❶ 鎳鈦合金絲定型處理後還能再進行熱處理么
可以二次處理
❷ 鎳鈦合金怎麼淬火提高硬度
咨詢記錄 · 回答於2021-09-27
❸ 鎳鉻合金的主要性能
上海秉爭實業主營:有色合金金屬材料,鎳基高溫合金、鎳基耐蝕合金、精密合金、、哈氏合金,司太立合金,蒙乃爾合金,特種不銹鋼,銅合金等!
❹ 鎳鈦合金的性能及特性
鎳鈦合金是一種形狀記憶合金,形狀記憶合金是能將自身的塑性變形在某一特定溫度下自動恢復為原始形狀的特種合金,具有良好的可塑性。
鎳鈦合金是一種形狀記憶合金,形狀記憶合金是能將自身的塑性變形在某一特定溫度下自動恢復為原始形狀的特種合金。它的伸縮率在20%以上,疲勞壽命達1*10的7次方,阻尼特性比普通的彈簧高10倍,其耐腐蝕性優於目前最好的醫用不銹鋼,因此可以滿足各類工程和醫學的應用需求,是一種非常優秀的功能材料。
記憶合金除具有獨特的形狀記憶功能外,還具有耐磨損、抗腐蝕、高阻尼和超彈性等優異特點。
(一)鎳鈦合金的相變與性能
顧名思義,鎳鈦合金是由鎳和鈦組成二元合金,由於受到溫度和機械壓力的改變而存在兩種不同的晶體結構相,即奧氏體相和馬氏體相。 鎳鈦合金冷卻時的相變順序為母相(奧氏體相)-R相-馬氏體相。 R相是菱方形,奧氏體是溫度較高(大於同樣地:即奧氏體開始的溫度)的時候,或者去處載荷(外力去除Deactivation)時的狀態,立方體,堅硬。形狀比較穩定。而馬氏體相是溫度相對較低(小於Mf:即馬氏體結束的溫度)或者載入(受到外力活化)時的狀態,六邊形,具有延展性,反復性,不太穩定,較易變形。
(二)鎳鈦合金的特殊性能
1、形狀記憶特性(shape memory) 形狀記憶是當一定形狀的母相由Af溫度以上冷卻到Mf溫度以下形成馬氏體後,將馬氏體在Mf以下溫度形變,經加熱至Af溫度以下,伴隨逆相變,材料會自動恢復其在母相時的形狀。實際上形狀記憶效應是鎳鈦合金的一個由熱誘發的相變過程。
2、超彈性 (superelasticity) 所謂的超彈性是指試樣在外力作用下產生遠大於其彈性極限應變數的應變,在卸載時應變可自動恢復的現象。即在母相狀態下,由於外加應力的作用,導致應力誘發馬氏體相變發生,從而合金錶現出不同於普通材料的力學行為,它的彈性極限遠遠大於普通材料,並且不再遵守胡克定律。和形狀記憶特性相比,超彈性沒有熱參與。總而言之,超彈性是指在一定形變范圍內應力不隨應變的增大而增大,可將超彈性分為線性超彈性和非線性超彈性兩類。前者的應力-應變曲線中應力與應變接近線性關系。非線性超彈性是指在Af以上一定溫度區間內載入和卸載過程中分別發生應力誘發馬氏體相變及其逆相變的結果,因此非線性超彈性也稱相變偽彈性。鎳鈦合金的相變偽彈性可達8%左右。 鎳鈦合金的超彈性可隨著熱處理的條件的變化而改變,當弓絲被加熱到400ºC以上時,超彈性開始下降。
3、口腔內溫度變化敏感性:不銹鋼絲和CoCr合金牙齒矯形絲的矯治力基本不受口腔內溫度的影響。超彈性鎳鈦合金牙齒矯形絲的矯治力隨口腔溫度的變化而變化。當變形量一定時。溫度升高,矯治力增加。一方面,它可以加速牙齒的運動,這是因為口腔內的溫度變化會刺激由於矯治器件造成造成毛細滯息的血流停滯部位的血液流動,從而使得在牙齒移動過程中修復細胞得到充分營養,維持其生機和正常功能。另一方面,正畸醫生無法精確控制或測量口腔環境下的矯治力。
4、抗腐蝕性能:有研究表明鎳鈦絲的抗腐蝕性能與不銹鋼絲相仿
5、抗毒性:鎳鈦形狀記憶合金特殊的化學組成,即這是一種鎳鈦等原子合金,含約50%的鎳,而已知鎳有致癌和促癌作用。一般情況情況下,表面層鈦氧化充當了一種屏障,使Ni-Ti合金具有良好的生物相容性。表面層的TiXOy和TixNiOy能抑制Ni的釋放。
6、柔和的矯治力:目前商業上應用的牙齒矯形金屬絲包括奧氏體不銹鋼絲、鈷-鉻-鎳合金絲、鎳鉻合金絲、澳大利亞合金絲、金合金絲和ß鈦合金絲。關於這些正畸矯正金屬絲在拉伸試驗和三點彎曲試驗條件的載荷-位移曲線。鎳鈦合金的卸載曲線平台最低也最平,說明它最能提供持久柔和的矯治力。
7、良好的減震特性:由於咀嚼及夜磨牙對於弓絲造成的震動越大,對牙根及牙周組織的損害越大。通過不同弓絲衰減實驗的結果研究發現,不銹鋼絲震動的振幅比超彈性鎳鈦絲大,超彈性鎳鈦弓絲初始震動振幅僅為不銹鋼絲的一半,弓絲良好的震動和減震特性對於牙齒的健康很重要,而傳統弓絲如不銹鋼絲,有加重牙根吸收的傾向。
❺ 鎳鈦合金的導電性
一) 鎳鈦合金的相變與性能
顧名思義,鎳鈦合金是由鎳和鈦組成二元合金,由於受到溫度和機械壓力的改變而存在兩種不同的晶體結構相,即奧氏體相和馬氏體相。 鎳鈦合金冷卻時的相變順序為母相(奧氏體相)-R相-馬氏體相。 R相是菱方形,奧氏體是溫度較高(大於同樣地:即奧氏體開始的溫度)的時候,或者去處載荷(外力去除Deactivation)時的狀態,立方體,堅硬。形狀比較穩定。而馬氏體相是溫度相對較低(小於Mf:即馬氏體結束的溫度)或者載入(受到外力活化)時的狀態,六邊形,具有延展性,反復性,不太穩定,較易變形。
(二) 鎳鈦合金的特殊性能
1、形狀記憶特性(shape memory) 形狀記憶是當一定形狀的母相由Af溫度以上冷卻到Mf溫度以下形成馬氏體後,將馬氏體在Mf以下溫度形變,經加熱至Af溫度以下,伴隨逆相變,材料會自動恢復其在母相時的形狀。實際上形狀記憶效應是鎳鈦合金的一個由熱誘發的相變過程。
2、超彈性 (superelastic) 所謂的超彈性是指試樣在外力作用下產生遠大於起彈性極限應變數的應變,在卸載時應變可自動恢復的現象。即在母相狀態下,由於外加應力的作用,導致應力誘發馬氏體相變發生,從而合金錶現出不同於普通材料的力學行為,它的彈性極限遠遠大於普通材料,並且不再遵守虎克定律。和形狀記憶特性相比,超彈性沒有熱參與。總而言之,超彈性是指在一定形變范圍內應力不隨應變的增大而增大,可將超彈性分為線性超彈性和非線性超彈性兩類。前者的應力-應變曲線中應力與應變接近線性關系。非線性超彈性是指在Af以上一定溫度區間內載入和卸載過程中分別發生應力誘發馬氏體相變及其逆相變的結果,因此非線性超彈性也稱相變偽彈性。鎳鈦合金的相變偽彈性可達8%左右。 鎳鈦合金的超彈性可隨著熱處理的條件的變化而改變,當弓絲被加熱到400ºC以上時,超彈性開始下降。
3、抗腐蝕性能:有研究表明鎳鈦絲的抗腐蝕性能與不銹鋼絲相仿
網上找的 自己看 希望給5星
❻ 鎳鈦合金絲怎麼熱處理
溫度:400-550度之間; 時間:看你實際定型出來的顏色來確定;
冷卻方式:水冷或者風冷;
定型設備:不需要真空爐,不然不會出現藍色氧化成;
❼ 熱處理後鎳鈦合金在室溫下變軟了一些,是不是相變溫度升高了
相變溫度是不變的。經過熱處理後,材料的顯微組織和力學性能會有所變化。
❽ 鈦合金的性能
鈦是20世紀50年代發展起來的一種重要的結構金屬,鈦合金因具有比強度高、耐蝕性好、耐熱性高等特點而被廣泛用於各個領域。世界上許多國家都認識到杴合金材料的重要性,相繼對其進行研究開發,並得到了實際應用。
第一個實用的鈦合金是1954年美國研製成功的Ti-6Al-4V合金,由於它的耐熱性、強度、塑性、韌性、成形性、可焊性、耐蝕性和生物相容性均較好,而成為鈦合金工業中的王牌合金,該合金使用量已佔全部鈦合金的75%~85%。其他許多鈦合金都可以看做是Ti-6Al-4V合金的改型。
20世紀50~60年代,主要是發展航空發動機用的高溫鈦合金和機體用的結構鈦合金,70年代開發出一批耐蝕鈦合金,80年代以來,耐蝕鈦合金和高強鈦合金得到進一步發展。耐熱鈦合金的使用溫度已從50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出現,使鈦在發動機的使用部位正由發動機的冷端(風扇和壓氣機)向發動機的熱端(渦輪)方向推進。結構鈦合金向高強、高塑、高強高韌、高模量和高損傷容限方向發展。
另外,20世紀70年代以來,還出現了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形狀記憶合金,並在工程上獲得日益廣泛的應用。
目前,世界上已研製出的鈦合金有數百種,最著名的合金有20~30種,如Ti-6Al-4V、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。
鈦合金可以分為α、α+β、β型合金及鈦鋁金屬間化合物(TixAl,此處x=1)四類。
2. 鈦合金的新進展
近年來,各國正在開發低成本和高性能的新型鈦合金,努力使鈦合金進入具有巨大市場潛力的民用工業領域陽。國內外鈦合金材料的研究新進展主要體現在以下幾方面。
(1)高溫鈦合金。
世界上第一個研製成功的高溫鈦合金是Ti-6Al-4V,使用溫度為300-350℃。隨後相繼研製出使用溫度達400℃的IMI550、BT3-1等合金,以及使用溫度為450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。目前已成功地應用在軍用和民用飛機發動機中的新型高溫鈦合金有.英國的IMI829、IMI834合金;美國的Ti-1100合金;俄羅斯的BT18Y、BT36合金等。表7為部分國家新型高溫鈦合金的最高使用溫度[26]。
近幾年國外把採用快速凝固/粉末冶金技術、纖維或顆粒增強復合材料研製鈦合金作為高溫鈦合金的發展方向,使鈦合金的使用溫度可提高到650℃以上[1,27,29,31]。美國麥道公司採用快速凝固/粉末冶金技術戚功地研製出一種高純度、高緻密性鈦合金,在760℃下其強度相當於目前室溫下使用的鈦合金強度[26]。
(2)鈦鋁化合物為基的鈦合金。
與一般鈦合金相比,鈦鋁化合物為基鈉Ti3Al(α2)和TiAl(γ)金屬間化合物的最大優點是高溫性能好(最高使用溫度分別為816和982℃)、抗氧化能力強、抗蠕變性能好和重量輕(密度僅為鎳基高溫合金的1/2),這些優點使其成為未來航空發動機及飛機結構件最具競爭力的材料[26]。
目前,已有兩個Ti3Al為基的鈦合金Ti-21Nb-14Al和Ti-24Al-14Nb-#v-0.5Mo在美國開始批量生產。其他近年來發展的Ti3Al為基的鈦合金有Ti-24Al-11Nb、Ti25Al-17Nb-1Mo和Ti-25Al-10Nb-3V-1Mo等[29]。TiAl(γ)為基的鈦合金受關注的成分范圍為Ti-(46-52)Al-(1-10)M(at.%),此處M為v、Cr、Mn、Nb、Mn、Mo和W中的至少一種元素。最近,TiAl3為基的鈦合金開始引起注意,如Ti-65Al-10Ni合金[1]。
(3)高強高韌β型鈦合金。
β型鈦合金最早是20世紀50年代中期由美國Crucible公司研製出的B120VCA合金(Ti-13v-11Cr-3Al)。β型鈦合金具有良好的冷熱加工性能,易鍛造,可軋制、焊接,可通過固溶-時效處理獲得較高的機械性能、良好的環境抗力及強度與斷裂韌性的很好配合。新型高強高韌β型鈦合金最具代表性的有以下幾種[26,30]:
Ti1023(Ti-10v-2Fe-#al),該合金與飛機結構件中常用的30CrMnSiA高強度結構鋼性能相當,具有優異的鍛造性能;
Ti153(Ti-15V-3Cr-3Al-3Sn),該合金冷加工性能比工業純鈦還好,時效後的室溫抗拉強度可達1000MPa以上;
β21S(Ti-15Mo-3Al-2.7Nb-0.2Si),該合金是由美國鈦金屬公司Timet分部研製的一種新型抗氧化、超高強鈦合金,具有良好的抗氧化性能,冷熱加工性能優良,可製成厚度為0.064mm的箔材;
日本鋼管公司(NKK)研製成功的SP-700(Ti-4.5Al-3V-2Mo-2Fe)鈦合金,該合金強度高,超塑性延伸率高達2000%,且超塑成形溫度比Ti-6Al-4V低140℃,可取代Ti-6Al-4V合金用超塑成型-擴散連接(SPF/DB)技術製造各種航空航天構件;
俄羅斯研製出的BT-22(TI-5v-5Mo-1Cr-5Al),其抗拉強度可達1105MPA以上
(4)阻燃鈦合金。常規鈦合金在特定的條件下有燃烷的傾向,這在很大程度上限制了其應用。針對這種情況,各國都展開了對阻燃鈦合金的研究並取得一定突破。羌國研製出的Alloy c(也稱為Ti-1720),名義成分為50Ti-35v-15Cr(質量分數),是一種對持續燃燒不敏感的阻燃鈦合金,己用於F119發動機。BTT-1和BTT-3為俄羅斯研製的阻燃鈦合金,均為Ti-Cu-Al系合金,具有相當好的熱變形工藝性能,可用其製成復雜的零件[26]。
(5)醫用鈦合金。
鈦無毒、質輕、強度高且具有優良的生物相容性,是非常理想的醫用金屬材料,可用作植人人體的植人物等。目前,在醫學領域中廣泛使用的仍是Ti-6Al-4v ELI合金。但後者會析出極微量的釩和鋁離子,降低了其細胞適應性且有可能對人體造成危害,這一問題早已引起醫學界的廣泛關注。羌國早在20世紀80年代中期便開始研製無鋁、無釩、具有生物相容性的鈦合金,將其用於矯形術。日本、英國等也在該方面做了大量的研究工作,並取得一些新的進展。例如,日本已開發出一系列具有優良生物相容性的α+β鈦合金,包括Ti-15Zr-4Nb_4ta-0.2Pd、Ti-15Zr-4Nb-aTa-0.2Pd-0.20~0.05N、Ti-15Sn-4Nb-2Ta-0.2Pd和Ti-15Sn-4nb-2Ta-0.2Pd-0.20,這些合金的腐蝕強度、疲勞強度和抗腐蝕性能均優於Ti-6Al-4v ELI。與α+β鈦合金相比,β鈦合金具有更高的強度水乎,以及更好的切口性能和韌性,更適於作為植入物植入人體。在美國,已有5種β鈦合金被推薦至醫學領域,即TMZFTM(TI-12Mo-^Zr-2Fe)、Ti-13Nb-13Zr、Timetal 21SRx(TI-15Mo-2.5Nb-0.2Si)、Tiadyne 1610(Ti-16Nb-9.5Hf)和Ti-15Mo。估計在不久的將來,此類具有高強度、低彈性模量以及優異成形性和抗腐蝕性能的廬鈦合金很有可能取代目前醫學領域中廣泛使用的Ti-6Al-4V ELI合金。