导航:首页 > 合金材料 > 铝镁和铝硅合金如何焊在一起

铝镁和铝硅合金如何焊在一起

发布时间:2024-01-14 21:10:47

Ⅰ 铝镁的焊接工艺及技巧

铝镁合金焊缝中的气孔主要是由氢引起的。氢的来源有:焊丝和板材中溶解的氢及 其表面氧化膜吸附的结晶水;氩气中的氢和湿气;焊接时由于保护不好空气中的氢和水气进入焊 接熔池等。氢在铝的熔点温度下溶解度发生突变,并随温度增加而急增。铝镁合金在焊接时,焊 缝中能否产生气泡首先取决于溶入氢的浓度,在溶入氢的浓度小于0.69 cm/100g 时,形成气泡 的可能性极小。但在实际焊接过程中,由于某些因素控制不严,在电弧高温作用下,溶解于铝中 氢的浓度就会大于0.69 cm/100g,此时气孔的产生主要取决于结晶速度:当结晶速度快到恰好 抑制了气泡的形成,则氢只能饱和固溶于焊缝金属中,而不以气泡形式逸出,气孔就会发生;当 结晶速度足够慢,已形成的氢气泡来得及逸出焊缝溶池时,也不会形成气孔;当结晶速度正好使 气泡能够形成而来不及逸出时便产生气孔。其次铝镁合金的导热性强,在同样的工艺条件下其熔 合区的冷却速度是钢的4~7倍,不利于气泡的浮出,实际冷却条件下是非平衡状态。实际生产中 发现铝镁合金对氢的溶解度较大,对气孔的敏感性比纯铝低,出现的气孔比较少。 弧柱气氛中水分弧柱空间总是或多或少存在一定数量的水分,尤其在潮湿季节或湿度大的环境里进行焊接时,由 弧柱气氛中的水分分解产生的氢,溶入过热的熔融金属中,是焊缝气孔产生的主要原因。 弧柱气氛中的氢形成焊缝的气孔还与其在铝镁合金中溶解度的变化特性有关,如图3-1所示。在 平衡状态下,氢的溶解度沿图中的实线发生变化,在凝固点时可从0.69 mL/100g 突降到 0.036mL/100g,相差约20倍(在钢中只差不到2倍),这就是形成气孔的重要原因之一。况且铝镁 合金的导热性很强,在同样的工艺条件下,熔合区的冷却速度是高强钢的4~7倍,不利于气泡的 浮出,更易促使形成气孔。而在实际的冷却条件下是非平衡状态,溶解度变化沿a 间溶解度差所造成的气泡数量虽然不多,但可能来不及逸出,而在上浮途中被“搁浅”,形成粗大而孤立的“皮下气孔”;同样,若 冷却速度较小,从a 到b’气孔虽然多一些,但可能来得及聚合浮出,在凝固点时,由于溶解度 突变 c’),伴随着凝固过程可在结晶的枝晶前沿形成许多微小气泡,枝晶晶体的交互生长致使气泡的生长受到限制,并且不利于浮出,因而可沿结晶的层撞线形成均布形式的 小气孔,称为“结晶层气孔”。 不同的合金系统,对弧柱气氛中水分的敏感性不同,纯铝对气氛中水分最为敏感。Al-Mg 合金含 Mg 量增高,氢的溶解度和引起气孔的临界分压PH2均随之增大,因而对吸收气氛中水分不太敏感。 相比起来,仅对气氛中水分而言,同样焊接条件下,纯铝焊缝产生气孔的倾向要大些。 不同的焊接方法,对弧柱气氛中水分的敏感性也是不同的。TIG 或MIG 焊接时氢的吸收速率和吸 收数量有明显差别。在MIG 焊接时,焊丝是以细小熔滴形式通过弧柱而落入熔池,由于弧柱温度 最高,且熔滴比面积很大,熔滴金属显然最有利于吸收氢;而TIG 焊接时,主要是熔池金属表面 与气体氢反应,因其比表面积小和熔池温度低于弧柱温度,吸收氢的条件不如MIG 焊时有利。同 时,MIG 焊的熔池深度一般大于TIG 焊时深度,也不利于气泡的浮出。所以,MIG 焊焊接时,在 同样的气氛条件下,焊缝气孔倾向要比TIG 焊时大些。 氧化膜中水分在正常的焊接条件下,对于气氛中的水分已经尽量加以限制,这时,焊丝或工件的氧化膜中所吸 附的水分将是生产焊缝气孔的主要原因。而氧化膜不致密、吸水性强的铝合金,要比氧化膜致密 的纯铝具有更大的气孔倾向。这是因为铝镁合金的氧化膜是由Al2O3和MgO 所构成,而MgO 越多, 形成的氧化膜越不致密,因而更容易吸附水分。 MIG焊接时,焊丝表面氧化膜的作用将具有重要意义。MIG 焊接时,由于熔深较大,工件端 部的氧化膜迅速熔化掉,有利于氧化膜中水分的排除,坡口氧化膜对焊缝气孔的影响就小得多了。 焊丝表面氧化膜的清理情况对焊缝含氢量的影响是比较大的, Al-Mg 合金焊丝,则其影响更显 著。实践表明,在严格限制弧柱气氛水分的MIG 焊接条件下,用Al-Mg 合金焊丝比用纯铝焊丝时 具有较大的气孔倾向。 TIG 焊接时,在熔透不足的情况下,母材坡口根部未除净的氧化膜中所吸附的水分,常常是产生 焊缝气孔的主要原因。这种氧化膜不仅提供了氢的来源,而且能使气泡聚集附着。在刚刚形成熔 池时,如果坡口附近的氧化膜未能完全熔化而残存下来,则氧化膜中水分因受热而分解出氢,并 在氧化膜上萌生出气泡;由于气泡是附着在残留氧化膜上,不容易脱离浮出,而且还因气泡是在 熔化的早期形成的,有条件长大,所以常常造成集中形式的大气孔。这种气孔在焊缝根部有未熔 合是就更严重。坡口端部氧化膜引起的气孔,常常沿着熔合区原坡口边缘分布,且内壁呈氧化色 彩,是其重要特征。由于Al-Mg 合金比纯铝更容易形成疏松而吸水性强的厚氧化膜,所以Al-Mg 合金比纯铝更容易产生这种集中形式的氧化膜气孔。为此,焊接铝镁合金时,焊前必须特别仔细 地清理坡口端部的氧化膜。 顺便提到,母材表面氧化膜也会在近缝区引起“气孔”,主要发现于Al-Mg 合金气焊的条件下, 实际上用气焊火焰沿板表面加热一道后,也能看到这种现象。这种“气孔”往往以表面密集的小 颗粒状的“鼓泡”形式呈现出来,也可认为是“皮下气泡”。关于这种“气孔”的产生机理,还 没有比较合理的解释。 材料特性由于液态铝在高温时能吸收大量的氢,冷却时氢在其中的溶解能力急剧下降,在固态时又几乎不 溶解氢,致使原来溶于液态铝的氢大量析出,形成气泡。同时,因铝及铝合金密度小、导热性很 强,不利于气泡的逸出,因此,铝及铝合金焊接易产生气孔。此外,铝镁合金化学活泼性强,表 面极易形成熔点高的氧化膜Al2O3和MgO,由于MgO 的存在,形成的氧化膜疏松且吸水性强,这 就更难避免焊缝中产生密集气孔。用TIG 焊,虽然负半周瞬间氩离子对氧化膜具有“阴极雾化” 作用,但并不能去除氧化膜中的水分,因而铝镁合金焊接比纯铝具有更大的气孔倾向。 氩气的流量与纯度氩气的流量是影响熔池保护效果的一个重要参数。流量过小,氩气挺度不够,排除周围空气能力 弱,保护效果差。但是流量过大,不仅浪费氩气,而且会引起喷出气流层流区缩短,紊流区扩大, 将空气卷入保护区,反而降低了保护效果,使焊缝易产生气孔。这一点在现场施焊时,往往被忽 视。因此,必须选择合适的氩气流量。氩气流量与喷嘴直径大小有关。氩气的纯度对焊接质量也 有较大的影响。氩气纯度低、杂质多,可增加弧柱气氛中氢的含量,同时也降低“阴极雾化”效 焊接工艺焊件坡口准备、组对方式和焊接工艺参数的选择对防止气孔产生至关重要。焊件组对时根部留有 间隙,可使氧化膜有效地暴露在电弧作用范围内。改变焊接参数可影响气体逸出和溶入熔池条件。 焊接速度过慢,熔池保留时间长,增加氢的溶入量;焊接速度较快,易产生未焊透和未熔合缺陷。 实践证明,采用较快的焊接速度,并配以较大的焊接电流,可有效防止气孔的产生。增大焊接电 流不仅能保证根部熔合,而且能增加电弧对熔池的搅拌作用,有利于根部氧化膜中气泡的浮出, 从而减少气孔的产生。 焊接操作技术掌握熟练的操作技能也是防止气孔的一个重要环节。铝镁合金管道现场焊接位置一般为全位置焊 接,施焊时金属熔池所处空间位置不断改变,操作难度较大。但焊枪与工件表面后倾角不能随熔 池位置的改变而任意改变。若夹角过小,其内侧产生紊流,外侧则氩气挺度不够,气体保护熔池 效果差。水平管仰焊接头部位可采用交叉接头法,以避免接头部位产生密集气孔。此外,钨极伸 出长度过长、电弧过长或不稳等,都可能造成保护气体的污染而使焊缝产生气孔。 其它影响因素除上述因素外,还应注意环境因素等方面的影响。在高湿度的环境下,焊丝或输氩管内壁易吸附 结晶水。因此,环境相对湿度愈低愈好。环境温度低于5C 施焊时要预热。

Ⅱ 铝制品焊接都有哪些方法

铝制品不适合用烙铁+焊锡丝,软钎焊焊接的。
可以用气焊,铝焊丝,焊剂焊接,
交流钨极氩弧焊机焊接。
不受力可以先将铝材表面打磨干净露出金属光泽,再用AB胶粘接。

Ⅲ 铝合金焊接方法及工艺

铝及铝合金焊接
1.铝及铝合金焊接特点
(1)铝空气及焊接极易氧化氧化铝(Al2O3)熔点高、非稳定易除阻碍母材熔化熔合氧化膜比重易浮表面易夹渣、未熔合、未焊透等缺欠铝材表面氧化膜吸附量水易使焊缝产气孔焊接前应采用化或机械进行严格表面清理清除其表面氧化膜焊接程加强保护防止其氧化钨极氩弧焊选用交流电源通阴极清理作用除氧化膜气焊采用除氧化膜焊剂厚板焊接加焊接热量例氦弧热量利用氦气或氩氦混合气体保护或者采用规范熔化极气体保护焊直流接情况需要阴极清理
(2)铝及铝合金热导率比热容均约碳素钢低合金钢两倍铝热导率则奥氏体锈钢十几倍焊接程量热量能迅速传导基体金属内部焊接铝及铝合金能量除消耗于熔化金属熔池外要更热量谓消耗于金属其部位种用能量消耗要比钢焊接更显著获高质量焊接接应尽量采用能量集、功率能源采用预热等工艺措施
(3)铝及铝合金线膨胀系数约碳素钢低合金钢两倍铝凝固体积收缩率较焊件变形应力较需采取预防焊接变形措施铝焊接熔池凝固容易产缩孔、缩松、热裂纹及较高内应力产采用调整焊丝与焊接工艺措施防止热裂纹产耐蚀性允许情况采用铝硅合金焊丝焊接除铝镁合金外铝合金铝硅合金含硅0.5%热裂倾向较随着硅含量增加合金结晶温度范围变流性显著提高收缩率降热裂倾向相应减根据产经验含硅5%~6%产热裂采用SAlSi条(硅含量4.5%~6%)焊丝更抗裂性
(4)铝光、热反射能力较强固、液转态没明显色泽变化焊接操作判断难高温铝强度低支撑熔池困难容易焊穿
(5)铝及铝合金液态能溶解量氢固态几乎溶解氢焊接熔池凝固快速冷却程氢及溢极易形氢气孔弧柱气氛水、焊接材料及母材表面氧化膜吸附水都焊缝氢气重要源氢源要严格控制防止气孔形
(6)合金元素易蒸发、烧损使焊缝性能降
(7)母材基体金属变形强化或固溶效强化焊接热使热影响区强度降
(8)
铝面立晶格没同素异构体加热与冷却程没相变焊缝晶粒易粗能通相变细化晶粒
2.焊接
几乎各种焊接都用于焊接铝及铝合金铝及铝合金各种焊接适应性同各种焊接其各自应用场合气焊焊条电弧焊设备简单、操作便气焊用于焊接质量要求高铝薄板及铸件补焊焊条电弧焊用于铝合金铸件补焊惰性气体保护焊(TIG或MIG)应用广泛铝及铝合金焊接铝及铝合金薄板采用钨极交流氩弧焊或钨极脉冲氩弧焊铝及铝合金厚板采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊熔化极气体保护焊、脉冲熔化极气体保护焊应用越越广泛(氩气或氩/氦混合气)

Ⅳ 铝和铝合金管焊接特点和方法是什么

铝及铝合金熔焊特点:1、有很强的氧化能力。铝与氧的亲和能力很大容易形成版氧化铝阻碍金属良好结权合,已引起夹渣。2、有较大的热导率和比热容。焊接时要用大功率或能量集中的热源,有时还要求预热。3、有热裂倾向。铝的线膨胀系数比铁大一倍,凝固时收缩率比铁大两倍。尤其是焊接高强铝合金时往往在脆性温度区间产生热裂纹。4、容易产生气孔铝及铝合金液体熔池容易吸收气体。5、由于焊接热的作用,使近缝区出现软化现象。在焊接可热处理强化铝合金(硬铝和超硬铝)时尤为严重。
一些措施;常用含硅百分之五的铝硅合金焊丝来解决裂纹问题;采用热能集中的焊接方法(如MIG焊),有利于减少裂纹;在焊接热裂倾向大的铝合金时不宜采用大电流和高焊速。;还要限制氢的来源,选择合适的焊接参数等。
最常用的是钨极氩弧焊。
呵呵,希望对你有用。

Ⅳ 铝合金可以焊接吗

铝合金材质完全可以用气焊焊接的。
铝及铝合金材质,可以用氧乙炔火焰气焊(或 氧丙烷火焰气焊)﹢铝焊丝﹢铝焊剂焊接。根据铝合金具体材质(铝硅合金、铝镁合金 等)选择与母材匹配的焊丝牌号型号。根据母材厚度选择焊丝直径。
厚度低于0.5㎜可以采用两个工件卷边焊,利用火焰能量将两个铝合金工件自熔。焊缝及时添加焊剂保护,祛除焊接过程氧化铝膜。母材焊接以前用丙酮清洗干净。
厚度大于0.5㎜的铝合金,需要焊丝作为焊缝填充物。焊接以前铝焊丝、母材用丙酮清洗干净,焊丝蘸铝焊剂保护。焊接火焰不得离开熔池,熔池温度过高可以太高火焰高度,以免熔池温度过高出现烧穿。

Ⅵ 大家谁有关于铝合金5052的焊接工艺,我万分感谢了啊,急用

铝及铝合金的焊接工艺
铝及铝合金的焊接特点
(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。
(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。
(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi条(硅含量4.5%~6%)焊丝会有更好的抗裂性。
(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。
(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。
(6)合金元素易蒸发、烧损,使焊缝性能下降。
(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。
(8) 铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。
2. 焊接方法
几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)
3.焊接材料
(1)焊丝
铝及铝合金焊丝的选用除考虑良好的焊接工艺性能外,按容器要求应使对接接头的抗拉强度、塑性(通过弯曲试验)达到规定要求,对含镁量超过3%的铝镁合金应满足冲击韧性的要求,对有耐蚀要求的容器,焊接接头的耐蚀性还应达到或接近母材的水平。因而焊丝的选用主要按照下列原则:
1)纯铝焊丝的纯度一般不低于母材;
2)铝合金焊丝的化学成分一般与母材相应或相近;
3)铝合金焊丝中的耐蚀元素(镁、锰、硅等)的含量一般不低于母材;
4)异种铝材焊接时应按耐蚀较高、强度高的母材选择焊丝;
5)不要求耐蚀性的高强度铝合金(热处理强化铝合金)可采用异种成分的焊丝,如抗裂性好的铝硅合金焊丝SAlSi一1等(注意强度可能低于母材)。
(2)保护气体
保护气体为氩气、氦气或其混合气。交流加高频TIG焊时,采用大于99.9%纯氩气,直流正极性焊接宜用氦气。MIG焊时,板厚<25 mm时宜用氩气;板厚25 mm~50 mm时氩气中宜添加10%~35%的氦气;板厚50mm-75mm时氩气中宜添加l0%~35%或50%的氦气;当板厚>75 mm时推荐采用添加50%~75%氦气的氩气。氩气应符合GB/T 4842?995《纯氩》的要求。氩气瓶压低于0.5 MPa后压力不足,不能使用。
(3)钨极
氩弧焊用的钨极材料有纯钨、钍钨、铈钨、锆钨四种。纯钨极的熔点和沸点高,不易熔化挥发,电极烧损及尖端的污染较少,但电子发射能力较差。在纯钨中加入1%~2%氧化钍的电极为钍钨极,电子发射能力强,允许的电流密度高,电弧燃烧较稳定,但钍元素具有一定的放射性,使用时应采取适当的防护措施。在纯钨中加入1.8%~2.2%的氧化铈(杂质≤0.1%)的电极为铈钨极。铈钨极电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的电极。锆钨极可防止电极污染基体金属,尖端易保持半球形,适用于交流焊接。
(4)焊剂 气焊用焊剂为钾、钠、锂、钙等元素的氯化物和氟化物,可去除氧化膜。
4. 焊前准备
(1)焊前清理
铝及铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污,清除质量直接影响焊接工艺与接头质量,如焊缝气孔产生的倾向和力学性能等。常采用化学清洗和机械清理两种方法。
1)化学清洗
化学清洗效率高,质量稳定,适用于清理焊丝及尺寸不大、成批生产的工件。可用浸洗法和擦洗法两种。可用丙酮、汽油、煤油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH溶液碱洗3 min~7 min(纯铝时间稍长但不超过20 min),流动清水冲洗,接着用室温至60℃的30%HNO3溶液酸洗1 min~3 min,流动清水冲洗,风干或低温干燥。
2)机械清理
在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。先用丙酮、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15mm~0.2mm的铜丝刷或不锈钢丝刷子刷,刷到露出金属光泽为止。一般不宜用砂轮或普通砂纸打磨,以免砂粒留在金属表面,焊接时进入熔池产生夹渣等缺陷。另外也可用刮刀、锉刀等清理待焊表面。
工件和焊丝经过清洗和清理后,在存放过程中会重新产生氧化膜,特别是在潮湿环境下,在被酸、碱等蒸气污染的环境中,氧化膜成长得更快。因此,工件和焊丝清洗和清理后到焊接前的存放时间应尽量缩短,在气候潮湿的情况下,一般应在清理后4 h内施焊。清理后如存放时间过长(如超过24 h)应当重新处理。
(2)垫板
铝及铝合金在高温时强度很低,液态铝的流动性能好,在焊接时焊缝金属容易产生下塌现象。为了保证焊透而又不致塌陷,焊接时常采用垫板来托住熔池及附近金属。垫板可采用石墨板、不锈钢板、碳素钢板、铜板或铜棒等。垫板表面开一个圆弧形槽,以保证焊缝反面成型。也可以不加垫板单面焊双面成型,但要求焊接操作熟练或采取对电弧施焊能量严格自动反馈控制等先进工艺措施。
(3)焊前预热 薄、小铝件一般不用预热,厚度10 mm~15 mm时可进行焊前预热,根据不同类型的铝合金预热温度可为100℃~200℃,可用氧一乙炔焰、电炉或喷灯等加热。预热可使焊件减小变形、减少气孔等缺陷。
5.焊后处理
(1)焊后清理
焊后留在焊缝及附近的残存焊剂和焊渣等会破坏铝表面的钝化膜,有时还会腐蚀铝件,应清理干净。形状简单、要求一般的工件可以用热水冲刷或蒸气吹刷等简单方法清理。要求高而形状复杂的铝件,在热水中用硬毛刷刷洗后,再在60℃~80℃左右、浓度为2%~3%的铬酐水溶液或重铬酸钾溶液中浸洗5 min~10 min,并用硬毛刷洗刷,然后在热水中冲刷洗涤,用烘箱烘干,或用热空气吹干,也可自然干燥。
(2)焊后热处理
铝容器一般焊后不要求热处理。如果所用铝材在容器接触的介质条件下确有明显的应力腐蚀敏感性,需要通过焊后热处理以消除较高的焊接应力,来使容器上的应力降低到产生应力腐蚀开裂的临界应力以下,这时应由容器设计文件提出特别要求,才进行焊后消除应力热处理。如需焊后退火热处理,对于纯铝、5052、5086、5154、5454、5A02、5A03、5A06等,推荐温度为345℃;对于2014、2024、3003、3004、5056、5083、5456、6061、6063、2A12、2A24、3A21等,推荐温度为415℃;对于2017、2A11、6A02等,推荐温度为360℃,根据工件大小与要求,退火温度可正向或负向各调20℃~30℃,保温时间可在0.5 h~2 h之间

Ⅶ 焊接铝合金用什么焊条

具体看什么铝合金,不同铝合金可能用不同的焊条。

铝及铝合金焊丝可用于线版轴或纵向切口的权MIG或TIG的焊接加工,按其成分可分为纯铝、铝硅和铝镁焊丝,通过一定方法加工成盘状(卷状)或棒状(直条状)供货,广泛应用于建筑、装饰和设备、冶金、管道、纺纱器具、船舶、钻井装备、火车、汽车、储存罐和压力容器等行业的焊接加工等行业。产品使用注意事项:

1、产品拆封後,在保质期内你可以直接接施焊,不需任何焊前处理。产品出厂包装密封条件下可保存二年以上,拆去包装後在通常大气环境下可保质三个月;

2、产品应置於通风、乾燥及与酸、碱、油等介质隔离的地方存放;

3、产品在运输中应避免摔撞和受潮.以免损坏焊丝盘和影响焊丝质量;

4、焊丝拆去包装后,建议在焊丝上方施加适当的防尘遮盖物;

5、对于超过保存期的焊丝,建议在焊前进行焊丝表面清理;

6、焊接过程中的电弧会刺激你的眼睛,请注意保护。

阅读全文

与铝镁和铝硅合金如何焊在一起相关的资料

热点内容
钢铁狼的爪子怎么断的 浏览:880
立体不锈钢衣架怎么画 浏览:773
安徽富煌钢构实力怎么样 浏览:303
红警怎么打钢铁罩 浏览:567
彩钢板怎么固定插座 浏览:927
积水潭医院拆除钢板多少钱 浏览:316
钢筋锚固中laelaf有什么区别 浏览:659
如何自做水泥花盆的模具 浏览:491
铝方管折弯加工 浏览:886
钢构焊接热胀冷缩怎么处理 浏览:452
430不锈钢是什么样的 浏览:905
铝合金怎么样能变成护手架 浏览:6
用易拉罐怎么做兔子模具 浏览:502
什么铜易焊接 浏览:882
企业钢材库存怎么管理 浏览:517
怎么和钢铁直男说话 浏览:190
不锈钢氧化成分是什么 浏览:277
钢铁研究院怎么样 浏览:85
不锈钢锅放煤气怎么煲饭 浏览:849
计算钢筋看哪些图 浏览:798