A. 在铝合金中超硬铝时效强化效果最好
1.固溶强化
纯铝中加入合金元素,形成铝基固溶体,造成晶格畸变,阻碍了位错的运动,起到固溶强化的作用,可使其强度提高。根据合金化的一般规律,形成无限固溶体或高浓度的固溶体型合金时,不仅能获得高的强度,而且还能获得优良的塑性与良好的压力加工性能。Al-Cu、Al-Mg、Al-Si、Al-Zn、Al-Mn等二元合金一般都能形成有限固溶体,并且均有较大的极限溶解度(见表9-2),因此具有较大的固溶强化效果。
2.时效强化
合金元素对铝的另一种强化作用是通过热处理实现的。但由于铝没有同素异构转变,所以其热处理相变与钢不同。铝合金的热处理强化,主要是由于合金元素在铝合金中有较大的固溶度,且随温度的降低而急剧减小。所以铝合金经加热到某一温度淬火后,可以得到过饱和的铝基固溶体。这种过饱和铝基固溶体放置在室温或加热到某一温度时,其强度和硬度随时间的延长而增高,但塑性、韧性则降低,这个过程称为时效。在室温下进行的时效称为自然时效,在加热条件下进行的时效称为人工时效。时效过程中使铝合金的强度、硬度增高的现象称为时效强化或时效硬化。其强化效果是依靠时效过程中所产生的时效硬化现象来实现的。
3.过剩相强化
如果铝中加入合金元素的数量超过了极限溶解度,则在固溶处理加热时,就有一部分不能溶入固溶体的第二相出现,称为过剩相。在铝合金中,这些过剩相通常是硬而脆的金属间化合物。它们在合金中阻碍位错运动,使合金强化,这称为过剩相强化。在生产中常常采用这种方式来强化铝合金和耐热铝合金。过剩相数量越多,分布越弥散,则强化效果越大。但过剩相太多,则会使强度和塑性都降低。过剩相成分结构越复杂,熔点越高,则高温热稳定性越好。
4.细化组织强化
许多铝合金组织都是由α固溶体和过剩相组成的。若能细化铝合金的组织,包括细化α固溶体或细化过剩相,就可使合金得到强化。
由于铸造铝合金组织比较粗大,所以实际生产中常常利用变质处理的方法来细化合金组织。变质处理是在浇注前在熔融的铝合金中加入占合金重量2~3%的变质剂(常用钠盐混合物:2/3NaF+1/3NaCl),以增加结晶核心,使组织细化。经过变质处理的铝合金可得到细小均匀的共晶体加初生α固溶体组织,从而显著地提高铝合金的强度及塑性。
B. 如何增加铝合金硬度
提高铝合金的硬度:
1.加工强化
加工强化也称冷作硬化,就是金属材料在再结晶温度以下冷变形加工如锻造、压延、拉拔、拉伸等,冷变形时,金属内部位错密度增大,且相互缠结并形成胞状结构,阻碍位错运动。变形度越大位错缠结越严重,变形抗力越大,强度越高。冷变形后强化的程度随变形度、变形温度及材料本身的性质而不同。同一材料在同一温度下冷变形时,变形度越大则强度越高,塑性则越低。
2.固溶强化
在纯铝中添加某些合金元素形成无限固溶体或有限固溶体,不仅能获得高的强度,而且还能获得优良的塑性与良好的压力加工性能。在一般铝合金中固溶强化最常用的合金元素是铜、镁、锰、锌、硅、镍等元素。一般铝的合金化都形成有限的固溶体,如Al-Cu,Al-Mg,Al-Zn,Al-Si,Al-Mn等二元合金均形成有限固溶体,并且都有较大的极限溶解度能起较大的固溶强化效果。
3. 组织强化
在铝合金中添加微量元素以细化晶粒组织是提高铝合金力学性能的另一种重要手段。
变形铝合金中添加微量钛、锆、铍、锶以及稀土元素,它们能形成难熔化合物,在合金结晶时作为非自发晶核,起细化晶粒作用,提高合金的强度和塑性。
4.过剩相强化
当铝中加入的合金元素含水量超过其极限溶解度时,淬火加热时便有一部分不能溶入固溶体的第二相出现称之为过剩相。在铝合金中过剩相多为硬而脆的金属间化合物。它们在合金中起阻碍滑移和位错运动的作用,使强度、硬度提高,而塑性、韧性降低。合金中过剩相的数量愈多,其强化效果愈好,但过剩相多时,由于合金变脆而导致强度、塑性降低。
5.时效强化
铝合金热处理后可以得到过饱和的铝基固溶体。这种过饱和铝基固溶体在室温或加热到某一温度时,其强度和硬度随时间和延长而增高,但塑性降低。这个过程就称时效。时效过程中使合金的强度、硬度增高的现象称为时效强化或时效硬化。
C. 铝合金5083牌号的化学成分
5083铝合金的类超塑性行为
类型: 点击次数:1063
超塑性技术已在工业领域获得了广泛的应用。相关的研究工作也获得了重大进展。根据超塑性产生的机理,超塑性可以分成组织超塑性、相变超塑性和应力诱发超塑性三类。组织超塑性是目前研究和应用最充分的。组织超塑要求材料具有微细晶粒,为此要进行预处理以使材料获得细粒组织。而这种预处理往往比较复杂,提高了生产成本并降低了生产效率。
近年来,研究者发现,在具有粗大晶粒的二元AL-Mg合金中可获得超过300%的伸长率。这种晶粒组织的高伸长率并不是上述超塑性变形的结果,而是溶质原子拖拽或粘性流动控制蠕变的结果。但是,以上研究所采用的合金为高纯度 合金。本文选用工业铝合金5083,研究其在高温下的形变行为及组织,探讨其实际应用的可能性。
1 试验方法
本试验选用AL-Mg系5083合金。成分为AL-5.40 Mg-0.65Mn-0.18 Fe-0.12Si-0.10Zn-0.09Ti0。05Cu,供货状态为2mm厚冷轧板材。将板材加工成拉伸试件后,在320℃保温40min进行退火。在不同速度和应变速率下进行拉伸试验并进行了金相观察。
2 试验结果与讨论
从合金在350、400和500℃下、应变速率1。67X10-4~3。3X10-1/S范围内形变时的伸长率变化来看,温度和应变速率对合金的伸长率影响不显著。表1给出了合金在不同的拉伸条件下的性能数据。由表1可知在温度500~350℃之间,合金在相当宽的应变速率范围内,伸长率在 100%~200%之间变化。即使在1。67X10-1/s这样高的应变速率下伸长率仍可达到180%以上,这在铝合金中的极为罕见。
金相组织观察发现,合金冷轧软化处理后,晶粒尺寸比较粗大,呈等轴状,平均尺寸为30um左右。经过高温拉抻后,晶粒尺寸发生显著变化,表2给出合金经过高温拉伸后不同部位的晶粒尺寸测量结果。
由表2可知,在高温下拉伸会使合金晶粒显著细化。提高应变速率,细化效果增加。而靠近夹持部分的晶粒尺寸同合金的原始晶粒尺寸相似。
综合分析以上试验结果,可以发现,虽然合金在高温拉伸时呈现较高的伸长率,但并不是超塑性形变的结果。主要表现在合金在起始应变速率变化 1000倍范围内保持高伸长率,而性能不像超塑性形变明显受应变速率的影响。其次合金在高温拉伸时,组织发生显著变化,而伸长率变化并不显著。并没有显示出超塑性典型的伸长率对应变速率的依赖性。并且铝合金呈现超塑料性时,晶粒尺寸一般在10~20um时,最佳应变速率范围应为1X10-3~1X10- 4/s。而本文的AL-Mg合金即使在形变时发生晶粒细化,尺寸虽仍在10~20um内,但是在应变速率3。3X10-1~1。67X10-4/S这样宽的范围内,仍然呈现相当高的伸长率,是溶质原子拖拽或粘性流动控制蠕变的结果。
3 结论
AL-Mg系5083合金在温度350~500℃之间,很宽的应变速率范围内呈现较高的伸长率。原始的粒晶组织发生细化。这种强化塑性现象具有较高的应用价值,有待于在实际生产中加以利用。