㈠ 用什麼來加工碳化鎢
現在硬質合金主要有以下的幾種加工方法:1:磨床加工,用金剛石砂輪。2:電火花加工。3:線割加工。4:如果要求精度不是很高的話可以直接要合金生產廠家鑄造。
樓下之言差矣!俺是專業從事這種材料精加工的.
㈡ 硬質合金
我在網路上找到過,記得還COPY在電腦上的,但是12月份我論文發表了後,就刪了哈,你去網路下,肯定能找到的.
現在只剩這一點點了: 在近年來的硬質合金回收利用實踐過程中,由於對環境保護的要求日益嚴格,一些回收工藝由於會帶來污染而停止使用。目前應用比較廣泛的是機械破碎法、鋅熔法和電化學選擇性電溶法。硬質合金的硬質相碳化鎢與粘結相鈷在一定的溫度下進行燒結形成了粉末冶金的組織結構。如何使緻密而堅硬的合金組織得以分解,重新使這些硬質相與粘結金屬分離開來是回收利用工藝所要解決的第一步也是關鍵的一步。對於硬質合金的解體,許多研究者採取了不同的思路,回收利用工藝路線也各不相同。對於這些工藝的評價,很難選擇那一種更合理、更經濟、更值得推廣應用,因為工藝路線的選擇首先的也是基本的原則就是再生製品的質量要高,工藝流程要簡捷,對環境不會產生二次污染,勞動條件要清潔安全。現將幾種常用的再生利用工藝作一簡單介紹。
一、高溫處理法
硬質合金是在一定的溫度下經過保護性氣體進行燒結製成的。如果在高出燒結溫度下而置於保護性氣氛對合金進行加熱,硬質合金的體積將發生膨脹,作為粘結金屬的鈷等將液化沸騰,合金的體積就將變得疏鬆而多孔堅硬的合金就變得極易破碎加工,經過破碎和研磨,就可以得到與原來的硬質合金相同的碳化鎢和粘結金屬混合物。高溫處理法的原理就在於利用特製的高溫爐,在遠大於硬質合金的燒結溫度(1800℃)使站結金屬從合金結構得以解體。這種工藝處理得到的硬質合金再生原料由於得到了高溫處理,原先所含的微量其他金屬和非金屬雜質以及有害氣體被清除出去。碳化鎢晶粒明顯長粗長大,晶內缺陷減少,合金結構和性能也得到了提高,因此具有較好的力學性能和較長的使用壽命。這種再生混合料適合於再制晶粒較粗、含鈷量較高的硬質合金。對於晶粒較細、含鈷量低的硬質合金種類不僅在高溫處理時的溫度要提高,以便於使硬質合金廢料有足夠的應力產生膨脹疏鬆現象,而且在製取中細晶粒的硬質合金時,相應要改變混合料的制備和燒結工藝。高溫處理法具有工藝流程短,設備配套簡單,回收的硬質合金混合料比較清潔,對環境的污染程度小、回收率較高的特點,但這一工藝能耗較高,在高溫過程中有一部分鈷會流失等,最大的問題是回收的混合料只宜製作粗大晶粒的碳化物合金。目前一些工業發達國家如日本、瑞典的一些廠家仍使用該法處理廢舊硬質合金。
二、破碎法
對於一些含鈷量不高的硬質合金來說由於硬度相對較低,可以用手工或機械的辦法破碎到一定細度後裝入濕磨機中研磨一段時間,達到一定的粒度用於再制硬質合金
這種方法工藝簡單、流程短、能耗低、不污染環境,但往往在硬質合金手工破碎時,會由於工具的金屬材料碎屑帶入破碎料中產生污染,此外,由於含鈷量較高的硬質合金不易破碎,機械破碎法受到很大限制;成分復雜的硬質合金混合料用此法也很難保證再生產品的質量。破碎法的工藝過程是:人工破碎,將其破碎成粉末狀(約200目)或使用大塊度硬質合金為撞擊球的球磨機破碎,然後在八角球磨機內加入酒精濕磨,然後進入硬質合金再制過程。有的企業採用急冷法進行破碎:先將廢舊硬質合金在馬弗爐內加熱到800℃以上立即放入水中急冷,致使硬質合金發生崩裂,然後進入機械破碎過程。這種方法在上個世紀90年代曾在河北省清河等地得到普及,全縣共有幾十家大小不等的再生利用廠用此法回收並再制硬質合金,再制硬質合金年產量逾千噸,總產值3億元以上,成為當地的支柱產業之一。目前,破碎法仍有一定的發展空間,採用比較先進清潔的破碎設備或採用高效並不破壞硬質合金微觀結構的方法處理硬質合金,破碎法仍需要改進。
三、鋅熔法處理硬質合金
鋅熔法的基本原理
鋅熔法處理硬質合金的機理是基於鋅與硬質合金中的粘結相金屬(鈷、鎳)可以形成低熔點合金,使粘結金屬從硬質合金中分離出來,與鋅形成鋅—鈷固溶體合金液,從而破壞了硬質合金的結構,緻密合金變成鬆散狀態的硬質相骨架。由於鋅不會與各種難熔合金金屬的碳化物發生化學反應,再利用在一定的溫度下鋅的蒸氣壓遠遠大於鈷的蒸氣壓,使鋅蒸發出來予以回收再利用。因此,鋅熔法獲得的碳化物粉末較好地保持了原有特性。經過鋅熔過程後,鈷或鎳被萃取到鋅熔體中,蒸餾鋅以後,鈷和碳化物保留,鋅回收後繼續用於再生過程。鋅熔法工藝流程
廢舊硬質合金與鋅塊按照1:1~2的比例共同裝入燒結熔融坩堝中抽真空,送電升溫至900~1000℃,保溫一定的時間後進行真空提取鋅,冷卻後將海綿狀的鈷粉和碳化鎢團塊卸出,經過球磨、破碎、調整合金成分,重新製作硬質合金。
鋅熔法的的主要特點
鋅熔法是上個世紀50年代由英國人發明的,其後,美國對這一工藝進行了改進和設備上的完善,70年代以後在許多國家得到了普及,在我國,許多回收利用廢舊硬質合金的廠家都掌握了這種方法。其主要優點在於這種方法工藝簡單、流程短、設備簡單、投資小,成本低,特別適合於處理含鈷量低於10%的廢硬質合金,適用於小型企業利用廢舊硬質合金再制硬質合金。但這種工藝也存在一些不利的方面:混合料中殘留的鋅含量較高是值得注意的一個問題;由於近年來為節省鈷的用量,新型硬質合金中多為碳化鈦—碳化鎢—鈷系列的合金,如果廢料不能分選清楚的話,將使回收的混合料中含有一定的鈦,從而局限了再生利用的產品選擇,鈦的增加使合金的脆性增加,對產品的壽命有一定影響;另外,在整個工藝過程中電耗較大,每噸硬質合金耗電高的約12000kWh,低的也在6000kWh以上;此外,在鋅熔過程和收鋅的過程中,設備是否合理是對鋅的回收效率有一定影響。再一個是環境保護問題,鋅的逸出會對操作者有一定的影響。
四、選擇性電化學溶解法
上個世紀80年代初期。國內貿易部物資再生利用研究所曾推出了選擇性電化學溶解法(簡稱電溶法)並先後在山東臨朐、河北清河等地進行了技術推廣應用取得了良好的經濟效益和社會效益。
㈢ 碳化鎢硬質合金的特性和應用
碳化鎢硬質合金的特性及應用
硬質合金是由硬度和熔點都很高的碳化物,用Co、Mo、Ni作粘結劑燒結而成的粉末冶金製品。其常溫硬度可達78~82 HRC,能耐850~1000℃的高溫,切削速度可比高速鋼高4~10倍。但其沖擊韌性與抗彎強度遠比高速鋼差,因此很少做成整體式刀具。
碳化鎢是硬質合金家族的原料,純的碳化鎢不太常用,為黑色六方晶體,有金屬光澤,硬度與金剛石相近,為電、熱的良好導體。熔點2870℃, 沸點6000℃,相對密度 15.63(18℃)。碳化鎢不溶於水、鹽酸和硫酸,易溶於硝酸-氫氟酸的混合酸中。純的碳化鎢易碎,若摻入少量鈦、鈷等金屬,就能減少脆性。用作鋼材切割工具的碳化鎢,常加入碳化鈦、碳化鉭或它們的混合物,以提高抗爆能力。碳化鎢的化學性質穩定。
在碳化鎢中,碳原子嵌入鎢金屬晶格的間隙,並不破壞原有金屬的晶格,形成間隙固溶體,因此也稱填隙(或插入)化合物。碳化鎢可由鎢和碳的混合物高溫加熱製得,氫氣或烴類的存在能加速反應的進行。若用鎢的含氧化合物進行制備,產品最終必須在 1500℃進行真空處理, 以除去碳氧化合物。碳化鎢適宜在高溫下進行機械加工,可製作切削工具、窯爐的結構材料、噴氣發動機、燃氣輪機、噴嘴等。
㈣ 碳化鎢是什麼
1、大量用作高速切削車刀、窯爐結構材料、噴氣發動機部件、金屬陶瓷材料、電阻發熱元件等製得。
2、用於製造切削工具、耐磨部件,銅、鈷、鉍等金屬的熔煉坩堝,耐磨半導體薄膜。
3、用作超硬刀具材料、耐磨材料。它能與許多碳化物形成固溶體。WC-TiC-Co 硬質合金刀具已獲得廣泛應用。它還能作為 NbC-C 及 TaC-C 三元體系碳化物的改性添加物,既可降低燒結溫度,又能保持優良性能,可用作宇航材料。
4、採用鎢酐與石墨在還原氣氛中1400~1600℃ 高溫下合成碳化鎢(WC)粉末。再經熱壓燒結或熱等靜壓燒結可製得緻密陶瓷製品。
(4)硬質合金怎麼變成碳化鎢擴展閱讀
碳化鎢理論含碳量為6.128%(原子50%),當碳化鎢含碳量大於理論含碳量則碳化鎢中出現游離碳(WC+C),游離碳的存在燒結時使其周圍的碳化鎢晶粒長大,致使硬質合金晶粒不均勻;碳化鎢一般要求化合碳高(≥6.07%)游離碳(≤0.05%),總碳則決定於硬質合金的生產工藝和使用范圍。
硬質合金對碳化鎢WC粒度的要求,根據不同用途的硬質合金,採用不同粒度的碳化鎢;硬質合金切削刀具,比如切腳機刀片V-CUT刀等,精加工合金採用超細亞細細顆粒碳化鎢;粗加工合金採用中顆粒碳化鎢;重力切削和重型切削的合金採用中粗顆粒碳化鎢做原料。
礦山工具岩石硬度高沖擊負荷大採用粗顆粒碳化鎢;岩石沖擊小沖擊負荷小,採用中顆粒碳化鎢做原料耐磨零件;當強調其耐磨性抗壓和表面光潔度時,採用超細亞細細中顆粒碳化鎢做原料;耐沖擊工具採用中粗顆粒碳化鎢原料為主。
儲存:應貯存在陰涼、乾燥的庫房中,運輸中要注意包裝容器完好,防雨淋和防日光曝曬。
包裝儲運:產品採用鐵桶(塑料桶),內襯聚乙烯塑料袋封口包裝,每袋凈重不得超過50kg。外包裝桶上應有「防潮」和「向上」等字樣。 產品應貯存在陰涼、乾燥的庫房中,運輸中要注意包裝容器完好,防雨淋和防日光曝曬。
㈤ 鎢鋼材料是如何制粉的
鎢鋼材料碳化鎢粉是通過對鎢(W)粉進行滲碳處理而獲得的。碳化鎢粉的特性(尤其是其粒度)主要取決於原料鎢粉的粒度以及滲碳的溫度和時間。化學控制也至關重要,碳含量必須保持恆定(接近重量比為6.13%的理論配比值)。
高略精密模具公司為了通過後續工序來控制粉體粒度,可以在滲碳處理之前添加少量的釩和/或鉻。不同的下游工藝條件和不同的最終加工用途需要採用特定的碳化鎢粒度、碳含量、釩含量和鉻含量的組合,通過這些組合的變化,可以產生各種不同的碳化鎢粉。
在將碳化鎢粉與金屬結合劑一起進行混合碾磨以生產某種牌號硬質合金粉料時,可以採用各種不同的組合方式。最常用的鈷含量為3%-25%(重量比),而在需要增強刀具抗腐蝕性的情況下,則需要加入鎳和鉻。
此外,還可以通過添加其他合金成分,進一步改良金屬結合劑。例如,在WC-Co硬質合金中添加釕,可在不降低其硬度的前提下顯著提高其韌性。增加結合劑的含量也可以提高硬質合金的韌性,但卻會降低其硬度。
減小碳化鎢顆粒的尺寸可以提高材料的硬度,但在燒結工藝中,碳化鎢的粒度必須保持不變。燒結時,碳化鎢顆粒通過溶解再析出的過程結合和長大。在實際燒結過程中,為了形成一種完全密實的材料,金屬結合劑要變成液態(稱為液相燒結)。
通過添加其他過渡金屬碳化物,包括碳化釩(VC)、碳化鉻(Cr3C2)、碳化鈦(TiC)、碳化鉭(TaC)和碳化鈮(NbC),可以控制碳化鎢顆粒的長大速度。這些金屬碳化物通常是在將碳化鎢粉與金屬結合劑一起進行混合碾磨時加入,盡管碳化釩和碳化鉻也可以在對碳化鎢粉進行滲碳時形成。
利用回收的廢舊鎢鋼材料也可以生產牌號碳化鎢粉料。廢舊硬質合金的回收和再利用在硬質合金行業已有很長歷史,是該行業整個經濟鏈的一個重要組成部分,它有助於降低材料成本、節約自然資源和避免對廢棄材料進行無害化處置。
廢舊硬質合金一般可通過APT(仲鎢酸銨)工藝、鋅回收工藝或通過粉碎後進行再利用。這些「再生」碳化鎢粉通常具有更好的、可預測的緻密性,因為其表面積比直接通過鎢滲碳工藝製成的碳化鎢粉更小。
碳化鎢粉與金屬結合劑混合碾磨的加工條件也是至關重要的工藝參數。兩種最常用的碾磨技術是球磨和超微碾磨。這兩種工藝都能使碾磨的粉料均勻混合,並能減小顆粒尺寸。為使以後壓制的工件具有足夠的強度,能保持工件形狀,並使操作者或機械手能拿起工件進行操作,在碾磨時通常還需要添加一種有機結合劑。
這種結合劑的化學成分可以影響壓製成工件的密度和強度。為了有利於操作,最好添加高強度的結合劑,但這樣會導致壓制密度較低,並可能會產生硬塊,造成在最後成品中存在缺陷。
http://www.0769wg.com/news/2014-8-25-833.html
完成碾磨後,通常會對粉料進行噴霧乾燥,產生由有機結合劑凝聚在一起的自由流動團塊鎢鋼材料。通過調整有機結合劑的成分,可以根據需要定製這些團塊的流動性和裝料密度。通過篩選出較粗或較細的顆粒,還可以進一步定製團塊的粒度分布,以確保其在裝入模腔時具有良好的流動性。
㈥ 硬質合金怎麼提煉出來
硬質合金是以高硬度難熔金屬的碳化物(WC、TiC)微米級粉末為主要成分,以鈷(Co)或鎳(Ni)、鉬(Mo)為粘結劑,在真空爐或氫氣還原爐中燒結而成的粉末冶金製品。
具體的提煉方法為: 用金屬鎢粉和炭黑為原料,按一定比例配成混合料,將混合料裝入石墨舟皿中,置於炭管爐內或高中頻感電爐中,在一定溫度下進行炭化,再經球磨、篩分即得碳化鎢粉。
1、概述:碳化鎢粉(WC)是生產硬質合金的主要原料,國內主要生產企業有株州、自貢、南昌、旅順硬質合金廠。每年生產的碳化鎢粉主要供國內使用,部分出口到日本、美國、德國、義大利、法國、瑞典等國家。
2、性質:碳化鎢粉呈深灰色粉末,能溶於多種碳化物中,尤其是在碳化鈦中的溶解度很大,形成TiC-WC固熔體。
3、用途:碳化鎢粉主要用於生產硬質合金。
4、配製:用金屬鎢粉和炭黑為原料,按一定比例配成混合料,將混合料裝入石墨舟皿中,置於炭管爐內或高中頻感電爐中,在一定溫度下進行炭化,再經球磨、篩分即得碳化鎢粉。
5、質量規格:碳化鎢粉的技術條件是GB/T4295—93,一般執行的是企業內控標准。