㈠ 玻璃鋼化爐如何使用及保養,鋼化鋼化原理及參數。
每日一護,有小問題及時處理,
㈡ 鋼化玻璃的構造原理和原材料是什麼
鋼化玻璃又稱強化玻璃,是一種預應力玻璃。它是用物理的或化學的方法,在玻璃表面上形成一個壓應力層,玻璃本身具有較高的抗壓強度,不會造成破壞。當玻璃受到外力作用時,這個壓力層可將部分拉應力抵消,避免玻璃的碎裂,雖然鋼化玻璃內部處於較大的拉應力狀態,但玻璃的內部無缺陷存在,不會造成破壞,從而達到提高玻璃強度的目的。眾所周知,材料表面的微裂紋是導致材料破裂的主要原因。因為微裂紋在張力的作用下會逐漸擴展,最後沿裂紋開裂。而玻璃經鋼化後,由於表面存在較大的壓應力,可使玻璃表面的微裂紋在擠壓作用下變得更加細微,甚至「癒合」。
鋼化玻璃是平板玻璃的二次加工產品,鋼化玻璃的加工可分為物理鋼化法和化學鋼化法。物理鋼化玻璃又稱為淬火鋼化玻璃。它是將普通平板玻璃在加熱爐中加熱到接近玻璃的軟化溫度(600℃)時,通過自身的形變消除內部應力,然後將玻璃移出加熱爐,再用多頭噴嘴將高壓冷空氣吹向玻璃的兩面,使其迅速且均勻地冷卻至室溫,即可製得鋼化玻璃。這種玻璃處於內部受拉而外部受壓的應力狀態,一旦局部發生破損,便會發生應力釋放,玻璃被破碎成無數小塊,這些小的碎片沒有尖銳稜角,不易傷人。在鋼化玻璃的生產過程中,對產品質量影響最大的當是如何使玻璃形成較大而均勻的內應力。而對產量影響最大的則是如何防止炸裂和變形。
不論是上述哪個影響因素都與玻璃的加熱和冷卻條件密切相關。當玻璃均勻加熱到鋼化溫度後驟然冷卻時,由於內外層降溫速度的不同,表層急劇冷卻收縮,而內層降溫收縮遲緩。結果內層因被壓縮受壓應力,表層受張應力。隨著玻璃的繼續冷卻,表層已經硬化停止收縮,而內層仍在降溫收縮,直至到達室溫。這樣表層因受內層的壓縮形成壓應力,內層則形成張應力,並被永久的保留在鋼化玻璃中。由於玻璃是抗壓強而抗拉弱的脆性材料,當超過抗張強度時玻璃即行破碎,所以內應力的大小及其分布形式是影響玻璃強度及炸裂的主要原因。另一種情況是玻璃在可塑狀態下冷卻時,不論是加熱不均,還是冷卻不均,只要在同一塊玻璃上有溫差,就會有不同的收縮量。在降至室溫時,溫度越高的地方降溫越多,收縮量越大,玻璃也就越短。相反溫度越低的地方降溫少,收縮量也小,玻璃也就長。一塊玻璃如各處長短不一則勢必發生板面翹曲。這樣我們就不難理解玻璃為什麼會變形以及怎樣防止變形。
由於鋼化玻璃內部的應力分布已處於均衡的狀態,當進行切割、鑽孔等再加工時,因應力平衡破壞而引起破碎,所以一般不允許進行再加工。但是輕微的加工,例如對劃傷、彩虹等缺陷進行拋光時,對產品性能並沒有多大影響。鋼化玻璃在熱處理完成以後及使用過程中有無直接外力的作用下會發生自行爆裂的現象。據國外研究統計,自爆率一般為0.1%~0.3%。引起自爆的主要原因是玻璃中硫化鎳(NiS)相變引起的體積膨脹所導致,自爆率一般為2%左右。解決自爆的對策主要有:控制鋼化應力,均質處理(HST)等。其中對玻璃進行均質處理是最有效且根本的辦法。均質處理的有效性取決於均質爐的性能及均質工藝,必須重視爐內玻璃放置方式、均質溫度制度、爐內氣流走向以及對均質自爆機理及影響因素等。均質處理(HST)是公認的徹底解決自爆問題的有效方法。將鋼化玻璃再次加熱到290℃左右並保溫一定時間,使硫化鎳在玻璃出廠前完成晶相轉變,讓今後可能自爆的玻璃在工廠內提前破碎。這種鋼化後再次熱處理的方法,國外稱作「HeatSoakTest」,簡稱HST。我國通常將其譯成「均質處理」,也俗稱「引爆處理」。
鋼化玻璃強度高,其抗壓強度可達125MPa以上,比普通玻璃大4~5倍;抗沖擊強度也很高,用鋼球法測定時,1kg的鋼球從1m高度落下,玻璃可保持完好。鋼化玻璃的彈性比普通玻璃大得多,一塊l200mm×350mm×6mm的鋼化玻璃,受力後可發生達100mm的彎曲撓度,當外力撤除後,仍能恢復原狀,而普通玻璃彎曲變形只能有幾毫米。熱穩定性好,在受急冷急熱時,不易發生炸裂是鋼化玻璃的又一特點。這是因為鋼化玻璃的壓應力可抵銷一部分因急冷急熱產生的拉應力之故。鋼化玻璃耐熱沖擊,最大安全工作溫度為288℃,能承受204℃的溫差變化。由於鋼化玻璃具有較好的機械性能和熱穩定性,所以在建築工程、交通工具及其他領域內得到廣泛的應用。平鋼化玻璃常用作建築物的門窗、隔牆、幕牆及櫥窗、傢具等,曲面玻璃常用於汽車、火車及飛機等方面。使用時應注意的是鋼化玻璃不能切割、磨削,邊角不能碰擊擠壓,需按現成的尺寸規格選用或提出具體設計圖紙進加工定製。用於大面積的玻璃幕牆的玻璃在鋼化上要給予控制,選擇半鋼化玻璃,即其應力不能過大,以避免受風荷載引起震動而自爆。根據所用的玻璃原片不同,可製成普通鋼化玻璃、吸熱鋼化玻璃、彩色鋼化玻璃、鋼化中空玻璃等。
應力特徵成為鑒別真假鋼化玻璃的重要標志。目前,在業內鑒別鋼化玻璃與普通玻璃主要靠聽,也就是說用手敲擊玻璃,如果玻璃發出清脆響聲,則說明玻璃是鋼化玻璃,反之則為普通玻璃
㈢ 玻璃鋼化爐的工作原理是怎麼樣的
有些類似金屬淬火,先將玻璃升溫,然後用風快速冷卻
㈣ 製造鋼化玻璃的原理
工藝過程: 鋼化玻璃是將玻璃加熱到接近軟化化溫度(這時處於粘性流動狀態)——這個溫度范圍我們稱為鋼化溫度范圍(620℃—640℃), 保溫一定時間,然後驟冷而成的,下面簡單敘述鋼化玻璃在加熱和驟冷過程中的溫度變化及應力形成過程。
㈤ 玻璃鋼化爐中輻射爐與對流爐的原理及區別
常規鋼化爐用的是熱輻射方式使玻璃加熱,這種方式是電爐絲直接或通過輻射板通過紅外方式直接輻射到玻璃表面。對流爐是使用內循環風把爐體內的熱量均勻噴射到玻璃加熱,好處是爐體內溫度更均勻,對吸熱慢或者說反射率高的玻璃能快速均勻的加熱。簡單說情況基本如此,不準確之處見諒
㈥ 玻璃化學鋼化原理
化學鋼化玻璃是將玻璃置於熔融的鹼鹽中,使玻璃表層中的離子與熔鹽中的離子交換,由於交換後的體積變化,在玻璃的兩表面形成壓應力,內部形成張應力,從而達到提高玻璃強度的效果。化學鋼化玻璃強度高、熱穩定性好、表面不變形、可做適當切裁處理、無爆開現象。
化學鋼化玻璃其實是一種預應力玻璃,為提高玻璃的強度,通常使用化學或物理的方法,在玻璃表面形成壓應力,玻璃承受外力時首先抵消表層應力,從而提高了承載能力,增強玻璃自身抗風壓性,寒暑性,沖擊性等。
二、化學鋼化原理是什麼
化學鋼化玻璃是採用低溫離子交換工藝製造的,所謂低溫系是指交換溫度不高於玻璃轉變溫度的范圍內,是相對於高溫離子交換工藝在轉變溫度以上,軟化點以下的溫度范圍而言。低溫離子交換工藝的簡單原理是在400℃左右的鹼鹽溶液中,使玻璃表層中半徑較小的離子與溶液中半徑非常大的離子交換,比如玻璃中的鋰離子與溶液中的鉀或鈉離子交換,玻璃中的鈉離子與溶液中的鉀離子交換,利用鹼離子體積上的差別在玻璃表層形成嵌擠壓應力。大離子擠嵌進玻璃表層的數量與表層壓應力成正比,所以離子交換的數量與交換的表層高層度是增效果好果的關鍵指標。
離子交換鋼化玻璃與物理鋼化玻璃的應力分布不同,前者表面層的壓應力厚度較小,與其平衡的內部拉應力不大,這是化學鋼化玻璃的內部拉應力層達到破壞時也不像物理鋼化玻璃那樣碎成小片的原因。由於離子交換層較薄,所以化學鋼化玻璃方法用於增強薄玻璃效果顯著,對厚玻璃的增效果好果不甚明顯,特別適合增強2~4mm厚的玻璃。
㈦ 鋼化玻璃的製造原理
熱鋼化原理通過加入,然後通過介質急速冷卻,內層和表層產生了巨大的溫差,形成溫度階梯。由此產生的應力由於玻璃還處於粘滯流動狀態而被鬆弛。
當玻璃的溫度梯度逐漸消失,原鬆弛的應力逐步轉為永久應造成了玻璃表面有一層均勻分布的壓應力層。當退火玻璃受載彎曲時,受力面為壓應力。當鋼化玻璃受載彎曲,退火玻璃強度低於鋼化玻璃。同理,當鋼化玻璃驟冷時,表面產生的張應力與鋼化玻璃表面原先存在的壓應力相抵償,因而鋼化玻璃的熱穩定性大大提高。
鋼化玻璃中應力的分布是鋼化玻璃的兩個表面為壓應力,板芯層處於張應力,在玻璃厚度上應力分布類似拋物線。玻璃厚度的中央是拋物線的頂點,即張應力最大處;兩側接近玻璃兩表面處是壓應力;零應力面大約位於厚度的1/3處。
通過分析鋼化急冷的物理過程,可知鋼化玻璃表面張力和內部的最大張應力在數值上有粗略的比例關系,即張應力是壓應力的1/2~1/3。國內廠家一般將鋼化玻璃表面張力設定在100MPa左右,實際情況可能更高一些。鋼化玻璃自身的張應力約為32MPa~46MPa,玻璃的抗張強度是59MPa~62MPa,只要硫化鎳膨脹產生的張力在30MPa,則足以引發自爆。若降低其表面應力,相應地會降低鋼化玻璃本身自有的張應力,從而有助於減少自爆的發生。
(7)玻璃鋼化爐原理擴展閱讀:
鋼化玻璃的缺點:
1 .鋼化後的玻璃不能再進行切割,和加工,只能在鋼化前就對玻璃進行加工至需要的形狀,再進行鋼化處理。
2 .鋼化玻璃強度雖然比普通玻璃強,但是鋼化玻璃有自爆(自己破裂)的可能性,而普通玻璃不存在自爆的可能性。
3 .鋼化玻璃的表面會存在凹凸不平的現象(風斑),有輕微的厚度變薄。變薄的原因是因為玻璃在熱熔軟化後,在經過強風力使其快速冷卻,使其玻璃內部晶體間隙變小,壓力變大,所以玻璃在鋼化後要比在鋼化前要薄。一般情況下4~6mm玻璃在鋼化後變薄0.2~0.8mm,8~20mm玻璃在鋼化後變薄0.9~1.8mm。具體程度要根據設備來決定,這也是鋼化玻璃不能做鏡面的原因。
4.通過鋼化爐(物理鋼化)後的建築用的平板玻璃,一般都會有變形,變形程度由設備與技術人員工藝決定。在一定程度上,影響了裝飾效果(特殊需要除外)。
㈧ 玻璃如何鋼化
玻璃鋼化:
1、物理鋼化法
物理鋼化法的原理就是把玻璃加熱到適宜溫度後迅速冷卻,使玻璃表面急劇收縮,產生壓應力,而玻璃中層冷卻較慢,還來不及收縮,故形成張應力,使玻璃獲得較高的強度。一般來說冷卻強度越高,則玻璃強度越大。物理鋼化方法很多,按冷卻介質來分,可分為以下幾種:
2、化學鋼化法
化學鋼化法指的是通過化學方法改變玻璃表面組分,增加表面層壓應力,以增加玻璃的機械強度和熱穩定性的鋼化方法。由於它是通過離子交換使玻璃增強,所以又稱為離子交換增強法。根據交換離子的類型和離子交換的溫度又可分為低於轉變點度的離子交換法和高於轉變點溫度的離子交換法。
化學增強法的原理是:根據離子擴散的機理來改變玻璃的表面組成,在一定的溫度下把玻璃浸入到高溫熔鹽中,玻璃中的鹼金屬離子與熔鹽中的鹼金屬離子因擴散而發生相互交換,產生「擠塞」現象,使玻璃表面產生壓縮應力,從而提高玻璃的強度。
(8)玻璃鋼化爐原理擴展閱讀:
玻璃鋼化過程中問題:
玻璃鋼化爐在鋼化的過程中,一般都會產生風斑和應力斑,風斑是在冷卻過程中,由於受冷不均而導致玻璃應力不均而形成的,其在某種特殊角度下觀察會看到玻璃表面呈明暗相間的條紋。應力斑也是因為應力不均造成的,比如在加熱過程中,爐邊部和中部存在溫差而導致應力不均。應力斑目前還沒有辦法完全避免,但設計良好的鋼化設備可以較大程度的減少應力斑的可見性。