导航:首页 > 合金材料 > 钛合金成型技术有哪些

钛合金成型技术有哪些

发布时间:2023-11-02 01:02:38

1. 什么是钛合金

钛合金
p

概念定义: 以钛为基加入其他合金元素组成的合金称作钛合金。钛合金具有密度低、比强度高、抗腐蚀性能好、工艺性能好等优点,是较为理想的航天工程结构材料。
研究范围: 钛合金可分为结构钛合金和耐热钛合金,或α型钛合金、β型钛合金和α+β型钛合金。研究范围还包括钛合金的成形技术、粉末冶金技术、快速凝固技术、钛合金的军用和民用等。

(一) 发展过程
50年代初~70年代初
需求动力: 为满足航空工业对材料的需求,钛合金受到重视并得以发展,技术基础主要是冶金学和工艺学。
主要特点: 该阶段的特点是从材料的探索研究逐步转向应用。主要材料有Ti-6Al-4V、Ti-5Al-2.5Sn等,主要用于航空发动机、航天用压力容器、发动机壳体等。
典型成果和产品:典型材料:Ti-6Al-4V, Ti-5Al-2.5Sn

70年代~90年代
需求动力: 钛合金应用领域的扩大,使钛工业得到迅速发展,新工艺和新技术推动钛合金成形工艺的发展。
主要特点: 该阶段的特点:(1)钛在航空航天工业应用量不断增加,在其它行业如海洋工程、化工、电力、冶金、医疗等方面的应用也日趋增多,成为第三金属。(2)新型钛合金不断问世,如高强钛合金、耐热钛合金等。(3)采用新工艺技术如超塑成形、快速凝固技术和等温锻造等。(4)为扩大应用而重视降低成本问题。
典型成果和产品:典型材料: Ti-1100, Ti-1023, IMI834, Timetal62S, SP-700等
(二) 现有水平及发展趋势
钛合金是航空航天工业应用较广的一种金属材料,按用途可分为结构钛合金和高温钛合金(使用温度>400℃)。
结构钛合金以Ti-6Al-4V为代表,该合金已广泛用于飞机、导弹上,并已由次承力结构件转为主结构件。为适应更高强度和韧性的要求(如强度提高至1275~1373MPa,比强度提高至29~33,弹性模量提高至196GPa),近年研制了许多新型钛合金,如美国的Ti-15V-3Cr-3Sn-3Al;Ti-3Al-8V-6Cr-4Mo-4Zr(β-C),Ti-6Al-2Sn-2Zr-2Cr-2Mo-0.23Si,Ti-4.5Al-1.5Cr;英国的Ti-4Al-4Mo-2Sn-0.5Si(IMI500)、日本的SPF00、CR800、SP700和前苏联的BT22等。其中Ti-15-333铸件和β-C可取代沉淀硬化不锈钢和镍基合金,Ti-6-22-22在美国先进战术战斗机(ATF)的样机F-22A中的用量占22%(重量)。日本的SP700(Ti-4.5Al-3V-2Mo-2Fe),不仅强度高,而且在755℃达超塑性,延伸率可达2000%,成形性好,加工成本低,可取代Ti-6Al-4V,已用于航天构件。
高温钛合金近年来取得一定进展,在该领域中,美国和英国占据优势。但两国采用的开发方法和侧重点则截然不同。英国采用的是以α相固溶强化为提高蠕变强度的必要手段而无需β相共存的方法,侧重于研究近α型合金,即开发以提高蠕变强度为主的Ti-4Al-2Sn-4Mo-0.5Si(使用温度400℃)、Ti-11Sn-2.25Al-5Zr-1Mo-0.2Si(IMI679,使用温度450℃)、Ti-6Al-5Zr-0.5Mo-0.25Si(IMI685)合金和以改善疲劳强度为主的Ti-5.5Al-3.5Sn-3Zr-1Nb-0.3Mo-0.3Si(IMI829)和Ti-5.5Al-4.5Sn-4Zr-0.4Mo-0.8Nb-0.4Si(IMI834)。
美国则采用通过牺牲疲劳强度来提高蠕变强度的方法,侧重研究钼含量较高的合金,如Ti-6Al-2Sn-4Zr-2Mo(6242,使用温度470℃)、6242S(使用温度500℃)合金。随后,又研究开发了Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si合金(Ti-1100),其使用温度提高到600℃。
最近美国又研制了Timetal21S(Ti-15Mo-2.7Nb-3Al-0.2Si)(又称β21S),使用温度704℃,可用于制造高温导管及压力管,被优选为美国国家空天飞机(NASP)机体用金属基复合材料的基体材料。目前,这些新型高温钛合金均尚未进入实用化阶段。
目前高强度钛合金超塑性成形技术发展很快,其发展趋势是气压成形等温锻造和真空成形法。
美国在钛合金的研制和应用方面,一直处于领先水平,据统计在美国的航空工业中,钛的消费比例为70%,美国在钛合金的成形方面,主要采用了超塑性条件下的等温锻造和板材成形。为降低成本,扩大应用,美国推出新牌号的合金,如Timetal62S(Ti-6Al-2Fe-0.1Si),以铁代钒在成本上优于Ti-6Al-V,而且性能与之相当。
前苏联钛工业已有35年以上的历史,它的发展过程平稳,没有大的起伏。生产了大量的与Ti-6Al-4V及Ti-5Al-2.5Sn类似的合金以及一系列高温高强合金,并研究了特种耐蚀钛合金,如4200、4210、4207等,在航天工业中,前苏联广泛采用超塑性条件下钛合金的气压成形工艺。
英国在耐热钛合金的研究和应用方面同美国各占优势,但其侧重研究近α型合金,即大力开发以提高蠕变强度为重点的合金,如Ti-4Al-2Sn-4Mo-0.5Si、Ti-11Sn-2.25Al-5Zr-1Mo-0.2Si(IMI879)、Ti-6Al-5Zr-0.5Mo-0.25Si(IMI685)等,其中IMI685在欧洲已获得广泛应用。
近年来,日本在钛合金的研究方面也取得了较大进展,如为降低成本开发了SP-700(Ti-4.5Al-3V-2Mo-2Fe)合金,该合金的成形性能优于Ti-6Al-4V。日本采用低应变率的超塑性真空成形工艺。
(三) 主要研究机构
美国钛金属公司(American Titanium Metal Company),主攻技术及工程:钛合金
苏联全苏轻合金研究所(ВИЛС),主攻技术及工程:主攻技术: 钛合金

=========================================
铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。
铝合金仍然保持了质轻的特点,但机械性能明显提高。铝合金材料的应用有以下三个方面:一是作为受力构件;二是作为门、窗、管、盖、壳等材料;三是作为装饰和绝热材料。利用铝合金阳极氧化处理后可以进行着色的特点,制成各种装饰品。铝合金板材、型材表面可以进行防腐、轧花、涂装、印刷等二次加工,制成各种装饰板材、型材,作为装饰材料。

2. 钛合金生产制造新方法——增材制造

增材制造技术的快速发展,为钛合金的生产制造提供了新的方法,激光/电子束、熔焊和固态焊三种增材制造方法在钛合金生产中得到了国内学者的广泛研究。研究表明,钛合金采用增材技术可得到高质量零件,但不同增材技术具有不同技术特征,实际应用及未来发展中需要根据实际需求采用不同的增材方法。


1.序言


钛及钛合金因具有密度小、耐高温、耐腐蚀等优异的物理性能及化学性能,在各工业领域都具有广阔的应用前景,包括船舶制造、航天航空、汽车制造等,同时它也是国防工业的重要材料之一。钛合金的应用对工业发展起到巨大的推动作用,优于传统材料的性能使其产品质量有了很大提升,满足了工业发展对新材料、新工艺的发展要求,加速了现代工业的发展。随着钛生产力的不断改善,钛合金已经成为工业生产中的第三金属。


增材制造(Additive Manufacturing,AM)又称“3D打印”,是一种可以实现构件的无模成形的数字化制造技术,具有设计和制造一体化、加工精度高、周期短,产品物理化学性能优异等特点。增材制造技术从20世纪70年代以来发展迅速,因其与传统制造技术具有巨大差异,已然成为工业领域的研究热点,在现代工业的多领域都得到了快速发展。


增材制造技术的迅速发展,理论上可以实现任何单一或多金属复合结构,为复杂结构件的制造提供了新方法。钛合金的增材制造技术,解决了精密结构件的加工难题,进一步加大了钛合金的应用范围。伴随着工业社会的迅速发展,钛合金增材制造技术日新月异,按照增材制造技术的热源不同,可将钛合金增材制造技术分为激光/电子束增材制造、熔焊增材制造和固态焊增材制造三种方式。国内外的专家学者通过不同的增材制造技术手段,优化工艺方法,稳定增材制造过程,减少或避免增材制造结构缺陷产生,使钛合金增材制造技术朝着绿色、高效、稳定的方向继续发展。


2. 激光/电子束增材制造


激光束和电子束作为高密度束源,能量密度高并可调控,被誉为21世纪最先进的制造技术。目前激光/电子束增材制造主要分为激光金属沉积(Laser Mental Deposition,LMD)技术、激光选区熔化(Selective Laser Melting,SLM)技术、电子束熔丝沉积(Electron Beam Free Form Fabrication,EBF3)技术、电子束选区熔化(Electron BeamMelting,EBM)技术,在钛合金增材制造领域皆有广泛研究。


2.1 激光金属沉积(LMD)


Mahamood等人采用LMD技术进行了Ti6Al4V/TiC 的功能梯度材料(Functionally gradedmaterials,FGM)研究,根据早期经验模型进行工艺优化,获得优化后的功能梯度材料,对其组织、显微硬度、耐磨性进行表征。研究结果表明,采用优化后工艺参数制造的功能梯度材料拥有更高的性能,硬度是基体硬度的4倍,高达1200HV。Silze等人利用新型半导体激光器采用LMD技术进行Ti6Al4V的增材制造试验研究,LMD装置是由6个200W半导体激光头圆形环绕在进给枪上(见图1),激光束直径0.9mm,可以实现方向独立的焊接工艺过程,显微结构无缺陷。研究结果表明,随着层间停留时间的延长,冷却时间增加,晶粒厚度降低,有助于提高材料的力学性能,采用LMD技术增材制造均能满足锻造Ti6Al4V所规定的最低屈服强度和抗拉强度要求。


Heigel等人采用原位温度、应力实时测量与热机模型结合有限元热-应力顺序耦合模型的方式,研究了Ti6Al4V激光沉积增材制造过程中的热、力演化过程,结果发现残余应力最大力出现在增材层的中心下方,向两侧方向应力减小,随着停留时间增加,层间温度差变大,残余应力增大。左士刚利用TA15钛合金球形粉末采用激光沉积技术进行了TC17钛合金增材修复制造过程研究,研究了修复件组织特性与力学性能影响规律。结果表明,采用激光沉积技术增材修复后的TA15/TC17修复件无焊接缺陷,修复件抗拉强度为1029MPa,采用退火处理后,力学性能明显增强,抗拉强度基本可达TC17锻件标准,伸长率优于标准。


综上所述,对于钛合金的LMD技术增材制造相对较为稳定,增材件力学性能基本满足锻件最低标准,对于某些特定需求钛合金则要进行增材制造后热处理的方式达到使用要求。


2.2 激光选区熔化(SLM)


唐思熠等人采用SLM技术制备Ti6Al4V钛合金试样(见图2),并对微观组织、力学性能和致密化行为进行了分析研究。结果发现,激光功率从360W增加到400W时,致密度提高明显;在400W后继续增加功率,致密度受激光扫描速度的影响较大,最优工艺参数下的试样质量远高于锻件标准。


Polozov等人采用SLM技术进行增材制造Ti-5Al、Ti-6Al-7Nb和Ti-22Al-25Nb块状合金,对Ti-Al-Nb系统进行退火处理,对试样进行系统表征研究。结果发现,Ti-5Al可以采用SLM增材制造成钛合金,Ti-6Al-7Nb和Ti-22Al-25Nb则需要在1350℃下热处理才能完全溶解Nb颗粒,但是此时样品氧含量较高,力学性能降低。


Fan等人研究了SLM技术增材制造Ti-6Al-2Sn-4Zr-2Mo(Ti-6242)钛合金在标准时效(595℃/8h)下的显微组织稳定性。研究结果发现,随着激光扫描速度的提高,相对密度增加到99.5%后急剧下降到大约95.7%,时效老化处理的Ti-6242相对刚制成的Ti-6242抗拉强度从1437MPa提升至1510MPa,延展性从5%降低到1.4%,同时硬度也从410HV增加到450HV,β相颗粒的沉淀硬化作用是产生这种变化的重要原因。


Ren等人采用SLM技术增材制造进行了Ti-Ni形状记忆合金组织性能的研究工作,制备等原子Ti50Ni50(质量分数)样品,结果发现,在激光功率为40J/mm3,扫描速度为1000mm/s下可制造几乎完全致密试样,不同扫描速度对相组成、相变温度和维氏硬度的影响作用有限,与传统铸件相比,SLM技术增材制造件拥有较高的真空压缩和断裂强度。


综上所述,对于Ti6Al4V的SLM技术增材制造相对较容易实现,对于钛与其他元素合金的SLM技术增材制造还需要做进一步地研究,需要进行预热或者其他热处理手段和进行氧含量的控制手段来增强其他钛合金SLM技术增材制造的力学性能,获得高质量的研究试样。


2.3 电子束熔丝沉积(EBF3)


靳文颖研究了TC4钛合金的电子束熔丝沉积增材修复技术,进行了普通TC4焊丝和自制TC4EH焊丝的增材修复性能对比。研究发现,采用自制TC4EH焊丝的抗拉强度(905.23MPa)明显高于TC4普通焊丝(809.04MPa),硬度和冲击韧度同样较高,伸长率可达原材料的90%以上,具有优良的力学性能。


Chen等人进行了电子束熔丝沉积Ti6Al4V变形控制研究(见图3),电子束以100~150mA之间的扫描电流和低于100mm/s的速度工作,则可以形成薄壁件,扫描形式对残余应力分布影响不大,单向扫描变形更大,收缩变形在往返扫描情况下较为明显,并且与电流变化成正比关系,同时,发现基板底部恒定温度约束下,变形得到改善。


Yan等人研究了电子束熔丝沉积Ti6Al4V加强筋的残余应力与变形,研究发现,两个加强筋都对板产生不利的变形,纵向轨道比横向轨道引起板更大的变形,加强筋的沉积轨迹对变形有很大影响,最大位移发生在与纵向轨道相关的加强筋的内底边缘,高残余应力区域主要集中在加强筋的根部。


综上所述,对于钛合金的电子束熔丝沉积增材制造的研究相对较少,主要偏向借助有限元分析软件的变形控制等领域。分析认为,电子束熔丝沉积增材制造可以克服传统的钛合金加工方式的弊端,借助有限元分析软件更为实际应用过程中提供了基础理论的指导。


2.4 电子束选区熔化(EBM)


Murr等人采用EBM增材制造的方法制备多孔泡沫Ti6Al4V,研究了刚度与密度之间的关系。结果发现泡沫具有实心孔和中空孔结构,与实心、紧密的EBM制造件相比,中空孔结构的强度与硬度成正比,强度高出40%,并且刚度与孔隙率成反比,采用EBM增材制造的泡沫材料在生物医学、航空航天等领域的应用具有巨大潜力。


许飞等人采用电子束选区熔化技术对制备的TC4钛合金开展了大功率高速光纤激光焊接试验研究。结果表明,受EBM技术增材制造TC4的晶粒尺寸差异的影响,激光焊接试验熔合区靠近上下表面的β柱状晶组织相对细小。焊缝区显微硬度高于增材区硬度,且顶部硬度较高。


Seifi等人研究利用EBM增材制造Ti-48Al-2Cr-2Nb的组织性能研究,结果发现,所沉积的材料强度和硬度值超过了常规铸造Ti-Al所获得的强度和硬度值,这与目前测试的增材材料中存在更精细的微观结构相一致。


Surmeneva等人研究了采用EBM技术增材Ti–10%Nb(质量分数,下同)的组织性能研究。结果发现,通过EBM技术元素Nb和Ti的粉末混合物中原位生产Ti-10%Nb合金,最大的Nb颗粒保留在EBM制造的样品中,并且Nb仅部分扩散到Ti中,如图4所示,应该对EBM工艺的参数优化进行更多的研究,以实现更均匀的合金显微组织。



综上所述,对于Ti6Al4V的EBM研究相对较为广泛,发现对于Ti-Nb合金的EBM技术增材制造仍难很好地解决Nb颗粒的扩散问题,会导致显微组织不均匀,因此对于Ti-xNb合金的增材制造还需要更多的工艺优化试验进行材料性能的提升。


3.熔焊增材制造


与其他增材制造方式相比,熔焊增材制造操作性更强,成本更低,但结构可靠性相对较低。熔焊增材制造一般采用焊丝增材制造,但是由于基材和初始沉积层之间的热梯度大,以及辐射和对流热损失,会在制造的部件底部观察到细晶粒结构。由于较低的热梯度,传热速率较低,这阻碍了在增材过程的中间层形成细晶粒结构,而只在制造部件的中间形成长的柱状晶粒。


3.1 CMT电弧增材制造


李雷等人采用CMT电弧增材TC4薄壁结构,研究其增材层组织性能。结果发现,由于增材过程热循环的反复作用,原始β柱状晶晶界、水平层带条纹、马氏体组织和网篮组织等形态出现在增材层中,由于时效作用,对中下部区域产生强化作用,造成上部增材层显微硬度略低于中下部显微硬度(见图5)。

陈伟进行了CMT电弧增材TC4的微观组织及力学性能研究。结果发现,在设定送丝速度为3.0m/min、焊接速度为0.48m/min的参数下,原始β晶粒剖面面积最小,CMT电弧增材制造TC4钛合金在870℃,1h/固溶炉冷(FC)+600℃、2h/固溶空冷(AC)下热处理,获得的各区域微观组织较均匀,固溶处理后的材料塑性较高。


3.2 等离子弧增材制造


Lin等人采用PAW增材制造Ti6Al4V,在微观结构和显微硬度方面进行了研究。结果发现,先前的β柱状晶粒的外延生长受到脉冲扰动的抑制,这导致形成了具有接近等轴晶粒的柱状晶粒,在沉积早期,由于热循环不足,显微硬度较低,在后续沉积中,硬度升高,在沉积层的顶部,不受连续热循环的影响,导致第二相的体积减小,硬度值降低。


马照伟进行了旁路热丝等离子弧增材制造钛合金的组织性能研究(见图6)。结果发现,钛合金增材构件的横向抗拉强度为977MPa,强度与TC4母材的抗拉强度相当,断裂位置在增材直壁结构尾部区域,这是由于横向焊缝为连续熔化-凝固而来,焊缝中的缺陷和杂质较少,使得横向焊缝具有良好强度性能的钛合金增材构件的竖向抗拉强度为

936MPa,断裂位置在增材直壁结构上部区域,性能较横向焊缝稍差。靠近母材的热影响区硬度相对较低,出现了小范围的软化区,整体的竖向硬度差别并不明显。


3.3 复合电弧增材制造


Pardal等人进行了激光和CMT复合焊接增材制造Ti6Al4V的结构件稳定性研究。结果发现,激光可用于稳定焊接过程,减少焊接飞溅,改善电弧漂移的情况,改善单层和多层沉积的焊缝形状,并将Ti6Al4V增材制造的沉积速率从1.7kg/h提高到2.0kg/h。


综上所述,对于熔焊增材制造钛合金主要集中在TC4的研究中,多采用CMT、等离子等高效熔丝工艺方式,同时采用其他热源辅助焊接的方式稳定焊接过程,进行钛合金的增材制造。分析认为,对于熔焊钛合金增材制造的发展方向应开拓研究制备钛合金功能性材料,便于多领域全方位的应用推广,复合热源的增材方式或其他可控热输入的稳定

增材方式会成为熔焊增材的热门研究方向。


4.固态焊增材制造


4.1 搅拌摩擦增材制造(FSAM)


搅拌摩擦增材制造是一种从搅拌摩擦焊接技术发展而来的固相增材技术,原理如图7所示。增材效率高、成本低;在增材过程中没有金属的熔化和凝固,可以避免熔池带来的冶金缺陷问题,同时搅拌摩擦过程中塑性变形还可以起到晶粒细化的作用,获得低成本、高质量增材产品。

张昭等人基于Abaqus生死单元法和移动热源法建立两种搅拌摩擦增材制造Ti6Al4V有限元模型,研究搅拌摩擦增材的温度分布和晶粒生长情况。研究结果发现,横向增材峰值温度大于纵向增材峰值温度,在搅拌区冷却及增材累积过程晶粒粗化,并且由β相转变为α相,由于不同热循环次数的影响,低层搅拌区晶粒尺寸较大,高层搅拌区晶粒尺寸较小。


4.2 超声波增材制造(UAM)


超声波增材制造(UAM)是一种新的快速成形工艺,用于在室温或接近室温的条件下制造金属基复合材料。较低的加工温度使复合材料能够通过利用嵌入在基体中的高度预应变的形状记忆合金(SMA)纤维产生的回复应力。


Hahnlen等人利用UAM技术制造NiTi-Al复合结构界面强度研究,纤维-基体界面的强度是UAM复合材料的限制因素。结果发现,平均界面剪切强度为7.28MPa,纤维与界面结合方式是机械键合,未发生化学键合或冶金键合方式。

为提高碳纤维增强材料(CFRP)的承重能力,使其能在航空航天和汽车工业上进一步推广应用,James等人进行了CFRP/Ti的超声波增材制造中剪切破坏强度的研究,研究结果发现,采用UAM技术可以实现CFRP/Ti的结构制造,超声波能量和表面粗糙度都对UAM制成结构的剪切强度产生积极影响,在焊接前增加界面的表面粗糙度有助于增加最终焊缝的剪切破坏负荷。


综上所述,关于超声波增材制造钛合金的研究较少,主要进行的是金属基复合材料的研究,以增强复合材料的特定性能满足实际生产应用,分析认为,在未来研究中,应侧重于提升复合材料的力学性能研究方向。


5 结束语


随着现代工业的迅速发展,轻量化的设计成为结构件的发展方向,对结构件的性能和质量要求变的越来越严格,钛合金增材制造技术的迅速发展,可以进一步扩大钛合金结构件的应用范围,提高钛合金增材件的性能,增强结构稳定性。综合国内外所研究的钛合金增材制造技术和现代工业的发展方向,未来钛合金增材制造技术注定将朝着绿色、经济、稳定、快速的方向发展。


1)从绿色发展方向来看,搅拌摩擦增材制造起步阶段较晚,还处于试验研究阶段,未来进行多金属材料的复合结构增材制造,实现特定结构的特种性能,将是该技术的一个研究方向。


2)对于经济、稳定的发展方向,则需要进行电弧增材的稳定性过程探索,尤其是新型复合电弧增材制造的稳定性研究。


3)对于快速性的发展方向,目前阶段激光/电子束增材制造工艺相对较为成熟,应继续探究激光增材制造的经济适用性,从实际生产中的装配精度到生产制造中的工艺优化过程,进而降低生产成本,为钛合金增材制造结构件大面积的生产应用打下基础。


3. 钛合金棒是什么技术钛合金棒有哪些生产厂家

随着科学技术的发展,人拆缓们使用的建材更加安全和耐用,而且安全性很高。钛合金棒是一种二次加工材料,可用于建筑工程或者室内装饰。这种建材主要的特点就是质量轻,强度高。应用在建设中,是一种非常安全的材料。但大多数人并不知道什么是钛合金棒,下面我们来告诉大家钛合金棒的技术以及生产钛合金棒的厂家有哪些。
一、钛合金棒的技术
1:钛及钛合金棒材的化学成分应符合GB/T3620.1,的规定,需方复验时,化学成分的的允许偏差应符合GB/T3620.2的规定。
2:热加工棒材的直径或边长及其允许偏差应符合表一的规定。
3:热加工后经车(磨)光棒材及冷轧,冷拔棒材的直径允许偏差应符合表二的规定。
4:热加工后经车(磨)光棒材的不圆度应不大于其尺寸公差之半。
5:加工态棒材的不定尺长度为300-6000mm,退火状搭御指态棒材不定尺长度为300-2000mm,定尺或倍尺长度应在不定尺长度范围之内.定尺长度允许偏差为+20mm;倍尺长度还应计入棒材的切口量,每知配一切口量为5mm.定尺或倍尺长度应在合同中注明。
二、钛合金棒有哪些厂家
1.深圳顺和钛电热五金制品有限公司初始成立时间:自1997年主要经营项目:钛原材料及钛制品。其实钛原料包括钛板、钛棒、钛管、钛线等;还有钛制品主要是钛篮、钛螺丝、钛挂具、钛冷却、发热管、连续镀耗材(PP蛇型管)、国标及非标钛制品。
2.兴化市强民金属制品厂坐落于江苏省兴化市张郭镇。我们是从事钛材料及产品的开发、研制、生产的专业型企业。但是钛是一种价值较高的稀有金属,具有比重轻、强度高、耐腐蚀等特点。在广泛应用于航天.医疗.化工.氯碱、海水净化、体育器材等诸多行业,本公司产品畅销全国.远销海外。
3.东莞市日运金属材料有限公司坐落于享有“世界工厂”之称的东莞市,成立于2009年,是金属材料深加工专业型企业。它拥有完善的金属工专用生产设备,并配备了齐全的测试手段。但是东莞市日运主营不锈钢、特殊钢、铜材、铝材、模具钢、钨钢、高速钢等领域,在成为东莞市场主要金属材料供应商的同时。
现在的人们所使用的建筑材料有了很大的发展,安全性也越来越高,以上内容讲的是钛合金棒的相关内容,通过阅读是不是对这种建材更加了解了,钛合金棒现在也可以使用在家装中,对于处于装修中的你有必要了解一下。

4. 对于钛合金,镁合金等低塑型材料的成型可以采用什么成型

钛合金特点: 以钛为基加入其他合金元素组成的合金称作钛合金。钛合金具有密度低、比强度高、抗腐蚀性能好、工艺性能好等优点,是较为理想的航天工程结构材料。
研究范围: 钛合金可分为结构钛合金和耐热钛合金,或α型钛合金、β型钛合金和α+β型钛合金。研究范围还包括钛合金的成形技术、粉末冶金技术、快速凝固技术、钛合金的军用和民用等。
铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学性能:易加工、耐久性高、适用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。
铝合金仍然保持了质轻的特点,但机械性能明显提高。铝合金材料的应用有以下三个方面:一是作为受力构件;二是作为门、窗、管、盖、壳等材料;三是作为装饰和绝热材料。利用铝合金阳极氧化处理后可以进行着色的特点,制成各种装饰品。铝合金板材、型材表面可以进行防腐、轧花、涂装、印刷等二次加工,制成各种装饰板材、型材,作为装饰材料。
说穿了二者都是合金材料,都有质轻强度好的特点,但是钛合金比铝合金的强度好,刚性好,塑性也要好所以在航空材料时选用钛合金

5. 钛合金(TA、TC、TB)铸造性能阐述

钛及钛合金铸件铸造生产工艺

钛及钛合金具有密度低,比强度高,耐腐蚀,线胀系数小,生物相溶性好等优异性能,在航空、航天、远洋运输、化工、冶金、医疗卫生等行业中都是不可缺少的结构材料。工业上最初应用的钛及钛合金制件都是变形件,随着其用量的增多和应用范围的扩大,变形反映出机械加工量大,材料利用率低,生产成本高等弊端,于是铸造技术由此发展起来。钛铸造是比较经济且又容易实现的近成形工艺。钛及钛合金在熔融状态下具有高化学活性,要与常用的各种耐火材料发生化学反应,熔炼和铸造成形难度很大,必须有其专用的造型材料和造型工艺以及专用的熔炼与铸造设备。
一)熔炼工艺:
我国的钛铸造90% 以上熔炼与铸造设备都采用真空自耗电极电弧凝壳炉加离心铸造。坩埚采用水冷铜坩埚,钛液的最大浇注量为500 kg。
自耗电极电弧熔炼法是以钛或钛合金制成的自耗电极为阴极,以水冷铜坩埚为阳极;大电流熔炼,钛电极的熔化速度远远大于钛的凝结速度,熔化了的电极以液滴形式进入坩埚,形成熔池;熔池表面被电弧加热,始终呈液态,底部和坩埚接触的四周受到循环水强制冷却,产生自下而上的结晶。这种方法具有结构简单、维持费用低、大型化容易等优点,缺点是浇注温度难以调节和控制,一停弧后,金属液必须在3~5秒内全部从坩埚倒出,否则温度急剧下降,金属液过热度不高,使得液体流动性和补缩能力较差。自耗电极电弧熔炼对电极的质量要求很高,要求电极内部组织致密。熔炼过程中危险性较大,稍微操作不慎将会出现电弧损坏坩埚,造成坩埚外壁强制冷却的循环水进入坩埚,污染钛液,水蒸气损坏真空泵系统。
二)铸造型腔工艺:
钛合金铸造的造型工艺主要有金属型、机加工石墨型、金属面层陶瓷型壳、氧化物陶瓷型壳。
1)金属型
金属型在钛合金铸造领域中,用作铸型的金属材料主要有铜、钢、铸铁、钨、钼等,与石墨加工型一起统称为硬模系统。由于存在着工艺上的分型等难点,这种方法很难制造出复杂形状的钛铸件,而大多只在特定的铸件上使用。
2)石墨型
机加工石墨型强度高,退让性不好,对液态钛要产生激冷,常使铸件表面产生裂纹和冷隔,生产成本高、生产周期长。石墨孔隙较大,容易吸潮,所以机加工石墨型使用前必须进行除油、除气处理,否则铸件表面氧化现象严重。铸件尺寸比较大,壁比较厚(≥5mm),形状简单,所需数量只有一件或几件。选择机加工石墨型。
3)陶瓷型
(1)金属面层陶瓷型壳采用难熔金属钨粉作为耐火材料,金属钨的熔点高,与钛液接触时化学稳定性好,但是钨粉应具有较高的纯度,杂质含量不能超过规定标准,否则将影响钛铸件的品质。钨面层熔模型壳必需采用溶剂脱蜡,而且在特制的脱蜡槽中进行,对人体健康有很大的伤害,同时也污染环境。钨面层型壳高温焙烧必须在还原性气氛下进行,脱蜡后沉积在型壳外貌上的模料灰分很难烧化,在浇注时很容易与液钛反应,在铸件外貌形成气孔。涂料浆工艺性能不好,悬浮性差,涂料浆寿命短,保存困难,价格昂贵。
(2)氧化物陶瓷型壳是将惰性氧化物做为面层型壳耐火材料。各种氧化物材料按其对熔融钛合金的化学稳定性由低到高排列的顺序如下:SiO2、MgO、Al2O3、CaO、ZrO2、Y2O3、ThO2。ThO2由于具有放射性已基本不用。CaO容易吸潮,所以阻碍了它的应用。现在,用作熔模铸造型壳面层和邻面层的材料主要是Y2O3、ZrO2。
未经稳定化处理的ZrO2不能做为铸钛的造型材料,因为它会发生同素异形体转变,常温下为单斜晶体,高温下为四方晶体,温度更高则转变为立方晶体,单斜晶体转变为四方晶体时,伴随着9%左右的体积变化,使型壳发生开裂。通常采取向ZrO2 中加入4%~8%的CaO,经高温电熔或煅烧后就可以得到稳定的ZrO2 固溶体(也有用Y2O3稳定),工业上大多采用电熔ZrO2。
Y2O3 同ZrO2 一样,必须经过高温稳定化处理后才能用作钛合金造型材料。Y2O3 陶瓷型壳具有热导率低、强度高等优点,浇注出的铸件表面质量好,但Y2O3价格比较昂贵,来源困难。
我国的铸钛工业发展比较快,近几年来新增加了一些铸钛生产厂。目前,全国的铸钛生产厂、研究所已经将近20 个,新增的钛铸造厂也都将产品定位在钛熔模精密铸件上,陕西锦瀚稀贵金属有限公司常年与哈尔滨工业大学、西安交通大学、西北工业大学进行技术交流合作,致力于钛、镍、锆及其合金的精密铸件生产,形成以精密铸造为主、机加工石墨型为辅的生产模式。
随着钛及钛合金铸造技术的发展和日益成熟,加上热等静压(HIP)技术的诞生和在钛合金铸件方面的成功应用,较好的解决了铸件的质量问题,提高了铸件的可靠性。从20世纪80年代以后,钛及钛合金铸件在航空、航天及其他方面的应用每年以20%的速度递增。铸造工艺方面,目前已经由单件铸造发展到几件或几十件零件组合成的大型整体铸件。应用范围已经从早期的受力不大的非关键静止结构件发展到成为航空发动机中的构件组成部分,完全取代了一些变形钛合金、铝合金、钢件。
随着航空发动机对推重比和刚度要求的提高,要求其中的一些关键钛合金构件做成大型复杂薄壁的整件精铸件。一些先进的航空大型涡轮发动机风扇机匣、中介机匣、前机匣、压缩机机匣等都开始使用钛合金精铸件。大型客机的导风管、隔热屏、支架、框架、耳轴、支撑架、刹车壳体、等也都以钛合金精铸件替代原来的构件。
军用飞机方面,钛合金铸件的使用也逐步在增加,如:支座、框架、支架、制动勾、机翼上受力物件、方向舵转动装置支架、变速装置壳件、吊架支撑附件等,实践证实了钛合金铸件在飞机上的应用是成功、可靠的。不仅如此,在生产成本上,由于使用了钛合金铸件,使飞机的某些机构的设计、加工、紧固、装配等都变得比原来未使用钛合金铸件时的机构简化了,从而大大降低了飞机的制造成本。钛合金铸件在航天领域中主要用于导弹、航天飞机飞船、人造卫星。其应用部位主要为:导弹壳体、尾翼、舵翼及连接座等,航天飞机和飞船支架、框架、支座、附件、壳体等,由于钛合金铸件具有高的刚性、轻的重量和光学玻璃相当的热膨胀系数,也应用于人造卫星及其他光学仪器的托框、基座、连结架以及壳体等。
钛及钛合金铸件在日常工业生产方面也有着广泛的应用领域。由于钛及钛合金具有良好的耐腐蚀性能,是化工及其他耐腐蚀工业的不可替代的材料。广泛应用于化工、造纸、石油、制碱、冶金、农药等工业。主要应用产品是以工业纯钛和钛—钯合金为材质的铸造钛泵、钛风机,各种不同类型的阀门,如:截止阀、球阀、旋塞阀、闸阀、蝶阀、止回阀等。
随着人们生活水平的提高和对健康质量要求的提升,钛合金以其高的疲劳强度,和人体超强的亲和力等诸多优点,也被越来越多的用在医疗卫生领域。如:铸造钛合金髋关节修复件、膝关节修复件、人体假肢、口腔修复等等。运动器械领域钛合金精密铸件的用量非常巨大,如:自行车配件,高尔夫球头。尤其是钛合金高尔夫球头市场容量最为巨大,但铸造工艺比较复杂。
目前,钛及钛合金铸件的使用范围还在扩展,更多的应用领域也在相继研究,但还存在着一些问题:1.合金品种少、牌号少,基本上常用的钛合金都是工业纯钛铸件和TC4合金铸件。2.铸件应用范围小,大部分铸件都用在了石油化工行业(工业纯钛铸件),航空、航天领域应用很少,致使我国钛铸造工业的工艺和技术水平难以提高。3.造型工艺普遍落后,大部分厂家都是用石墨型造型工艺(机加工石墨型和捣实石墨型),而熔模精密铸造应用很少。铸造出的铸件表面比较粗糙。4.熔炼设备基本上都为真空自耗电极电弧凝壳炉,熔炼过程危险性较高,熔化金属液过热度不高,造成铸件表面易产生流痕、冷隔等缺陷,薄壁零件成形困难。
为改善我国钛铸造工业生产的落后状态,提高我国铸钛工业的整体工艺和技术水平,还需进行以下几方面的研究:1.改进现有的造型工艺,研究新的粘结剂和造型材料,简化工艺,缩短生产周期,降低生产成本。2.研究和发展新的熔炼和铸造设备及其技术,提高金属液的过热度,改善和提高铸造钛液的流动性和充型补缩能力,为研制大型复杂薄壁整体精铸件创造有利条件。3.进一步扩大计算机模拟凝固技术在钛合金铸造中的应用,以提高铸件质量,减小铸件的废品率。4.研究和发展钛合金铸件的各种热处理工艺和热化学处理技术,以改善钛合金铸件的微观组织结构,提高铸件的力学性能。5.熔模铸造只能生产中小型铸件,应寻求一种生产更大型、更净形、更高效铸件的造型工艺,提高钛合金铸件的生产能力。

6. 钛合金丝加工工艺有那些

钛及钛合金丝由于具有良好的耐蚀性、比强度高、无磁性、与人体的亲和性好和形状记忆功能等特点, 因而不但广泛应用于航空航天等高技术领域, 而且正越来越多地进入各种民用领域。例如在航天领域广泛应用的钛合金丝紧固件, 不仅可以达到减重、耐腐蚀的目的, 而且是钛合金、碳纤维复合材料等结构件必需的连接件;汽车领域采用钛合金丝制成的弹簧, 同钢弹簧相比, 可减重60%~70%;医疗领域采用的钛合金丝由于具有无毒、质轻、耐生物腐蚀及良好的生物相容性等特性而受到医生及患者的青睐;在海水养殖方面, 用钛丝织成的养殖网使用15 年后仍毫无损坏。
钛及钛合金属于难加工材料, 由于钛的屈强比较高, 一般为0.70~0.95, 弹性较好, 变形抗力大, 而其弹性模量相对较低, 故加工时变形抗力大, 回弹性也较严重;而且在加工过程中的粘着问题对制品的表面质量也产生了极为恶劣的影响。目前, 钛合金丝材的制备工艺通过不断改进、完善,并采用各种新兴技术使钛合金丝材产品的质量迅速提高, 种类不断增加, 应用领域进一步扩大。拉拔仍是现今生产钛合金丝所采用的最普遍方法,通常丝材的生产工艺流程为: 原料→铸锭熔炼→锻造→轧制→拉拔→热处理→检验→成品。本文以丝材的生产工艺流程为主线, 重点介绍丝材的拉伸工艺, 简单介绍丝坯的制备工艺(熔炼、锻造、轧制)以及丝材加工技术。
1 丝坯制备工艺
1.1 熔炼工艺
钛是非常活泼的金属, 在液态下与氧、氮、氢及碳的反应相当快, 因此钛合金熔炼必须在较高的真空度或惰性气体(Ar 或Ne)保护下进行。熔炼技术主要有真空自耗电极电弧炉熔炼、真空自耗电极凝壳炉熔炼、电子束冷床炉熔炼、等离子冷床炉熔炼、真空感应炉熔炼等。从耗电量、熔化速度、成本技术经济指标对比来看, 前两种仍是目前最经济适用的熔炼方法。但真空电弧熔炼对消除钛合金中高密度夹杂和低密度夹杂的能力有限, 而冷床炉熔炼在这方面有独特的优势。熔炼铸锭的质量将影响后续加工工艺以及成品质量, 可通过精选原材料, 选择合理的熔炼工艺参数(熔炼电流、电弧电压、真空度、漏气率、冷却速度、搅拌磁场强度), 严格控制工艺过程, 得到高质量的铸锭。由于丝材尺寸较小, 加工工艺比较复杂, 对合金内部冶金缺陷(偏析、夹杂)的敏感性增加, 因此熔炼工艺对精确控制成分, 减少合金中的杂质含量, 确保丝材优良的性能非常关键。
1.2 锻造工艺
锻造的目的是改善组织、提高金属的综合性能, 为轧制工序提供坯料。其工序基本流程为: 铸锭→加热→开坯锻造→冷却→表面清理→变形坯料→加热→锻棒→检验→成品。
铸锭和变形坯料的加热应选择合适的加热温度、加热速度和加热时间, 并控制好炉内气氛, 才能保证产品质量。加热温度应选择变形塑性好、锻件质量高、变形抗力低的温度范围。铸锭的开坯加热是在(α+β)/β相变点以上100~200℃(β钛合金除外)的范围内; 经过锻造变形的坯料, 粗大的铸造组织已得到一定程度的破碎, 内部组织得到改善, 塑性提高, 因此再锻造加热温度可随退火次数增加而逐渐降低; 成品前的锻造加热, 为防止β脆性的发生, 获得良好的组织及综合性能, 对于α合金和α+β合金应在相变点以下的温度进行, 对于β合金, 实际上是在β区加热和锻造的。由于钛的导热系数低, 在室温下为0.0397K/cm·s·℃, 约是中碳钢的1/4, 在高温时却又相近。因此, 在较低温度加热时应采用慢速, 避免加热过程中表层与中心层形成很大温度差。在高温时, 钛的导热系数增加, 可采用稍快的速度加热。
锻造加工中, 变形温度、变形量以及变形速度对锻件质量有重要的影响, 必须正确控制。如前所说, 一般将锻前的铸锭加热到相变点以上, 因为在此温度下变形抗力低、塑性高, 但若铸锭开坯的变形量过低, 铸态组织将不能得到有效地破碎, 其性能较差, 也将直接影响到后续加工。锻造过程中,若变形量选择不当将严重影响合金的组织与性能。如TC4 合金, 当加热温度高于相变点之上, 而变形量不够大时, 往往得到粗大的片状或针状α间β组织, 也称粗大魏氏组织。这种组织的强度变化不大, 但塑性显著下降。当变形量增大时则出现歪扭程度不同的条状α+β组织, 称为网篮状组织。这种组织的高温性能和断裂韧性有所改善, 而塑性有所下降。应当选择合适的变形量, 得到较细小的具有一定量的等轴初生α加转变的β组织。这种组织的综合性能较好。变形速度对锻件质量也有很重要的影响, 当变形速度过快时, 不仅使变形抗力提高, 而且变形热效应使锻件局部或整体温度过高, 得到的锻件组织和综合性能较差。最后须指出的是: 变形温度、变形速度和变形量绝不是孤立的影响锻件的质量。例如加热温度稍高, 但是用足够大的变形量和较低的变形速度也可以得到较好的组织和性能。
1.3 轧制工艺
轧制加工主要为丝材拉伸提供丝坯, 进一步改善合金组织, 提高金属的综合性能。同锻造工艺一样, 对丝材的组织以及表面质量都有重要的影响。其主要工艺参数有: 加热温度、轧制速度和热轧加工率。
(1) 加热温度
经锻造加工后, 坯料组织均匀性和致密性已经大大提高, 故加热温度可略低于锻造温度。α+β型合金的轧前加热温度一般都稍低于(α+β)/β相变温度, 即在(α+β)相区进行加热, 使轧制过程在(α+β)相区完成, 保证产品的组织性能较好; α型合金的加热温度也在(α+β)相区内, 此时热加工性能良好且室温性能较好; β型合金的加热温度在高于β相变转变温度以上进行, 使其变形在β相区完成, 此时合金的变形抗力小、塑性较好。不同的加热温度对合金的组织性能有很大影响, 如对TC9 棒材在1050 ℃轧制时, 由于其轧制温度在β转变温度以上, 得到的是针状组织, 性能较差。在α+β相区(980 ℃以下)轧制时, 得到的是等轴组织, 其性能较好。
(2) 轧制速度
目前, 钛及其合金轧制时, 由于产量不大, 钛制品长度较短, 大多采用手工操作, 所以不适宜高速轧制。而且轧速过快将造成轧件快速升温, 影响最终产品组织性能。理论计算表明: 轧制速度大于12m/s后, 轧件升温与轧制速度成正比增加; 当轧制速度大于30m/s 时, 终轧温度与加热温度无关。
(3) 热轧加工率
由于变形量的不同, 合金的组织和性能有明显的差别。如在920 ℃下热轧的TC4 棒材, 在28%变形量下轧制, 其组织基本上是α相被β相网格分割成等轴状, 这种组织性能较差;在变形量为44%时, β相网格已被破碎, α相粒度较大, 这种组织性能也较差; 在变形量为66%~78%时, 有大致相同的组织, 以α相为基体, 加上细小分散的α+β组织, 这种组织性能较好。
为充分加工与细化组织, 提高材料性能, 在20世纪70年代,发明了步进轧制工艺,它是一种将轧制和锻造两种变形特点结合在一起的加工方式, 具有锻造的大变形和轧制的高速度等特点。借鉴国外少数先进国家丝材的制备工艺流程为:铸锭→开坯锻造→热连轧成线材。秦伯祥等人研究了采用合金钢热连轧机组, 生产大卷重10mm纯钛高速线材工艺, 并对产品组织、性能、外形、尺寸公差进行了分析讨论, 研究表明, 用该方法生产的产品力学性能良好, 组织均匀一致, 而且表面质量良好。
2 拉伸工艺
2.1 拉伸温度
对冷加工性能差的钛合金常用热拉伸进行加工, 拉伸温度对丝材的组织、性能、间隙元素含量以及表面质量均有重要影响。朱恩科等人对Ti2Cu钛合金丝材拉伸方法的研究结果表明, Ti2Cu 钛合金丝材不适宜冷拉伸, 而热拉伸方法能够顺利拉制出合格的Ti2Cu 钛合金丝材。在拉伸过程中C、O、N 和H 的增加量, 可以通过碱、酸洗和真空退火消除。图1 为在冷拉伸与热拉伸下Ti2Cu 钛合金丝材的拉伸性能,可以看出,冷拉伸时,丝材的抗拉强度随直径减小而增加, 伸长率随直径减小而迅速降低。热拉伸在8mm~6.19mm区间抗拉强度随直径减小迅速增加, 伸长率显著下降, 这是由于只发生了部分再结晶, 硬化作用大于软化作用; 在6.19 mm~1.15mm 区间抗拉强度和伸长率基本保持不变, 这是由于变形造成的硬化和回复再结晶引起的软化作用达到了动态平衡。
2.2 拉伸道次加工率
热拉伸时, 道次加工率的大小主要取决于加工温度和丝材直径。对于在室温下的冷拉伸, 道次加工率主要取决于氧化、涂层的质量和润滑剂的好坏。表1为室温下拉伸时, 随直径变化道次加工率分配的一般规范。
2.3 拉伸应力
在拉伸时, 拉伸应力应小于被拉出金属材料的屈服强度, 这是实现拉伸过程的基本条件。影响拉伸应力的因素很多, 如拉伸温度、拉伸速度、加工率以及模具的圆锥角等等。加工率的增加、拉伸温度的降低、圆锥角过大或过小都将引起拉伸应力的增大; 在直线拉伸时, 拉伸速度对拉伸应力无显著改变, 而在丝材以直线式通过模孔后向牵引绞盘上缠绕时, 拉伸速度超过一定范围将引起拉伸应力的增大。为减小拉伸过程中的拉伸应力,可通过润滑、减小变形量、提高金属变形塑性等方法。为此, 人们研究了多种加工技术, 其中包括辊模拉伸、超声振动拉伸等方法。
2.4 拉伸润滑
由于钛合金拉伸时具有粘附模具的倾向, 造成拉丝困难, 因此除了必须采用良好的润滑剂之外, 还应采取涂层、氧化等其他增强润滑措施。钛合金拉伸前大多进行氧化、涂层处理。采用的涂料有石墨乳、盐石灰、钙基涂层等等, 选择涂层的依据是不仅与所加工的丝材要结合紧密, 与润滑剂之间要有良好的浸润性, 而且要便于清除。拉伸工艺条件不同, 使用的润滑剂也不相同。在钛丝拉伸工艺中, 采用的润滑剂有工业皂粉、石墨乳以及肥皂粉与其他材料的混合物, 应选择与涂层有良好浸润性、热稳定性较好的润滑剂。如在TB2 钛合金丝材加工中, 涂层选择钙基涂层, 辅以自制润滑剂(HTK-SM), 可以获得令人满意的丝材表面。为增强润滑效果, 还常采用增压模来提高丝材的表面质量。
2.5 拉伸模
拉丝模具材质主要有硬质合金、天然金刚石、合成金刚石、聚晶金刚石。细丝生产中常用单晶天然金刚石模。天然金刚石模具虽然造价高, 但经久耐用, 尺寸变化小, 不易出现粘拉磨损、丝材划伤等。为使待加工的丝材顺利通过模具, 实现变形的目的, 形成所需的规格尺寸, 要求加工后的模具形状有利于润滑并减少断丝现象, 有利于产生的变形热量散发得快。由于经过一段时间的拉伸,模具表面发生磨损现象, 即表面因摩擦、撕裂等使模具表面有物质脱落, 会因此划伤丝材表面。因此需要提高模具光洁度, 减少模具缺陷, 加强对模
具的管理控制。
2.6 表面处理
在丝材拉伸过程中, 表面处理也是影响丝材表面质量及组织性能的影响因素。其方式有酸洗、机械抛光、电解抛光、磷化、氧化、电镀等。西北有色金属研究院与有研亿金新材料股份有限公司分别对钛钽合金丝与钛镍合金丝进行了表面处理的研究, 结果表明, 酸洗、机械抛光与电解抛光拉伸试样均表现为韧性断裂, 但电解抛光由于减少了试样表面裂纹源而有效改善了钛镍合金丝材的力学性能, 而酸洗由于减少了表面夹杂物对拉伸的影响, 表现出了比机械抛光更好的综合性能。磷化、氧化处理由于其磷化层和氧化层具有较高的硬度, 可以有效地保证丝材拉伸过程中表面不被划伤, 但在拉伸过程中会出现表面和心部变形不协调性, 容易在表面出现裂纹, 导致材料断裂。电镀后的丝材虽然表面光洁, 但由于易发生氢脆现象, 试样表现为脆性断裂, 材料的力学性能显著降低。
2.7 热处理工艺
钛及钛合金丝热处理时应用最多的是退火,包括中间退火和成品退火, 其目的是提高丝材继续拉伸的加工塑性和达到所要求的成品性能。在制定退火工艺时, 不仅要考虑生产的具体条件, 更重要的应考虑金属的力学性能与变形程度、退火温度之间的关系。如工业纯钛, 随着加工率的增加, 伸长率下降, 而抗拉强度升高, 说明冷加工硬化快, 因此必须进行中间退火。丝材成品的退火温度应根据所要求的成品性能来选择, 以达到最佳的性能匹配。如Ti-2Al-2.5Zr 丝材的优选真空退火温度在700~850 ℃, 在这区间内, 伸长率和抗拉性能均能达到丝材的要求。表2与表3为钛及钛合金丝的一般退火规范, 可以看出, 丝材的退火制度还应考虑丝材的尺寸。实际应用中, 应根据合金成分以及加工工艺, 进行试验研究, 来选择最佳退火工艺。
除退火工艺外, 为达到各种用途所需要的性能, 还常常需要进行固溶时效等热处理。如眼镜架用Ti-22V-4Al 合金丝, 经780℃×30min 退火处理, 其组织均匀, 伸长率达20%以上; 再经520℃×4 h 时效处理, 维氏硬度达到2800MPa, 可达到眼镜架用丝材对材料硬度的技术要求。
3 加工技术
传统的固定模拉伸(即常规拉伸)有着本身固有的缺陷, 其突出问题是模具与变形金属接触面的摩擦以及伴随产生的热效应。为此, 人们发明了多种加工技术来解决上述问题。
(1) 辊模拉伸: 该技术结合了传统的轧制与拉伸的特点, 减少了拉拔力, 增加了道次加工率,降低了加工硬化程度。由于辊模拉伸是在由非传动的、自由旋转的辊轮组成的孔型中拉伸, 将固定模拉伸时材料与模孔的大部分滑动摩擦转变为非常小的滚动摩擦, 从而大幅度减小拉伸摩擦力。辊模拉伸的缺点是尺寸精度没有固定模拉伸高, 适用于粗拉丝, 而在细拉丝中用固定模拉伸进行精整。
(2) 超声振动拉伸: 该方法是从20世纪50年代发展起来的,拉伸时,对拉伸模施以超声振动,可以有效降低拉伸力, 提高道次加工率。
(3) 无模拉伸: 该工艺是采用感应线圈或激光使丝材局部加热软化, 并施加张力使丝材变细。其优点是不需要拉伸模和润滑剂, 变形率大, 效率高, 缺点是成品尺寸均匀性差, 质量不稳定。
(4) 增压模拉伸: 该工艺是指在拉伸模前安装增压喷嘴装置, 在丝材拉伸时, 能造成自动增压强制润滑效果的方法。其优点是断丝频率减少4/5、拉丝模寿命提高20 倍以上、改善表面质量等。
(5) 镀层- 包套集束拉伸: 该方法首先在钛丝表面镀一层低碳钢, 再将镀好的钛丝集束装入低碳钢管内, 然后进行集束拉伸加工并进行中间退火, 加工到最终尺寸后, 用硫酸酸洗将低碳钢包套和镀层除去。其优点是效率高、生产成本低。
(6) 包套- 碎屑挤压: 该工艺是日本东北大学开发的, 主要用于TiNi 形状记忆合金丝的加工,可提高产品质量、降低生产成本。首先通过包覆轧制制备由不同金属片组成的多层复合片材, 各种金属层的厚度比取决于所确定的化学成分, 然后把轧成的包覆片切成碎屑, 将切成的碎屑装填到容器中制成坯料, 并将坯料挤压成细棒, 接着再加工成细丝, 最后通过热扩散处理, 将复合丝转化成想要得到的金属间化合物丝材。
(7) 四辊丝材轧机连轧生产丝材: 这种轧机是由四个轧辊组成一个圆的孔形, 工作时由一个主动辊带动另外三个辊转动。多个这样的机架组成连轧机组可进行钛合金丝材的生产, 从而大幅度提高了丝材的生产率和成品率。
4 结语
钛及钛合金丝材应用广泛, 但其昂贵的价格是阻碍其应用的主要障碍, 需要开发并普及丝材制备新工艺, 以降低丝材加工成本。国外对丝材加工技术研究报道较多, 并且采用了很多新技术,因此国外的钛合金丝材产品质量好、规格多。而国内钛合金丝材生产技术仍然较落后, 生产流程长、效率低、成本高是目前需要解决的问题。因此我国应加大对钛合金丝材加工的研究投入, 尽快提高在该领域的技术水平和装备水平, 生产出质优价廉的钛合金丝材产品, 以适应市场的需求。

7. 钛合金性能有哪些

1,密度低 仅为钢的60%
2,比强度高 在各种金属材料中,钛的比强度几乎是最高的
3,弹性模量小 仅为钢的50%,且抗疲劳强度大
4,耐热性好 可在200~650℃下长时间工作,适合做高温部件
5,热胀系数小 是不锈钢、铝材的50%
6,耐蚀性能好 耐蚀性优于铝、镁等不锈钢
7,抗冻性好 在零下100℃的环境中也不会产生低温脆性;
8,成形性好 可通过冲压、热锻、粉末冶金、精密铸造等方法制造各种形状的零部件;
9,装饰性好 通过氧化处理,可形成色彩鲜艳的各种装饰材料。

8. 钛合金有什么优良性能

以钛为基加入其他合金元素组成的合金称作钛合金。钛合金具有密度低、比强度高、抗腐蚀性能好、工艺性能好等优点,是较为理想的航天工程结构材料。

研究范围:
钛合金可分为结构钛合金和耐热钛合金,或α型钛合金、β型钛合金和α+β型钛合金。研究范围还包括钛合金的成形技术、粉末冶金技术、快速凝固技术、钛合金的军用和民用等。

应用:
钛合金是一种新型结构材料,它具有优异的综合性能,如密度小(~4.5g cm-3),比强度和比断裂韧性高,疲劳强度和抗裂纹扩展能力好,低温韧性良好,抗蚀性能优异,某些钛合金的最高工作温度为550ºC,预期可达700ºC。因此它在航空、航天、化工、造船等工业部门获得日益广泛的应用,发展迅猛。轻合金、钢等的(σ0.2/密度)与温度的关系,钛合金的比强高于其他轻金属、钢和镍合金,并且这一优势可以保持到500ºC左右,因此某些钛合金适于制造燃气轮机部件。钛产量中约80%用于航空和宇航工业。例如美国的B-1轰炸机的机体结构材料中,钛合金约占21%,主要用于制造机身、机翼、蒙皮和承力构件。F-15战斗机的机体结构材料,钛合金用量达7000kg ,约占结构重量的34%。波音757客机的结构件,钛合金约占5%,用量达3640 kg。麦克唐纳 道格拉斯(Mc-Donnell-Dounlas)公司生产的DC10飞机,钛合金用量达5500kg,占结构重量的10%以上。在化学和一般工程领域的钛用量:美国约占其产量的15%,欧洲约占40%。由于钛及其合金的优异抗蚀性能,良好的力学性能,以及合格的组织相容性,使它用于制作假体装置等生物材料。

特点:
钛金属的密度较小,为4.5g/cm3,仅为铁的60%,通常与铝、镁等被称为轻金属,其相应的钛合金、铝合金、镁合金则称为轻合金。世界上许多国家都认识到钛合金材料的重要性,相继对钛合金材料进行研究开发,并且得到了实际应用。 钛是二十世纪五十年代发展起来的一种重要的结构金属,钛合金因具有比强度高、耐蚀性好、耐热性高、易焊接等特点而被广泛用于各个领域,尤其是强度高、易焊接性能有利于高尔夫杆头的制造。
第一个实用的钛合金是1954年美国研制成功的Ti-6Al(铝)-4V(矾)合金。Ti-6Al-4V合金在耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性方面均达到较好水平。Ti-6Al-4V合金使用量已占全部钛合金的75~85%。许多其它合金可以看作是Ti-6Al-4V合金的改型。 目前,世界上已研制出的钛合金有数百种,最著名的合金有二十至三十种,例如,有Ti-6Al-4V</SPAN>、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、Ti-811、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1100、BT9、BT20、IMI829、IMI834等;用于球杆制造的有10-2-3,SP700,15-3-3-3(通常所说的β钛),22-4,DAT51。
钛合金可以分为α、α+β、β型合金及钛铝金属间化合物(TixAl,此处x=1或3)四类。下表列出了四类典型钛合金及特点。
类别

典型合金

特点
α

Ti-5Al-2.5Sn
Ti-6Al-2Sn-4Zr-2Mo

强韧性一般,焊接性能好
抗氧化强,蠕变强度较高
较少应用在高尔夫球刊刊头制造上

α+β

Ti-6Al-4V
Ti-6Al-2Sn-4Zr-6Mo

强韧性中上,可热化处理强,可焊
疲劳性能好,多应用于铸造刊头
如铁杆、球道木等
β

Ti-13V-11Cr-3Al
Sp700
Ti-15va-3Cr-3Al-3Ni

强度高,热处理强化能力强
可锻性及冷成型性能好
可适用多种焊接方式
TixAl

Ti3Al(α2)及TiAl(Y0

使用温度渴望达到900度,但室温塑韧性差

阅读全文

与钛合金成型技术有哪些相关的资料

热点内容
模具费用为什么那么高 浏览:855
模具用英文怎么读 浏览:267
塑料桶模具开发多少钱 浏览:369
钢筋工一天能做多少平米 浏览:473
创意不锈钢加工店怎么样 浏览:138
钢铁侠的车标是什么 浏览:846
东莞横沥哪里有招模具双头铣 浏览:594
混凝土塑料护栏模具多少钱 浏览:182
不锈钢锅把子带铆钉的松了怎么办 浏览:573
保温钢管下料多少钱 浏览:841
钢铁是怎么锻成的好词 浏览:25
河南钢铁价格多少钱一吨 浏览:798
40x80方管都有多厚的 浏览:991
飘窗大理石台面怎么安装完美无缝 浏览:776
无缝钢管试验检测需要多少样品 浏览:734
无缝线路长度不小于多少 浏览:129
悬臂钢筋代号怎么输入 浏览:340
钢筋伸入梁内多少 浏览:268
铁塔一般用什么钢材 浏览:73
肩锁骨钢板拆后伤口多久愈合 浏览:393