Ⅰ 炼钢精炼炉原理是什么
炼钢精练炉原理:脱气用的是真空+吹氩手段,调成分用的是吹氩搅拌+加合金+炉渣调整功能,调温度用的是化学升温或电弧加热、感应加热等。
精练炉是热加工行业的一种冶炼设备,多用于黑色冶金中对钢液进行终脱氧和合金化过程的一种冶炼设备。根据冶炼目的不同有不同的分类,常见的有吹氩精练炉,LF精练炉等。
烟气性质
烟气温度是设计精炼炉排烟净化的一个重要数据, 尤其当净化设备采用布袋除尘器时, 由于受滤布耐温条件限制, 进入布袋除尘器烟气温度不宜太高,一般是借混入冷空气来冷却。 如温度过高, 掺入野风量很大, 除尘器及风机容量亦得增大。
由于在结构上采用电极孔与钢包口排烟于一体, 属于炉外排烟的一种方式, 不象炉内排烟系统那样采用水冷管道和烟气冷却系统,以保证进入布袋除尘器的烟气温度不超过使用温度, 如采用涤纶绒布, 则烟气温度不能超过。
因此, 一般情况下,利用排烟罩至除尘器前一段排烟管散热冷却,不采用其它措施。在正常情况下,可以达到降温要求。 为防止钢液出现大沸腾时烟气温度瞬间升高, 而使进入布袋的烟气温度过高把滤布烧坏, 为此,设计时在管道中安装了野风阀和截断阀,当除尘器前烟气温度超过, 即自动打开野风阀掺入野风, 可同时关闭截断阀以保护布袋不致烧坏。
烟尘粒度细,在炉冶炼过程中,其产生的烟尘粒度极细小,不易凝聚, 但附着性强。在烟尘中的粉尘颗粒高。烟尘浓度高,在完成渣料加入,在钢包刚盖上包盖及送电起弧的初期,在化完渣, 加热后期,。烟气有腐蚀性烟气中含有气体,如遇水后, 就有强烈的腐蚀性。
根据上述烟尘特性的分析, 结合具体情况,采用布袋除尘器的途径比较普遍。 因为它效率高、 稳定、 操作管理简单, 除尘效果完全能达到国家的排放标准。通过对钢包精炼炉三个电极孔及钢包口烟尘的收集,可进一步改变现场操作人员的工作环境。
Ⅱ 怎样练成合金
根据所炼钢种的要求把生铁中的含碳量去除到规定范围,并使其它元素的含量减少或增加到规定范围的过程。简单地说,是对生铁降碳、去硫磷、调硅锰含量的过程。这一过程基本上是一个氧化过程,是用不同来源的氧(如空气中的氧、纯氧气、铁矿石中的氧)来氧化铁水中的碳、硅、锰等元素。化学反应主要是:
2FeO+Si 2Fe+SiO2
FeO+Mn Fe+MnO
反应生成的一氧化碳很容易从铁水排至炉气中而被除掉。生成的二氧化硅、氧化锰、氧化亚铁互相作用成为炉渣浮在钢水面上。生铁中硫、磷这两种元素在一般情况下对钢是有害的,在炼钢过程中必须尽可能除去。在炼钢炉中加入石灰(CaO),可以去除硫、磷:
2P+5FeO+3CaO 5Fe+Ca2(PO4)2(入渣)
在使碳等元素降到规定范围后,钢水中仍含有大量的氧,是有害的杂质,使钢塑性变坏,轧制时易产生裂纹。故炼钢的最后阶段必须加入脱氧剂(例如锰铁、硅铁和铝等),以除去钢液中多余的氧:
Mn+FeO MnO+Fe
Si+2FeO SiO2+2Fe
Al+3FeO Al2O3+3Fe
同时调整好钢液的成分和温度,达到要求可出钢,把钢水铸成钢锭。
炼钢的方法主要有转炉、电炉和平炉三种。平炉炼钢的主要特点是可搭用较多的废钢(可搭用钢铁料的20~50%的废钢),原料适应性强,但冶炼时间多。我国目前主要采用平炉炼钢。转炉炼钢广泛采用氧气顶吹转炉,生产速度快(1座300吨的转炉吹炼时间不到20分钟,包括辅助时间不超过1小时,而300吨平炉炼1炉钢要7个小时),品种多、质量好,可炼普通钢,也可炼合金钢。电炉炼钢是用电能作热源进行冶炼。可以炼制化学工业需要的不锈耐酸钢,电子工业需要的高牌号硅钢、纯铁,航空工业需要的滚珠钢、耐热钢,机械工业用轴承钢、高速切削工具钢,仪表工业需要的精密合金等。
Ⅲ 炼钢转炉中合金加入量如何确定(不同钢种)
合金加入量的计算
钢水量校核及碳钢、低合金钢的合金加入量计算
A 钢水量校核
实际生产中,由于计量不准,炉料质量波动大或操作的因素(如吹氧铁损、大沸腾跑钢、加铁矿等),会出现钢液的实际重量与计划重量不符,给化学成分的控制及钢的浇铸造成困难。因此,校核钢液的实际重量是正确计算合金加入量的基础。
首先找一个在合金钢中收得率比较稳定的元素,根据其分析增量和计算增量来校对钢液量。计算公式为:
PΔM=PoΔMo 或 P=Po (9-3)
式中:P为钢液的实际重量,Kg; Po为原计划的钢液质量,Kg;ΔM为取样分析校核的元素增量,%;ΔMo为按Po计算校核的元素增量,%。
公式中用镍和钼作为校核元素最为准确,对于不含镍和钼的钢液,也可以用锰元素来校核还原期钢水重量,因为锰受冶炼温度及钢中氧、硫含量的影响较大,所以在氧化过程中或还原初期用锰校核的准确性较差。氧化期钢液的重量校核主要凭经验。
例如:原计划钢液质量为30t,加钼前钼的含量为0.12%,加钼后计算钼的含量为0.26%,实际分析为0.25%。求钢液的实际质量?
解:P=30000×(0.26-0.12)%/(0.25-0.12)%=32307(Kg)
由本例可以看出,钢中钼的含量仅差0.10%,钢液的实际质量就与原计划质量相差2300Kg。然而化学分析往往出现±(0.01%~0.03%)的偏差,这对准确校核钢液质量带来困难。因此,式9-3只适用于理论上的计算。而实际生产中钢液质量的校核一般采用下式计算:
P=GC/ΔM (9-4)
式中:P为钢液的实际重量,Kg;G为校核元素铁合金补加量,Kg;C为校核元素铁合金成分,%;ΔM为取样分析校核元素的增量,%。
例如:往炉中加入钼铁15Kg,钢液中的钼含量由0.2%增到0.25%。已知钼铁中钼的成分为60%。求炉中钢液的实际质量?
解:P=(15×60%)/(0.25-0.20)%=18000(Kg)
例如:冶炼20CrNiA钢,因电子称临时出故障,装入的钢铁料没有称量,由装料工估算装料。试求炉中钢液质量?
解:往炉中加入镍板100Kg,钢液中的镍含量由0.90%增加1.20%,已知镍板成分为99%,则:
P=(100×99%)/(1.20-0.90)%=33000(Kg)
例如:电炉炼钢计划钢液量为50000Kg,还原期加锰铁前,钢液含锰0.25%,加锰铁后,计算含锰量为0.50%,实际分析含锰为0.45%,求实际钢液质量?
解: P=50000×(0.5-0.25)%/(0.45-0.25)%=62500(Kg)
B 碳钢、低合金钢的合金加入量计算
设已知钢水质量为P公斤,合金加入量为G公斤,合金成分为c%,合金收得率为η%,炉内钢水分析成分为b%,则合金加入后的成分a%可用下式表示:
a=(Pb+Gcη)/P+Gη
由上式可得:
G=[P(a-b)]/[(c-a)η]
碳钢、低合金钢由于合金元素含量低,合金加入量少,合金用量对钢液总质量的影响可以忽略不计。合金加入量一般采用下式近似计算:
G=[P(a-b)]/(cη)
式中:G为合金加入量,Kg; P为钢液质量,Kg;a为合金元素控制成分,%; b为炉内元素分析成分,%;c为铁合金中的元素成分,%;η为合金元素的收得率,%。
例如1:冶炼38CrMoAI钢,已知钢水量20吨,炉中残余铝为0.05%,铝锭成分98%,铝的收得率75%,要求成品铝0.95%,需加多少铝锭?
解:铝锭加入量:
G=[20000×(0.95-0.05)%]/(98%×75%)=244.9(Kg)
例如2:冶炼45钢,出钢量为25800Kg,炉内分析锰为0.15%,要求将锰配到0.65%,求需要加入多少含锰为68%的锰铁(锰的收得率按98%计算)?
解:锰铁加入量:
G=[25800×(0.65-0.15)%]/(68%×98%)=193.6(Kg)
验算:[Mn]=(25800×0.15%+193.6×68%×98%)/(25800+193.6)×100%=0.65%
例如3:电弧炉氧化法冶炼20CrMnTi钢,炉料装入料为18.8t,炉料综合收得率为97%,有关计算数据如下,计算锰铁、铬铁、钛铁、硅铁的加入量?
元素名称 Mn Si Cr Ti
控制成分/% 0.95 0.27 1.15 0.07
分析成分/% 0.60 0.10 0.50
合金成分/% 65 75 68 30
元素收得率/% 95 95 95 60
解:炉内钢水量:P=18800×97%=18236(Kg)
合金加入量:
GFe-Mn=[18236×(0.95-0.60)%]/(65%×95%)=103(Kg)
GFe-Si=[18236×(0.27-0.10)%]/(75%×95%)=44(Kg)
GFe-Cr=[18236×(1.15-0.50)%]/(68%×95%)=183(Kg)
GFe-Ti=[18236×0.07%]/(30%×60%)=71(Kg)
验算:
钢水总量P=18236+103+44+183+71=18637(Kg)
[Mn]=(18236×0.60%+103×65%×95%)/18637×100%=0.93%
[Si]=(18236×0.10%+44×75%×95%)/18637×100%=0.27%
[Cr]=(18236×0.5%+183×68%×95%)/18637×100%=1.12%
[Ti]=(71×30%×60%)/18637×100%=0.07%
由上两例的计算结果可以看出,当钢中加入的合金量不大时,计算结果与预定的成分控制相符,如果合金加入量大时会产生偏差。
实际生产中,往往使用高碳铁合金调整钢液成分,通常要首先计算钢水增碳量,然后再计算元素增加量。方法步骤如下:
第一步:根据允许增碳量来计算加入合金量:
G=PΔC/CG
式中:G为铁合金加入量,Kg; P为钢水量,Kg;ΔC为增碳量,%;CG为铁合金含碳量,%。
第二步:根据第一步计算出的铁合金加入量,计算出合金元素成分的增量:ΔM=GCη/P
式中:G为铁合金加入量,Kg;P为钢水量,Kg;ΔM为合金元素的增量,%;C为铁合金中元素成分,%;η为合金元素成分的收得率,%。
第三步:根据上述计算结果,如果元素含量仍低,则需用中、低碳合金补加;如果元素含量超过,说明铁合金加入过多,应按G=[P(a-b)]/(cη)计算。
例如4:冶炼45钢,钢水量50t,吹氧结束终点碳为0.39%,锰为0.05%,现用含锰68%、含碳7.0%的高碳锰铁调整,锰元素收得率为97%,试进行计算?
解:需增碳0.06%,计算出高碳锰铁加入量:
GFe-Mn=(50000×0.06%)/7.0%=428.6(Kg)
计算锰元素的增量:
ΔMn=(428.6×68%×97%)/(50000+428.6)×100%=0.56%
根据计算含锰量为(0.56+0.05)%=0.61%,45钢中锰的标准成分为0.50%~0.80%,所以符合要求。
9.5.2.2 单元高合金钢合金加入量计算
高合金钢由于合金元素含量较高,控制元素成分需要补加较多的合金量,这对钢液的总重量有很大的影响。即使有时合金用量虽然不大,但对元素的控制成分也有影响,所以高合金钢的补加合金元素用公式G=[P(a-b)]/[(c-a)η]计算。这里的高合金钢是指单元合金元素含量大于3%或加上其它合金元素含量的总和大于3.5%的钢种。
例如5:返回吹氧法冶炼3Cr13钢,已知装料量25t,炉料的综合收得率为96%,炉内分析铬的含量为8.5%,铬的控制规格成分为13%,铬铁中铬的成分为65%,铬的收得率为95%。求铬铁补加量?
解:GFe-Si=[25000×96%×(13-8.5)%]/[(65%-13%)×95%]=2186(Kg)
验算:
[Cr]=(25000×96%×8.5%+2186×65%×95%)/(25000×96%+2186×95%)×100%=12.99%
这种方法也称减本身法。由计算得出,铬铁的补加量为2186Kg,并通过验算,符合要求。
例6:返回吹氧法冶炼2Cr13钢,已知钢液重量为30t,炉中分析碳含量为0.15%,铬含量为11.00%,要求碳控制在0.19%,铬控制在13.00%。如果库存铬铁只有高碳铬铁和低碳铬铁两种,其中高碳铬铁的含碳为7.0%、含铬为63%,低碳铬铁的含碳为0.50%、含铬为67%,铬的收得率都是95%。求这两种铬铁各加多少?
解:设高碳铬铁的补加量为xKg,低碳铬铁的补加量为yKg。
碳达到控制成分的平衡为:
0.19%=
铬达到控制成分的平衡为:
13%=
6.81x+0.31y=1200
整理二式得:
46.85x+50.65y=60000
解联立方程得:x≈128;y≈1067
由计算可知,加入高碳铬铁128Kg,低碳铬铁1067Kg,可使钢中含碳量达0.19%,铬含量达13%。
这种计算方法又称纯含量计算法。
Ⅳ 炼钢合金配比计算公式
出钢量*成分中线/合金成分
例如:原计划钢液质量为30t,加钼前钼的含量为0.12%,加钼后计算钼的含量为0.26%,实际分析为0.25%。求钢液的实际质量:
解:P=30000×(0.26-0.12)%/(0.25-0.12)%=32307(Kg)
由本例可以看出,钢中钼的含量仅差0.10%,钢液的实际质量就与原计划质量相差2300Kg。然而化学分析往往出现±(0.01%~0.03%)的偏差,这对准确校核钢液质量带来困难。因此,式9-3只适用于理论上的计算。
(4)电炉炼钢如何调化学合金成分扩展阅读:
(1)去除钢中的气体,减少钢中的发纹、氢致裂纹和层状断裂缺陷等的出现率,从而提高钢材的机械性能和加工性能。
(2)均匀钢液的成分和温度以保证连续铸钢炼铁工艺的顺利进行,得到表面及内部质量优良的铸坯。
(3)精确地控制钢液成分。为了减少钢材机械性能的波动,要求钢中合金元素的含量准确。一般的标准误差为:C±0.01%,Mn、Si、Cr±0.03%;为了精确地控制钢的硬度,要求成分的标准误差为:C±0.01%;Si、Mn、Cr±0.02%.Ni、Mo±0.01%,Al士0.0025%。对成分的这种严格要求只有通过炉外精炼才能达到。
Ⅳ 炼钢时怎样调整锰元素的含量
在转炉炼钢抄里,吹到终点后袭硅锰元素基本是痕迹量了,锰大概在0.07%左右了,习惯上叫七个锰。电炉炼钢锰可以较多保全。用质量分数可以准确的计算岀合金加入量。比如一吨钢增加十个锰,即:吨钢※0.1%=0.1kg,0.1÷(中碳锰合金含75%锰)=0.13333,0.1333÷(把锰加入钢水中会有损耗,叫吸收率,按90%计算)=0.148。即,加入0.148含锰75%的中碳锰铁合金,吸收率控90计算,可以使一吨钢增加0.1%的锰含量。
Ⅵ 炼钢时如何正确加入合金配成分,加入量的计算方法.
合金加入量(t)=(钢种成分规格中限%-终点残余成分%)÷(合金元素含量%×合金元素吸收率%)×钢水量(t)