导航:首页 > 合金材料 > co20基合金显微硬度大概多少

co20基合金显微硬度大概多少

发布时间:2024-10-29 14:23:48

Ⅰ 钴铬钼合金的用途

CoCrMo合金

Ⅱ 如何确定热镀锌板硬度

化学元素对钢性能的影响化学元素对钢性能的影响钢材中都含有各种各样的杂质,杂志含量的多寡,直接影响到钢材的物理化学性质—— 1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当含碳量超过0.23%时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%. 碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性. 2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅.如果钢中含硅量超过0.50-0.60%,硅就算合金元素.硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢.在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%. 硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢.含硅1-4%的低碳钢 ,具有极高的导磁率,用于电器工业做矽钢片.硅量增加,会降低钢的焊接性能. 3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-.50%. 在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%.含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等.锰增高,减弱钢的抗腐蚀能力,降低焊接性能. 4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏.因此通常要求钢中含磷量小于0.045%,优质钢要求更低些. 5、硫(S):硫在通常情况下也是有害元素.使钢产生热脆性,降低钢的延展性和韧性, 在锻造和轧制时造成裂纹.硫对焊接性能也不利,降低耐腐蚀性.所以通常要求硫含量小于 0.055%,优质钢要求小于0.040%.在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢. 6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性.铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素. 7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性.镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力.但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢. 8、 钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变).结构钢中加入钼,能提高机械性能 .还可以抑制合金钢由于火而引起的脆性.在工具钢中可提高红性. 9、钛(Ti):钛是钢中强脱氧剂.它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性.改善焊接性能.在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀. 10、钒(V):钒是钢的优良脱氧剂.钢中加0.5%的钒可细化组织晶粒,提高强度和韧性. 钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力. 11、钨(W):钨熔点高,比重大,是贵生的合金元素.钨与碳形成碳化钨有很高的硬度和耐磨性.在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用. 12、铌(Nb):铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降.在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力.铌可改善焊接性能.在奥氏体不锈钢中加铌,可防止晶间腐蚀现象. 13、钴(Co):钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料. 14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜.铜能提高强度和韧性,特别是大气腐蚀性能.缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低.当铜含量小于 0.50%对焊接性无影响. 15、铝(Al):铝是钢中常用的脱氧剂.钢中加入少量的铝,可细化晶粒,提高冲击韧性 ,如作深冲薄板的08Al钢.铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力.缺点是影响钢的热加工性能、焊接性能和切削性能. 16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度. 17、氮(N):能提高钢的强度,低温韧性和焊接性,增加时效敏感性. 18、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素.这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土.钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能.在犁铧钢中加入稀土,可提高耐磨性. 从上看,应该是锰和钨元素吧,所以要看钢的型号,是什么牌号的合金钢.

Ⅲ 钢硬度表示方法,有多少种怎么表示

硬度有三种,分为:划痕硬度,压入硬度,回跳硬度。

①划痕硬度。主要用于比较不同矿物的软硬程度,方法是选一根一端硬一端软的棒,将被测材料沿棒划过,根据出现划痕的位置确定被测材料的软硬。定性地说,硬物体划出的划痕长,软物体划出的划痕短。

②压入硬度。主要用于金属材料,方法是用一定的载荷将规定的压头压入被测材料,以材料表面局部塑性变形的大小比较被测材料的软硬。由于压头、载荷以及载荷持续时间的不同,压入硬度有多种,主要是布氏硬度、洛氏硬度、维氏硬度和显微硬度等几种。

③回跳硬度。主要用于金属材料,方法是使一特制的小锤从一定高度自由下落冲击被测材料的试样,并以试样在冲击过程中储存(继而释放)应变能的多少(通过小锤的回跳高度测定)确定材料的硬度。

(3)co20基合金显微硬度大概多少扩展阅读

实践证明,金属材料的各种硬度值之间,硬度值与强度值之间具有近似的相应关系。因为硬度值是由起始塑性变形抗力和继续塑性变形抗力决定的,材料的强度越高,塑性变形抗力越高,硬度值也就越高。

压入法(布氏、洛氏、维氏)测量硬度,硬度值表示材料表面抵抗另一物体压入时所引起的塑性变形的能力。

回跳法(肖氏、里氏)测量硬度,硬度值代表金属弹性变形功能的大小。

刻划法测量硬度,硬度值表示金属抵抗表面局部破裂的能力。

硬度测定范围:

HS<100

HBW 3 ~ 660

HRC 20~70 , HRA 20~88, HRB 20~100

HR15N 70~94,HR30N 42~86,HR45N 20~77

HR15T 67~93,HR30T 29~82,HR45T 10~72

HV<4000

另外,天然水中的钙镁含量也用硬度表示.我国规定的硬度是:1L水中含的钙盐,镁盐折合成CaO和MgO的总量相当于10mgCaO(将MgO也换算成CaO)时,其硬度是1°。

Ⅳ 钴基合金的性能

一般钴基高温合金缺少共格的强化相,虽然中温强度低(只有镍基合金的50-75%),但在高于980℃时具有较高的强度、良好的抗热疲劳、抗热腐蚀和耐磨蚀性能,且有较好的焊接性。适于制作航空喷气发动机、工业燃气轮机、舰船燃气轮机的导向叶片和喷嘴导叶以及柴油机喷嘴等。
碳化物强化相 钴基高温合金中最主要的碳化物是 MC﹑M23C6和M6C在铸造钴基合金中,M23C6是缓慢冷却时在晶界和枝晶间析出的。在有些合金中,细小的M23C6能与基体γ形成共晶体。MC碳化物颗粒过大,不能对位错直接产生显着的影响,因而对合金的强化效果不明显,而细小弥散的碳化物则有良好的强化作用。位于晶界上的碳化物(主要是M23C6)能阻止晶界滑移,从而改善持久强度,钴基高温合金HA-31(X-40)的显微组织为弥散的强化相为 (CoCrW)6 C型碳化物。
在某些钴基合金中会出现的拓扑密排相如西格玛相和Laves等是有害的,会使合金变脆。钴基合金较少使用金属间化合物进行强化,因为Co3 (Ti﹐Al)﹑Co3Ta等在高温下不够稳定,但近年来使用金属间化合物进行强化的钴基合金也有所发展。
钴基合金中碳化物的热稳定性较好。温度上升时﹐碳化物集聚长大速度比镍基合金中的γ 相长大速度要慢﹐重新回溶于基体的温度也较高(最高可达1100℃)﹐因此在温度上升时﹐钴基合金的强度下降一般比较缓慢。
钴基合金有很好的抗热腐蚀性能,一般认为,钴基合金在这方面优于镍基合金的原因,是钴的硫化物熔点(如Co-Co4S3共晶,877℃)比镍的硫化物熔点(如Ni-Ni3S2共晶645℃)高,并且硫在钴中的扩散率比在镍中低得多。而且由于大多数钴基合金含铬量比镍基合金高,所以在合金表面能形成抵抗碱金属硫酸盐(如Na2SO4腐蚀的Cr2O3保护层)。但钴基合金抗氧化能力通常比镍基合金低得多。 早期的钴基合金用非真空冶炼和铸造工艺生产。后来研制成的合金,如Mar-M509合金,因含有较多的活性元素锆、硼等,用真空冶炼和真空铸造生产。

Ⅳ 硬度最高的金属依次有哪些

最硬的金属只有一个:铬(莫氏硬度约为9)

铬(Chromium),化学符号Cr,单质为钢灰色金属。元素名回来自于希腊答文,原意为“颜色”,因为铬的化合物都有颜色。自然界不存在游离状态的铬,主要存在于铬铅矿中 。在元素周期表中属 ⅥB族, 铬的原子序数24,原子量51.9961,体心立方晶体,常见化合价为+2、+3和+6。氧化数为6, 5, 4, 3, 2, 1, −1, −2, −4,是硬度最大的金属。

(5)co20基合金显微硬度大概多少扩展阅读:

金属之最

地壳中含量最高的金属元素:铝(含量为7.73%)

人体中含量最高的金属元素:钙(含量为1.5%)

目前世界年产量最高的金属:铁

密度最小的金属:氢(2016年1月英国科学家在爱丁堡大学首次制成金属态氢,氢成为密度最小的金属)

密度最大的金属:锇(22.48×10³㎏/m³)

最软的金属:铯(莫氏硬度约0.5)

导电性最强的金属:银

导热性最强的金属:银

Ⅵ 超高强度钢

超高强度钢
ultrahigh-strength steels
应用于制造承受较高应力结构件的合金钢类,一般屈服强度大于120kgf/mm2、抗拉强度大于140kgf/mm2。
20世纪40年代中期,美国研制成Cr-Mo钢(AISI4130)和Cr-Ni-Mo钢(AISI 4340),经淬火和低温回火后,抗拉强度分别为170和190kgf/mm2。50年代初,在AISI 4340钢的基础上加入Si和V,制成300M,抗拉强度达190~210kgf/mm2。1960年,国际镍公司制成马氏体时效钢,抗拉强度约为180kgf/mm2,断裂韧度高达390kgf/mm帮。70年代,美国在300M基础上降C增Si,改善韧性,发展成HP310钢;在马氏体时效钢的基础上研究成AF1410钢,抗拉强度为170kgf/mm2,断裂韧度达400kgf/mm帮(见断裂韧性试验)。
中国从50年代开始研究和生产超高强度钢,已有多种钢号的产品,主要有SiMnMoV、SiMnCrMoV和加有稀土元素的SiMnCrMoV系列钢,抗拉强度为170~190kgf/mm2,断裂韧度可达250~280kgf/mm帮。
超高强度钢必须具有高的抗拉强度,和保持足够的韧性,还要求比强度(强度与密度之比)大和屈强比(σs/σb)高,以减轻构件的重量,而且要有良好的焊接性和成形性等工艺性能。
类别 按照合金化程度及显微组织,超高强度钢可分为低合金、中合金和高合金超高强度钢三类。在高合金超高强度钢中又有马氏体时效钢和沉淀硬化不锈钢等(见金属的强化)。
低合金超高强度钢 是由调质结构钢发展起来的,含碳量一般在0.3~0.5%,合金元素总含量小于5%,其作用是保证钢的淬透性,提高马氏体的抗回火稳定性和抑制奥氏体晶粒长大,细化钢的显微组织。常用元素有镍、铬、硅、锰、钼、钒等。通常在淬火和低温回火状态下使用,显微组织为回火板条马氏体,具有较高的强度和韧性。如采用等温淬火工艺,可获得下贝氏体组织或下贝氏体与马氏体的混合组织,也可改善韧性。这类钢合金元素含量低,成本低,生产工艺简单,广泛用于制造飞机大梁、起落架构件、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。
中合金超高强度钢 热作模具钢的改型钢,典型钢种有4Cr5MoSiV钢。这类钢的含碳量约0.4%,合金元素总含量约8%,具有较高的淬透性,一般零件经高温奥氏体化后,空冷即可获得马氏体组织,500~550℃回火时,由于碳化物沉淀产生二次硬化效应,而达到较高的强度。这类钢的特点是回火稳定性高,在500℃左右条件下使用,仍有较高的强度,一般用于制造飞机发动机零件。
马氏体时效钢 典型钢种有18Ni马氏体时效钢,含碳小于0.03%,镍约18%,钴8%。根据钼和钛含量不同,钢的屈服强度分别可达到140、175和210kgf/mm2。从820~840℃固溶处理冷却到室温时,转变成微碳Fe-Ni马氏体组织,其韧性较Fe-C马氏体为高,通过450~480℃时效,析出部分共格金属间化合物相(Ni3Ti、Ni3Mo),达到较高的强度。镍可使钢在高温下得到单相奥氏体,并在冷却到室温时转变为单相马氏体,而具有较高的塑性。同时镍也是时效强化元素。钴能使钢的马氏体开始转变温度升高,避免形成大量残留奥氏体。这类钢的特点是强度高,韧性高,屈强比高,焊接性和成形性良好;加工硬化系数小,热处理工艺简单,尺寸稳定性好,常用于制造航空器、航天器构件和冷挤、冷冲模具等。
9 Ni-4Co型超高强度钢 含9%镍使钢固溶强化和提高韧性,加 4%钴的作用在于尽量减少钢中残留奥氏体量,钼和铬是为了产生沉淀硬化效应。含碳 0.20~0.30%时,抗拉强度可达130~160kgf/mm2,断裂韧度达400kgf/mm帮以上。综合性能好,抗应力腐蚀性高,具有良好的工艺性能,常用于航空、航天工业。
沉淀硬化不锈钢 简称PH不锈钢,是在不锈钢的基础上发展起来的具有抗腐蚀性能的超高强度钢。合金元素总含量约为22~25%。按高温固溶处理后冷至室温时显微组织的不同,可分为奥氏体型、半奥氏体型和马氏体型三类。典型钢种有0Cr17Ni7Al和0Cr15Ni7Mo2Al,抗拉强度约为160kgf/mm2。这类钢有良好的耐蚀性、抗氧化性。钢的强化是通过固溶处理、冷处理或形变后再时效,析出弥散沉淀相而实现的。这类钢主要用于制造高应力耐腐蚀的化工设备零件、航空器结构件和高压容器等(见不锈耐酸钢)。
生产工艺 超高强度钢对冶金质量要求高,通常采用电弧炉和电渣重熔冶炼。要求纯度高的钢种,多采用真空感应炉或真空自耗电弧炉冶炼。中、低合金超高强度钢在热处理时应防止脱碳;马氏体时效钢和沉淀硬化不锈钢,可以用普通加热炉固溶处理。焊接时须采用保护气体焊接或采用钨极氩弧焊接。某些含碳较高的(0.4%左右)低合金超高强度钢,焊接后应立即进行去应力退火。

Ⅶ 什么叫硬质合金

硬质合金是以高硬度难熔金属的碳化物(WC、TiC)微米级粉末为主要成分,以钴(Co)或镍(Ni)、钼(Mo)为粘结剂,在真空炉或氢气还原炉中烧结而成的粉末冶金制品。
ⅣB、ⅤB、ⅥB族金属的碳化物、氮化物、硼化物等,由于硬度和熔点特别高,统称为硬质合金。下面以碳化物为重点来说明硬质含金的结构、特征和应用。
ⅣA、ⅤA、ⅥA族金属与碳形成的金属型碳化物中,由于碳原子半径小,能填充于金属品格的空隙中并保留金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们的组成可以在一定范围内变动(例如碳化钛的组成就在TiC0.5~TiC之间变动),化学式不符合化合价规则。当溶解的碳含量超过某个极限时(例如碳化钛中Ti︰C=1︰1),晶格型式将发生变化,使原金属晶格转变成另一种形式的金属晶格,这时的间充固溶体叫做间充化合物。
金属型碳化物,尤其是ⅣB、ⅤB、ⅥB族金属碳化物的熔点都在3273K以上,其中碳化铪、碳化钽分别为4160K和4150K,是当前所知道的物质中熔点最高的。大多数碳化物的硬度很大,它们的显微硬度大于1800kg�6�1mm2(显微硬度是硬度表示方法之一,多用于硬质合金和硬质化合物,显微硬度1800kg�6�1mm2相当于莫氏一金刚石一硬度9)。许多碳化物高温下不易分解,抗氧化能力比其组分金属强。碳化钛在所有碳化物中热稳定性最好,是一种非常重要的金属型碳化物。然而,在氧化气氛中,所有碳化物高温下都容易被氧化,可以说这是碳化物的一大弱点。
除碳原子外,氮原子、硼原子也能进入金属晶格的空隙中,形成间充固溶体。它们与间充型碳化物的性质相似,能导电、导热、熔点高、硬度大,同时脆性也大。
硬质合金的基体由两部分组成:一部分是硬化相;另一部分是粘结金属。
硬化相是元素周期表中过渡金属的碳化物,如碳化钨、碳化钛、碳化钽,它们的硬度很高,熔点都在2000℃以上,有的甚至超过4000℃。另外,过渡金属的氮化物、硼化物、硅化物也有类似的特性,也可以充当硬质合金中的硬化相。硬化相的存在决定了合金具有极高硬度和耐磨性。
粘结金属一般是铁族金属,常用的是钴和镍。
制造硬质合金时,选用的原料粉末粒度在1~2微米之间,且纯度很高。原料按规定组成比例进行配料,加进酒精或其他介质在湿式球磨机中湿磨,使它们充分混合、粉碎,经干燥、过筛后加入蜡或胶等一类的成型剂,再经过干燥、过筛制得混合料。然后,把混合料制粒、压型,加热到接近粘结金属熔点(1300~1500℃)的时候,硬化相与粘结金属便形成共晶合金。经过冷却,硬化相分布在粘结金属组成的网格里,彼此紧密地联系在一起,形成一个牢固的整体。硬质合金的硬度取决于硬化相含量和晶粒粒度,即硬化相含量越高、晶粒越细,则硬度也越大。硬质合金的韧性由粘结金属决定,粘结金属含量越高,抗弯强度越大。
1923年,德国的施勒特尔往碳化钨粉末中加进10%~20%的钴做粘结剂,发明了碳化钨和钴的新合金,硬度仅次于金刚石,这是世界上人工制成的第一种硬质合金。用这种合金制成的刀具切削钢材时,刀刃会很快磨损,甚至刃口崩裂。1929年美国的施瓦茨科夫在原有成分中加进了一定量的碳化钨和碳化钛的复式碳化物,改善了刀具切削钢材的性能。这是硬质合金发展史上的又一成就。
硬质合金具有硬度高、耐磨、强度和韧性较好、耐热、耐腐蚀等一系列优良性能,特别是它的高硬度和耐磨性,即使在500℃的温度下也基本保持不变,在1000℃时仍有很高的硬度。硬质合金广泛用作刀具材料,如车刀、铣刀、刨刀、钻头、镗刀等,用于切削铸铁、有色金属、塑料、化纤、石墨、玻璃、石材和普通钢材,也可以用来切削耐热钢、不锈钢、高锰钢、工具钢等难加工的材料。现在新型硬质合金刀具的切削速度等于碳素钢的数百倍。
硬质合金还可用来制作凿岩工具、采掘工具、钻探工具、测量量具、耐磨零件、金属磨具、汽缸衬里、精密轴承、喷嘴等。
近二十年来,涂层硬质合金也问世了。1969年瑞典研制成功了碳化钛涂层刀具,刀具的基体是钨钛钴硬质合金或钨钴硬质合金,表面碳化钛涂层的厚度不过几微米,但是与同牌号的合金刀具相比,使用寿命延长了3倍,切削速度提高25%~50%。20世纪70年代已出现第四代涂层工具,可用来切削很难加工的材料。

Ⅷ 金属硬度排名

各种金属的硬度排名:钨,钛,氚,锇,铁,钢,锆,铬,钒,钽,这几种金属的硬度非常高,并且也很稀有。这些金属能够用于生活以及工业,并且在生活中以及工业上是必不可少的金属。

金属的硬度排名:

1、钨

钨是世界十大最坚硬的金属之一,这种物质是在地球上发现的稀有金属,是自然形成的一种金属。在1781年这时候就已经被发现,并且成为了一种新元素。这种金属的燃点非常高,并且沸点也非常高,但是有非常重要的一点,就是带有一定的毒素。

钨是自然界中最硬的金属之一,同时也是具有最高抗拉强度的天然金属,具有高密度(每立方厘米19.25克)和高熔点(3422°C),钨的高熔点使钨成为用于火箭喷嘴等应用的良好材料。但钨较脆,并且在撞击时容易遭到破坏,这点与陶瓷类似,但高纯度钨其脆性会得到改善。

应用范围:钨在钢铁工业中用于制造耐磨的合金钢,也被用于照明设备,航空航天和化工领域。

2、钛

钛本身有光泽度,从外表上观察成银色,并且密度很低,强度却非常的高。不怕海水的腐蚀,一般用于工业生产。这种金属具有一定的友好性,所以能够提供给人类使用。

钛,以其强度著称。尽管在布氏硬度方面,它无法与其他任何一种金属相比,但钛的强度重量比令人印象深刻,几乎是钢的2倍,即使是纯钛,也比许多钢硬,所以钛及其合金(例如:和铁碳的合金、铝钛合金)常用于航空航天工程中,用于航天器板,燃油箱和喷气发动机零件。它也广泛用于造船,腐蚀性环境的管道建设以及用作框架材料。

钛即使在大剂量时也无毒,并且在人体内部不发挥任何自然作用,具有生物相容性,因此它具有许多医疗用途。

3、氚

氚也是新发现的一种金属,非常的稀有。主要出自于美国,中国,斯里兰卡等等地区。这种金属与其他的元素很难分离,有一定的聚合性。

4、锇

锇在所有金属中密度最高,并且也非常的稀有。表面有一定的光泽,不会受到水以及酸的改变。经常会被当作催化剂使用,也会用于工业生产中。

8、铬

铬本身具有很强的光泽,但是非常易碎,表面也是银灰色,具有一定的抛光度与空气结合,不会出现褪色的情况。但是如果在氧气中,那么会存在很大的不稳定性。

铬,是已知最硬的金属,经常被用于制造合金(如不锈钢)。在测量耐划痕性的莫氏(Mohs)标准上它名列前茅。铬的价值不仅在于它的硬度,而且在于它的高耐蚀性,由于铬比铂族金属更容易处理,而且含量也更丰富,因此铬是合金中常用的元素。

铬的莫氏硬度也非常高(8.5,满分10,为钻石),这意味着它可以划伤石英和黄玉的样品,但可以被刚玉划伤。

铬作为一种能够被高度抛光而又不会变色的金属也被高度重视。抛光铬反射近70%的可见光谱,近90%的红外光被反映。

9、钒

钒具有一定的柔软度,非常稀有,韧性很强。表面呈灰白色,大多会用于制作发动机,轴承,齿轮灯的。同时还可以作为药品的辅助元素,发源地是南非以及俄罗斯。

10、钽

钽表面会有氧化膜,在工业上用途比较广泛,经常会用于制作发动机,电容器等等。产地为泰国,刚果,葡萄牙以及加拿大。


阅读全文

与co20基合金显微硬度大概多少相关的资料

热点内容
旋转模具怎么算立方 浏览:867
钢铁雄心4ai缺什么装备 浏览:203
不锈钢保温杯装什么好 浏览:513
广东湛江有哪些钢铁厂 浏览:80
诚信钢材销售部怎么样 浏览:80
镀锌方管多久生锈 浏览:409
冷轧模具用什么料 浏览:438
常州自动焊接机多少钱一台 浏览:949
2乘4方管焊凳子 浏览:845
地磅是什么钢材 浏览:107
wps里如何找钢筋符号 浏览:53
钢铁化学需要什么专业 浏览:955
焊管米换算成吨 浏览:161
为什么选择钢板桩支护 浏览:900
上海镀镍合金哪里买 浏览:886
720焊管封头 浏览:708
钢铁侠讲的是什么时候 浏览:774
两个加热后的不锈钢盆怎么打开 浏览:339
不锈钢锅烧黑烧黄了怎么洗 浏览:854
钢筋水平加强是什么地方的 浏览:998