合金成份有一个很宽的范围,具体成份除了要考虑机械性能、加工性能外,还要考虑表面处理性能,即型材如何进行表面处理和要得到什么样的表面。例如,要生产磨砂料,Mg/Si应小一些为好,一般选择在Mg/Si=1-1.3范围,这是因为有较多相对过剩的Si,有利于型材得到砂状表面;若生产光亮材、着色材和电泳涂漆材,Mg/Si在1.5-1.7范围为好,这是因为有较少过剩硅,型材抗蚀性好,容易得到光亮的表面。
另外,铝型材的挤压温度一般选在480℃左右,因此,合金元素镁硅总量应在1.0%左右,因为在500℃时,Mg2Si在铝中的固溶度只有1.05%,过高的合金元素含量会导致在淬火时Mg2Si不能全部溶入基体,有较多的末溶解Mg2Si相,这些Mg2Si相对合金的强度没有多少作用,反而会影响型材表面处理性能,给型材的氧化、着色(或涂漆)造成麻烦。
2.杂质元素的影响
①铁,铁是铝合金中的主要杂质元素,在6063合金中,国家标准中规定不大于0.35,如果生产中用一级工业铝锭,一般铁含量可控制在0.25以下,但如果为了降低生产成本,大量使用回收废铝或等外铝,铁就根容易超标。Fe在铝中的存在形态有两种,一种是针状(或称片状)结构的β相(Al9Fe2Si2),一种为粒状结构的α相(Al12Fe3Si),不同的相结构,对铝合金有不同的影响,片状结构的β相要比粒状结构α相破坏性大的多,β相可使铝型材表面粗糙、机械性能、抗蚀性能变差,氧化后的型材表面发青,光泽下降,着色后得不到纯正色调,因此,铁含量必须加以控制。
为了减少铁的有害影响可采取如下措施。
a)熔炼、铸造用所有工具在使用前涂涮涂料,尽可能减少铁溶人铝液。
b)细化晶粒,使铁相变细,变小,减少其有害作用。
c)加入适量的锶,使β相转变成α相,减少其有害作用。
d)对废杂料细心挑选,尽可能的减少铁丝、铁钉、铁屑等杂物进入熔铝炉造成铁含量升高。
②其它杂质元素
其它杂质元素在电解铝锭中都很少,远远低于国家标准,在使用回收废杂铝时就可能超过标准;在生产中,不但要控制每个元素不能超标,而且要控制杂质元素总量也不能超标,当单个元素含量不超标,但总量超标时,这些杂质元素同样对型材质量有很大影响。特别需要提出强调的是,实践证明,锌含量到0.05时(国标中不大于0.1)型材氧化后表面就出现白色斑点,因此锌含量要控制到0.05以下。 三.6063铝合金的熔炼 1.控制好熔炼温度
铝合金熔炼是生产优质铸棒的最重要工艺环节之一,若工艺控制不当,会在铸捧中产生夹渣、气孔,晶粒粗大,羽毛晶等多种铸造缺陷,因此必须严加控制。
6063铝合金的熔炼温度控制在750-760℃之间为佳,过低会增大夹渣的产生,过高会增大吸氢、氧化、氮化烧损。研究表明,铝液中氢气的溶解度在760℃以上急剧上升,当热减少吸氢的途径还有许多,如烘干溶炼炉和熔炼工具,防止使用熔剂受潮变质等。但熔炼温度是最敏感因素之一,过离的熔炼温度不但浪费能源,增加成本,而且是造成气孔,晶粒粗大,羽毛晶等缺陷的直接成因。
2.选用优良的熔剂和适当的精炼工艺
熔剂是铝合金熔炼中使用的重要辅助材料,目前市场上所售熔剂中主要成份为氯化物,氟化物,其中氯化物吸水性强,容易受潮,因此,熔剂的生产中必须烘干所用原料,彻底除去水份,包装要密封,运输、保管中要防止破损,还要注意生产日期,如保管日期过长,同样会发生吸潮现象,在6063铝合金的熔炼中,使用的除渣剂、精炼剂、覆盖剂等熔剂如果吸潮,都会使铝液产生不同程度的吸氢。
选择好的精炼剂,选择合适的精练工艺也是非常重要的,目前6063铝合金的精炼绝大多数采用喷粉精炼,这种精炼方法能使精炼剂与铝液充分接触,可使精炼剂发挥最大效能。虽然这个特点是显而易见的,但是精炼工艺也必须注意,否则得不到应有效果,喷粉精炼中所用氮气压力以小为好,能满足吹出粉剂为佳,精炼中如果使用的氮气不是高纯氯(99.99%N2),吹入铝液的氮气越多,氟气中的水份使铝液产生的氧化和吸氢越多。另外,氟气压力高,侣液产生的翻卷波浪大,增大产生氧化夹渣的可能性。如果精炼中使用的是高纯氮,精炼压力大,产生的气泡大,大气泡在铝液中的浮力大,气泡迅速上浮,在铝液中的停留时间短,除氢效果并不好,浪费氮气,增加成本。因此氮气应少用,精炼剂应多用,多用精炼剂只有好处,没有坏处。喷粉精炼的工艺要点是用尽可能少的气体,喷进铝液尽可能多的精炼剂。
3.晶粒细化
晶粒细化是铝合金熔铸中晕重要的工艺之一,也是解决气孔、晶粒粗大、光亮晶、羽毛晶、裂纹等铸造缺陷的最有效措施之一。在合金铸造中,均是非平衡结晶,所有的杂质元素(当然也包括合金元素)绝大部分集中分布在晶界,晶粒越小,晶界面积就越大,杂质元素(或合金元素)的均匀度就越高。对杂质元素而言,均匀度高,可减少它的有害作用,甚至将少量杂质元素的有害变为有益;对合金元素面言,均匀度高,可发挥合金元素更大的合金化艘能,达到充分利用资源的目的。
细化晶粒、增大晶界面积、增大元素均匀度的作用可通过下面的计算加以说明。
假设金属块1与2有同样的体积V,均由立方体晶粒构成,金属块1的晶粒边长为2a,2的边长为a,那么金属块1的晶界面积为: 金属块2的晶界面积为: 金属块2的晶界面积是金属块1的2倍。
由此可见合金晶粒直径减小一倍,晶界面积就要增大—倍,晶界单位面积上的杂质元素将减少一倍。
在6063铝合金的生产中,对磨砂料来说,由于要通过腐蚀使型材产生均匀砂面,那么合金元素及杂质元素的均匀分布就显得尤为重要。晶粒越细,合金元素(杂质元素)的分布越均匀,腐蚀后得到的砂面就越均匀。 四.6063铝合金的浇铸 1.选择合理的浇铸温度
合理的浇铸温度也是生产出优质铝棒的重要因素,温度过低,易产生夹渣、针孔等铸造缺陷。温度过高,易产生晶粒粗大、羽毛晶等铸造缺陷。
做了晶粒细化处理后的6063铝合金液,铸造温度可适当提高,一般可控制在720-740℃之间,这是因为:①铝液经晶粒细化处理后变粘,容易凝固结晶。②铝棒在铸造中结晶前沿有一个液固两相过度带,较高的铸造温度有较窄的过度带,过度带窄有利于结晶前沿排出的气体逸出,当然温度不可过高,过高的铸造温度会缩短晶粒细化剂的有效时间,使晶粒变得相对较大。
2.有条件时,充分预热,烘干流槽、分流盘等浇铸系统,防止水分与铝液反应造成吸氢。
3.铸造中,尽可能的避免铝液的紊流和翻卷,不要轻易用工具搅动流槽及分流盘中的铝液,让铝液在表面氧化膜的保护下平稳流人结晶器结晶,这是因为工具搅动铝液和液流翻卷都会使铝液表面氧化膜破裂,造成新的氧化,同时将氧化膜卷入铝液。经研究表明,氧化膜有极强的吸附能力,它含有2%的水份,当氧化膜卷入铝液后,氧化膜中的水份与铝液反应,造成吸氢和夹渣。
4.对铝液进行过滤,过滤是除去铝液中非金属夹渣最有效的方法,在6063铝合金的铸造中,一般用多层玻璃丝布过滤或陶瓷过滤板过滤,无论是采取何种过滤方法,为了保证铝液能正常的过滤,铝液在过滤前应除去表面浮渣,因为表面浮渣易堵塞过滤材料的过滤网孔,使过滤不能正常进行,除去铝液表面浮渣的最简单方法是在流槽中设置一挡渣板,使铝液在过滤前除去浮渣。 五.6063铝合金的均化处理 1.非平衡结晶
如图三所示,是由A、B两种元素构成的二元相图的一部分,成份为F的合金凝固结晶,当温度下降到T1时,固相平衡成份应为G,实际成份为G’,这是因为在铸造生产中,冷却凝固速度快,合金元素的扩散速度小于结晶速度,即固相成份不是按CD变化,而是按CD’变化,从而产生了晶粒内化学成份的不平衡现象,造成了非平衡结晶。
2.非平衡结晶产生的问题
铸造生产出的铝合金棒其内部组织存在两方面的问题:①晶粒间存在铸造应力;②非平衡结晶引起的晶粒内化学成份的不平衡。由于这两个问题的存在,会使挤压变得困难,同时,挤压出的产品在机械性能、表面处理性能方面都有所下降。因此,铝棒在挤压前必须进行均匀化处理,消除铸造应力和晶粒内化学成份不平衡。
3.均匀化处理
均匀化处理就是铝棒在高温(低于过烧温度)下通过保温,消除铸造应力和晶粒内化学成份不平衡的热处理。Al-Mg-Si系列的合金过烧温度应该是595℃,但由于杂质元素的存在,实际的6063铝合金不是三元系,而是一个多元系,因此,实际的过烧温度要比595℃低一些,6063铝合金的均匀化温度可选在530-550℃之间,温度高,可缩短保温时间,节约能源,提高炉子的生产率。
4.晶粒大小对均匀化处理的影响
由于固体原子之间的结合力很大,均匀化处理是在高温下合金元素从晶界(或边沿)扩散到晶内的过程,这个过程是很慢的。容易理解,粗大晶粒的均化时间要比细晶粒的均匀化时间长得多,因而晶粒越细,均匀化时间就越短。
5.均匀化处理的节能措施
均匀化处理需要在高温下通过较长时间保温,对能源需求大,处理成本高,因此,目前绝大多数型材厂对铝棒未进行均匀化处理。其最重要的原因就是均匀化处理需要较高成本所致。降低均匀化处理成本的主要措施有:
①细化晶粒
细化晶粒可有效的缩短保温时间,晶粒越细越好。
②加长铝棒加热炉,按均匀化和挤压温度分段控制,满足不同工艺要求。这一工艺主要好处是:
a)不增加均匀化处理炉。
b)充分利用铝捧均匀化后的热能,避免挤压时再次加热铝棒。
c)铝捧加热保温时间长,内外温度均匀,有利于挤压和随后的热处理。
综上所述,生产出优质6063铝合金铸棒,首先是根据生产的型材选择合理的成分,其次是严格控制熔炼温度、浇铸温度,做好晶粒细化处理、合金液的精炼、过滤等工艺措施,细心操作,避免氧化膜的破裂与卷入。最后,对铝棒进行均匀化处理,这样就可生产出优质铝棒,为生产优质型材提供一个可靠的物质基础。
先看水平线,每条水平线都表示一个恒温转变,然后根据和水平线中间相接的相的位置和两端相连相的状态来判断转变的类型,最后再根据相区接触法则作进一步的判断,最好把相图分开来分别研究就会相对简单,如果整个一起来看那就有点难了.

㈥ 如何看懂铁碳相图如何确定铁碳合金的相变点如何确定某一成分合金在某一温度下的确切的组织和相组成

铁碳合金的相变点、某一成分合金在某一温度下的确切的组织和相组成等等都在铁碳合金相图中标注着呐!只要看懂铁碳相图,这些都不是问题。关键问题是如何看懂铁碳相图!
如何看懂铁碳相图呢?
1、学习一下金属学基础知识
2、学习一下晶体学基础知识
3、学习一下二元相图的基础知识
4、理解组元、相、组织、共析反应、共晶反应、包晶反应、匀晶反应、杠杆定律等一些基本概念
5、掌握铁素体、奥氏体、珠光体、莱氏体、渗碳体等等铁碳相图的一些基本概念
掌握以上五条基本上看铁碳相图就入门了。

㈦ 什么是合金相图

合金相图一般指铁碳合金相图。如图:

铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。铁存在着同素异晶转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。由于α-Fe和γ-Fe晶格中的孔隙特点不同,因而两者的溶碳能力也不同。

在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。但奥氏体一般仅存在于高温下,所以室温下所有的铁碳合金中只有两个相,就是铁素体和渗碳体。由于铁素体中的含碳量非常少,所以可以认为铁碳合金中的碳绝大部分存在于渗碳体中。铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等,有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为Fe-Fe3C相图,此时相图的组元为Fe和Fe3C。

由于实际使用的铁碳合金其含碳量多在5%以下,因此成分轴从0~6.69%,所谓的铁碳合金相图实际上就是Fe—Fe3C相图。

阅读全文

与怎么查合金相图相关的资料

热点内容
模具费用为什么那么高 浏览:855
模具用英文怎么读 浏览:267
塑料桶模具开发多少钱 浏览:369
钢筋工一天能做多少平米 浏览:473
创意不锈钢加工店怎么样 浏览:138
钢铁侠的车标是什么 浏览:846
东莞横沥哪里有招模具双头铣 浏览:594
混凝土塑料护栏模具多少钱 浏览:182
不锈钢锅把子带铆钉的松了怎么办 浏览:573
保温钢管下料多少钱 浏览:841
钢铁是怎么锻成的好词 浏览:25
河南钢铁价格多少钱一吨 浏览:798
40x80方管都有多厚的 浏览:991
飘窗大理石台面怎么安装完美无缝 浏览:776
无缝钢管试验检测需要多少样品 浏览:734
无缝线路长度不小于多少 浏览:129
悬臂钢筋代号怎么输入 浏览:340
钢筋伸入梁内多少 浏览:268
铁塔一般用什么钢材 浏览:73
肩锁骨钢板拆后伤口多久愈合 浏览:393