A. 什麼合金最硬啊
鎢鋼,俗稱碳化鎢屬硬質合金製品,截止到2019年7月31日是目前世界上最硬的鋼,硬度高達89~95HRA。
鎢鋼的基體由兩部分組成:一部分是硬化相;另一部分是粘結金屬。粘結金屬一般是鐵族金屬,常用的是鈷、鎳。因此就有了鎢鈷合金、鎢鎳合金及鎢鈦鈷合金。
含鎢的鋼材,比如高速鋼和某些熱作模具鋼,鋼材中含鎢對鋼材硬度和耐熱性能有很顯著的提高,但是韌性會急劇下降。
鎢鋼屬於硬質合金,又稱之為鎢鈦合金。硬度可以達到89~95HRA,正因如此,鎢鋼的產品(常見的有鎢鋼手錶),具有不易被磨損,堅硬不怕退火,但質脆的特性。
硬質合金中主要成分為碳化鎢和鈷,其占所有成分的99%,1%為其他金屬,所以也被稱作鎢鋼。
常用於高精度機械加工、高精度刀具材料、車床、沖擊鑽鑽頭、玻璃刀刀頭、瓷磚割刀之上,堅硬不怕退火,但質脆。屬於稀有金屬之列。
鎢鋼(硬質合金)具有硬度高、耐磨、強度和韌性較好、耐熱、耐腐蝕等一系列優良性能,特別是它的高硬度和耐磨性,即使在500℃的溫度下也基本保持不變,在1000℃時仍有很高的硬度。
硬質合金廣泛用作材料,如車刀、銑刀、刨刀、鑽頭、鏜刀等,用於切削鑄鐵、有色金屬、塑料、化纖、石墨、玻璃、石材和普通鋼材,也可以用來切削耐熱鋼、不銹鋼、高錳鋼、工具鋼等難加工的材料。新型硬質合金的切削速度等於碳素鋼的數百倍。
B. 介紹幾種新型合金
鋁鋰合金
新材料是航空航天技術的重要基礎,航空航天技術的發展又不斷對材料科學提出新的間題和要求。鋁鋰合金是近十幾年來航空金屬材料中發展最為迅速的一個領域。
鋰是世界上最輕的元素。把金屬鋰作為合金元素加到金屬鋁中,就形成了鋁鋰合金。加入金屬鋰之後,可以降低合金的比重,增加剛度,同時仍然保持較高的強度、較好的抗腐蝕性和抗疲勞性以及適宜的延展性。因為這些特性,這種新型合金受到了航空、航天以及航海業的廣泛關注。正是由於這種合金的許多優點,吸引著許多科學家對它進行研究,鋁鋰合金的開發事業猶如雨後春筍般迅速發展起來了。
1983年在巴黎國際航空博覽會上,世界上兩家最大的鋁合金生產企業——英國阿爾康鋁業公司和美國阿爾考鋁業公司,同時宣布研製成功新的革命性材料——鋁鋰合金。專家們認為,鋁鋰合金是從1943年發明鋁鋅系高強合金以來,鋁合金研究和開發的又一個里程碑。
其實,鋁鋰合金並不是個新鮮概念。對這種材料的認識經歷了相當長的時間。由於鋰的比重小,在鋁中的溶解度高,長期以來人們就把鋰看作鋁的親密合作夥伴。早在本世紀20年代,科技工作者就對鋁鋰合金進行過許多評論。1924年,德國研製成功一種工業鋁鋰合金——司克龍。這是一種僅含0.1%鋰的鋁鋅合金。它的機械性能比當時盛行的鋁鎂合金——杜拉鋁要稍好一些。由於當時杜拉鋁已得到公認,所以影響了司克龍合金應受到的廣泛重視。1943年,高強度的鋁鋅鎂銅合金問世,再一次低估了鋁鋰合金的工業價值。1957年,英國研製成功了含鋰1.1%的X-2020鋁合金。這種合金用於美國艦載超音速攻擊機的機翼和水平尾翼的蒙皮上,取代原設計中的鋁合金後,RA-5C飛機的重量減輕6%。原蘇聯的科技工作者同時也研製出了一種含鋰2%的鋁合金。又經過10年徘徊,到1967年發生了世界范圍的能源危機後,各國又重新開始大規模研究鋁鋰合金。由於冶金技術和相關技術的發展,使含鋰量更大、比重更小、強度更高的鋁鉀合金的出現成為可能。據認為,目前許多先進的戰斗機和民航飛機大都採用了這種合金。鋁鋰合金的成本大約只是碳纖維增強塑料的1/10。如果採用鋁鋰合金製造波音飛機,重量可以減輕14.6%,燃料節省5.4%,飛機成本將下降2.1%,每架飛機每年的飛行費用將降低2.2%。可以預料,隨著材料科學的發展,將有越來越多的新型合金進入航空航天業、各個工業部門及千家萬戶
C. 新型金屬材料有哪些
目前,市場上已經存在的新型金屬材料主要有:
一、形狀記憶合金:
形狀記憶合金是一種新的功能金屬材料,用這種合金做成的金屬絲,即使將它揉成一團,但只要達到某個溫度,它便能在瞬間恢復原來的形狀。
形狀記憶合金
二、儲氫合金:
一種新型合金,一定條件下能吸收氫氣,一定條件能放出 氫氣:循環壽命生能優異,並可被用於大型電池,尤其是電動車輛、混合動力電動車輛、高功率應用等等。 目前儲氫合金主要包括有鈦系、鋯系、鐵系及稀土系儲氫合金。某些金屬具有很強的捕捉氫的能力,在一定的溫度和壓力條件下,這些金屬能夠大量「吸收」氫氣,反應生成金屬氫化物,同時放出熱量。其後,將這些金屬氫化物加熱,它們又會分解,將儲存在其中的氫釋放出來。這些會「吸收」氫氣的金屬,稱為儲氫合金
三、納米金屬材料:
納米金屬材料的開發對金屬材料進行嚴重塑性變形可顯著細化其微觀組織,使晶粒細化至亞微米(0.1~1微 米)尺度從而大幅度提高其強度。但進一步塑性變形時晶粒不再細化,材料微觀結構趨於穩態達到極限晶粒尺寸,形成三維等軸狀超細晶結構,絕大多數晶界為大角 晶界。出現這種極限晶粒尺寸的原因是位錯增殖主導的晶粒細化與晶界遷移主導的晶粒粗化相平衡,其實質是超細晶結構的穩定性隨晶粒尺寸減小而降低所致。
四、金屬間化合物:
鋼中的過渡族金屬元素之間形成一系列金屬間化合物,即是指金屬與金屬、金屬與准金屬形成的化合物。其中最主要的有σ相和Loves相,它們都屬於拓撲密排 (TcP)相,它們由原子半徑小的一種原子構成密堆層,其中鑲嵌有原子半徑大的一種原子,這是一種高度密堆的結構。它們的形成除了原子尺寸因素起作用外,也受電子濃度因素的影響。合金元素對鋼的臨界點、鋼在加熱和冷卻過程中的轉變都有著強烈的影響。鋼中加入合金元素經過熱處理來影響鋼中的轉變,改變鋼的組織,以得到不同的性能。
金屬間化合物
五、非晶態金屬:
非晶態金屬是指在原子尺度上結構無序的一種金屬材料。大部分金屬材料具有很高的有序結構,原子呈現周期性排列(晶體),表現為平移對稱性,或者是旋轉對稱,鏡面對稱,角對稱(准晶體)等。而與此相反,非晶態金屬不具有任何的長程有序結構,但具有短程有序和中程有序(中程有序正在研究中)。一般地,具有這種無序結構的非晶態金屬可以從其液體狀態直接冷卻得到,故又稱為「玻璃態」,所以非晶態金屬又稱為「金屬玻璃」或「玻璃態金屬」。
D. 新型金屬材料
新型金屬材料種類繁多,它們都屬合金。
形狀記憶合金 形狀記憶合金是一種新的功能金屬材料,用這種合金做成的金屬絲,即使將它揉成一團,但只要達到某個溫度,它便能在瞬間恢復原來的形狀。形狀記憶合金為什麼能具有這種不可思議的「記憶力」呢?目前的解釋是因這類合金具有馬氏體相變。凡是具有馬氏體相變的合金,將它加熱到相變溫度時,就能從馬氏體結構轉變為奧氏體結構,完全恢復原來的形狀。
最早研究成功的形狀記憶合金是Ni-Ti合金,稱為鎳鈦腦(Nitanon)。它的優點是可靠性強、功能好,但價格高。銅基形狀記憶合金如 Cu-Zn-Al和 Cu-Al-Ni,價格只有Ni-Ti合金的10%,但可靠性差。鐵基形狀記憶合金剛性好,強度高,易加工,價格低,很有開發前途。表7-3列出一些形狀記憶合金及其相變溫度。
形狀記憶合金由於具有特殊的形狀記憶功能,所以被廣泛地用於衛星、航空、生物工程、醫葯、能源和自動化等方面。
在茫茫無際的太空,一架美國載人宇宙飛船,徐徐降落在靜悄悄的月球上。安裝在飛船上的一小團天線,在陽光的照射下迅速展開,伸張成半球狀,開始了自己的工作。是宇航員發出的指令,還是什麼自動化儀器使它展開的呢?都不是。因為這種天線的材料,本身具有奇妙的「記憶能力」,在一定溫度下,又恢復了原來的形狀。
多年來,人們總認為,只有人和某些動物才有「記憶」的能力,非生物是不可能有這種能力的。可是,美國科學家在五十年代初期偶然發現,某些金屬及其合金也具有一種所謂「形狀記憶」的能力。這種新發現,立即引起許多國家科學家的重視。研製出一些形狀記憶合金,廣泛應用於航天、機械、電子儀表和醫療器械上。
為什麼這些合金不「忘記」自己的「原形」呢?原來,這些合金都有一個轉變溫度,在轉變溫度之上,它具有一種組織結構,面在轉變溫度之下,它又具有另一種組織結構。結構不同性能不同,上面提及美國登月宇宙飛船上的自展天線, 就是用鎳鈦型合金作成的,它具有形狀記憶的能力。這種合金在轉變溫度之上時,堅硬結實,強度很大;而低於轉變溫度時,它卻十分柔軟,易於冷加工。科學家先把這種合金做 成所需的大半球形展開天線,然後冷卻到一定溫度下,使它變軟,再施加壓力,把它彎曲成一個小球,使之在飛船上只佔很小的空間。登上月球後,利用陽光照射的溫度,使天線重新展開,恢復到大半球的形狀。
形狀記憶合金問世以來,引起人們極大的興趣和關注,近年來發現在高分子材料、鐵磁材料和超導材料中也存在形狀記憶效應。對這類形狀記憶材料的研究和開發,將促進機械、電子、自動控制、儀器儀表和機器人等相關學科的發展。
高溫合金 渦輪葉片是飛機和太空梭渦輪噴氣發動機的關鍵部件,它在非常嚴酷的環境下運轉。渦輪噴氣發動機工作時,從大氣中吸入空氣,經壓縮後在燃燒室與燃料混合燃燒,然後被壓向渦輪。渦輪葉片和渦輪盤以每分鍾上萬轉的速度高速旋轉,燃氣被噴向尾部並由噴筒噴出,從而產生強大的推力。在組成渦輪的零件中,葉片的工作溫度最高,受力最復雜,也最容易損壞。因此極需新型高溫合金材料來製造葉片。
貯氫合金 氫是21世紀要開發的新能源之一。氫能源的優點是發熱值高、沒有污染和資源豐富。貯氫合金是利用金屬或合金與氫形成氫化物而把氫貯存起來。金屬都是密堆積的結構,結構中存在許多四面體和八面體空隙,可以容納半徑較小的氫原子。如鎂系貯氫合金如MgH2,Mg2Ni等;稀土系貯氫合金如LaNi5,為了降低成本,用混合稀土 Mm代替La,推出了MmNiMn, MmNiAl等貯氫合金;鈦系貯氫合金如TiH2,TiMn1.5。貯氫合金用於氫動力汽車的試驗已獲得成功。隨著石油資源逐漸枯竭,氫能源終將代替汽油、柴油驅動汽車,並一勞永逸消除燃燒汽油、柴油產生的污染。
非晶態合金 非晶態合金又稱為金屬玻璃,具有拉伸強度大,強度、硬度高,高電阻率、高導磁率、高抗腐蝕性等優異性能。適合做變壓器和電動機的鐵芯材料。採用非晶態合金做鐵芯,效率為97%,比用硅鋼高出10%左右,所以得到推廣應用。此外,非晶態合金在脈沖變壓器、磁放大器、電源變壓器、漏電開關、光磁記錄材料、高速磁泡頭存儲器、磁頭和超大規模集成電路基板等方面均獲得應用。
E. 有關新型合金的應用方面的問題
衛星、航空航天、生物工程和電子工業等領域
由於新型合金的價格目前不較高,還沒有進入民用的極端,主要用在尖端科技上。
F. 新型合金材料有哪些
鈦合金 銅鋅合金 鋨鎂合金
G. 什麼是合金材料
是由兩種或兩種以上的金屬與金屬或非金屬經一定方法所合成的具有金屬特性的物質。一般通過熔合成均勻液體和凝固而得。根據組成元素的數目,可分為二元合金、三元合金和多元合金。
人類生產合金是從製作青銅器開始,世界上最早生產合金的是古巴比倫人,6000年前古巴比倫人已開始提煉青銅(紅銅與錫的合金)。中國也是世界上最早研究和生產合金的國家之一。
製作合成
常將兩種或兩種以上的金屬元素或以金屬為基添加其他非金屬元素通過合金化工藝(熔煉、機械合金化、燒結、氣相沉積等等)而形成的具有金屬特性的金屬材料叫做合金。但合金可能只含有一種金屬元素,如鋼。(鋼,是對含碳量質量百分比介於0.02%至2.00%之間的鐵合金的統稱)
這里我們需要注意,合金不是一般概念上的混合物,甚至可以是純凈物,如單一相的金屬互化物合金,所添加合金元素可以形成固溶體、化合物,並產生吸熱或放熱反應,從而改變金屬基體的性質。
H. 合金的新型合金
隨著科技的發展,新型合金的種類日益增多,這里介紹主要的幾種。 由於石油和煤炭的儲量有限,而且在使用過程中會帶來環境污染等問題,尤其是20世紀70年代全球石油危機,使氫能作為新的清潔燃料成為研究熱點。在氫能利用過程中,氫的儲運是重要環節。1969年荷蘭飛利浦公司研製出LaNi5儲氫合金,具有大量的可逆地吸收、釋放氫氣的性質,其合金氫化物LaNi5H6中氫的密度與液態氫相當,約為氫氣密度的1 000倍。
儲氫合金是由兩種特定金屬構成的合金,其中一種可以大量吸氫,形成穩定的氫化物,而另一種金屬雖然與氫的親和力小,但氫很容易在其中移動。Mg、Ca、Ti、Zr、Y和La等屬於第一種金屬,Fe、Co、Ni、Cr、Cu和Zn等屬於第二種金屬。前者控制儲氫量,後者控制釋放氫的可逆性。通過兩者合理配製,調節合金的吸放氫性能,製得在室溫下能夠可逆吸放氫的較理想的儲氫材料。 它們具有高彈性、金屬橡膠性能、高強度等特點,在較低溫度下受力發生塑性變形後,經過加熱,又恢復到受熱前的形狀。如Ni-Ti、Ag-Cd、Cu-Cd、Cu-Al-Ni、Cu-Al-Zn等合金,可用於調節裝置的彈性元件(如離合器、節流閥、控溫元素等)、熱引擎材料、醫療材料(牙齒矯正材料)等。
形狀記憶效應來源於一種熱彈性馬氏體相變。一般的馬氏體相變作為鋼的淬火強化的方法,就是把鋼加熱到某個臨界溫度以上保溫一段時間,然後迅速冷卻,例如直接插入冷水中(稱為淬火),這時鋼轉變為一種馬氏體的結構,並使鋼硬化。後來,在某些合金中發現了不同於上述的另一種所謂熱彈性馬氏體相變,熱彈性馬氏體一旦產生便可以隨著溫度降低繼續長大。相反,當溫度回升時,長大的馬氏體又可以縮小,直至恢復到原來的狀態,即馬氏體隨著溫度的變化可以可逆地長大或縮小。熱彈性馬氏體相變時隨之伴有形狀的變化。
新型金屬功能材料除上述幾類以外,還有能降低噪音的減振合金;具有替代、增強和修復人體器官和組織的生物醫學材料;具有在材料或結構中植入感測器、信號處理器、通信與控制器及執行器,使材料或結構具有自診斷、自適應,甚至損傷自癒合等智能功能與生命特徵的智能材料等。
I. 近年來,為滿足某些尖端技術的發展需要,人們又設計和合成了許多新型合金材料.如:儲氫合金是一類能夠大
由於鈦合金的硬度大、耐酸鹼的腐蝕,因此可用於發展航空飛機的機體材料等;耐熱合金在高溫下具有良好的機械性能和化學穩定性,屬於新型合金,廣泛應用於衛星、航空航天,鎳和鈦混合成為合金,叫記憶合金.有自己獨特的物理特性,就是溫度變化會引起外形變化,同時有記憶能力,能恢復原來形狀,廣泛應用於生物工程和電子工程等領域,
故答案為:鈦合金;耐熱合金;性狀記憶合金;