❶ 儲氫材料概述
Fuel Cell R&D Center
Seminar I
Dalian Institute of Chemical Physics
儲氫材料概述
報告人: 趙 平
指導教師: 張華民 研究員
Fuel cell R&D center
Dalian Institute of Chemical Physics
Chinese Academy of Science
2004年4月
Seminar I
一,緒言
氫-二十一世紀
的綠色能源
1.1能源危機與環境問題
化石能源的有限性與人類需求的無限性-石油,煤炭等主要能源將在未來數十年至數百年內枯竭!!!(科技日報,2004年2月25日,第二版)
化石能源的使用正在給地球造成巨大的生態災難-溫室效應,酸雨等嚴重威脅地球動植物的生存!!!
人類的出路何在 -新能源研究勢在必行!!!
1.2 氫能開發,大勢所趨
氫是自然界中最普遍的元素,資源無窮無盡-不存在枯竭問題
氫的熱值高,燃燒產物是水-零排放,無污染 ,可循環利用
氫能的利用途徑多-燃燒放熱或電化學發電
氫的儲運方式多-氣體,液體,固體或化合物
1.3 實現氫能經濟的關鍵技術
廉價而又高效的制氫技術
安全高效的儲氫技術-開發新型高效的儲氫材料和安全的儲氫技術是當務之急
車用氫氣存儲系統目標:
IEA: 質量儲氫容量>5%; 體積容量>50kg(H2)/m3
DOE : >6.5%, > 62kg(H2)/m3
二,不同儲氫方式的比較
氣態儲氫:
能量密度低
不太安全
液化儲氫:
能耗高
對儲罐絕熱性能要求高
二,不同儲氫方式的比較
固態儲氫的優勢:
體積儲氫容量高
無需高壓及隔熱容器
安全性好,無爆炸危險
可得到高純氫,提高氫的附加值
2.1 體積比較
2.2 氫含量比較
三,儲氫材料技術現狀
3.1 金屬氫化物
3.2 配位氫化物
3.3 納米材料
金屬氫化物儲氫特點
反應可逆
氫以原子形式儲存,固態儲氫,安全可靠
較高的儲氫體積密度
Abs.
Des.
M + x/2H2
MHx + H
Position for H occupied at HSM
Hydrogen on Tetrahedral Sites
Hydrogen on Octahedral Sites
3.1 金屬氫化物儲氫
目前研製成功的:
稀土鑭鎳系
鈦鐵系
鎂系
鈦/鋯系
稀土鑭鎳系儲氫合金
典型代表:LaNi5 ,荷蘭Philips實驗室首先研製
特點:
活化容易
平衡壓力適中且平坦,吸放氫平衡壓差小
抗雜質氣體中毒性能好
適合室溫操作
經元素部分取代後的MmNi3.55Co0.75Mn0.47Al0.3(Mm混合稀土,主要成分La,Ce,Pr,Nd)廣泛用於鎳/氫電池
PCT curves of LaNi5 alloy
鈦鐵系
典型代表:TiFe,美Brookhaven國家實驗室首先發明
價格低
室溫下可逆儲放氫
易被氧化
活化困難
抗雜質氣體中毒能力差
實際使用時需對合金進行表面改性處理
PCT curves of TiFe alloy
TiFe(40 ℃)
TiFe alloy
Characteristics:
two hydride phases;
phase (TiFeH1.04) & phase (TiFeH1.95 )
2.13TiFeH0.10 + 1/2H2 → 2.13TiFeH1.04
2.20TiFeH1.04 + 1/2H2 → 2.20TiFeH1.95
鎂系
典型代表:Mg2Ni,美Brookhaven國家實驗室首先報道
儲氫容量高
資源豐富
價格低廉
放氫溫度高(250-300℃ )
放氫動力學性能較差
改進方法:機械合金化-加TiFe和CaCu5球磨,或復合
鈦/鋯系
具有Laves相結構的金屬間化合物
原子間隙由四面體構成,間隙多,有利於氫原子的吸附
TiMn1.5H2.5 日本松下(1.8%)
Ti0.90Zr0.1Mn1.4V0.2Cr0.4
活性好
用於:氫汽車儲氫,電池負極Ovinic
3.2配位氫化物儲氫
鹼金屬(Li,Na,K)或鹼土金屬(Mg,Ca)與第三主族元素(B,Al)形成
儲氫容量高
再氫化難(LiAlH4在TiCl3, TiCl4等催化下180℃ ,8MPa氫壓下獲得5%的可逆儲放氫容量)
金屬配位氫化物的的主要性能
℃
3.3碳納米管(CNTs)
1991年日本NEC公司Iijima教授發現CNTs
納米碳管儲氫-美學者Dillon1997首開先河
單壁納米碳管束TEM照片
多壁納米碳管TEM照片
納米碳管吸附儲氫:
Hydrogen storage capacities of CNTs and LaNi5 for comparison (data deternined by IMR,RT,10MPa)
納米碳管電化學儲氫
開口多壁MoS2納米管及其循環伏安分析
循環伏安曲線
納米碳管電化學儲氫
____________________________________________________
多壁納米碳管電極循環充放電曲線,經過100充放電後_ 保持最大容量的70%
單壁納米碳管循環充放電曲線,經過100充放電後 保持最大容量的80%
碳納米管電化學儲氫小結
__
_
純化處理後多壁納米碳管最大放電容量為 1157mAh/g,相當於4.1%重量儲氫容量.經過100充放電後,其仍保持最大容量的70%.
單壁納米碳管最大放電容量為503mAh/g,相當於1.84%重量儲氫容量.經過100充放電後,其仍保持最大容量的80%.
____
____
納米材料儲氫存在的問題:
世界范圍內所測儲氫量相差太大:0.01(wt ) %-67 (wt ) %,如何准確測定
儲氫機理如何
四,結束語-氫能離我們還有多遠
氫能作為最清潔的可再生能源,近10多年來發達國家高度重視,中國近年來也投入巨資進行相關技術開發研究
氫能汽車在發達國家已示範運行,中國也正在籌劃引進
氫能汽車商業化的障礙是成本高,高在氫氣的儲存
液氫和高壓氣氫不是商業化氫能汽車-安全性和成本
大多數儲氫合金自重大,壽命也是個問題;自重低的鎂基合金很難常溫儲放氫,位氫化物的可逆儲放氫等需進一步開發研究,
碳材料吸附儲氫受到重視,但基礎研究不夠,能否實用化還是個問號
氫能之路-前途光明,道路曲折!
❷ 貯氫合金的定義
一種能可逆貯存氫氣的貯氫合金,其組成是TiaVbCrcAldMe,式中M 為Cu,Fe,Co,Ni,Si,Sn,Mo,W中的至少一種元素或兩種元素,1.0≤a≤1.6,0.2≤b ≤1.0,1.0≤c≤1.6,0.01≤d≤0.5,0.01≤e≤0.5。本發明的貯氫合金可以用真空電弧爐及真空中頻感應爐熔煉,可以採用真空吸鑄的方法澆注。熔煉的合金易活化,最高貯氫容量達4.0wt%,合金適合用作氫氣凈化器合金和燃料電池氫源合金。
氫能是未來能源最佳選擇之一。氫能的利用涉及氫的儲存、輸運和使用。自20世紀60年代中期發現LaNi5和FeTi等金屬間化合物的可逆儲氫作用以來,儲氫合金及其應用研究得到迅速發展。儲氫合金能以金屬氫化物的形式吸收氫,是一種安全、經濟而有效的儲氫方法。金屬氫化物不僅具有儲氫特性,而且具有將化學能與熱能或機械能相互轉化的機能,從而能利用反應過程中的焓變開發熱能的化學儲存與輸送,有效利用各種廢熱形式的低質熱源。因此.儲氫合金的眾多應用己受到人們的待別關注。
❸ 儲能設備需要哪些原材料
儲能材料,具有能量儲存特性的材料。
它不僅能存儲能量,並且能使能量轉化,以供需用。最常見的儲能材料有儲氫合金和用於一次電池(即原電池,放電後不能復原使用)、二次電池(即蓄電池,放電後可重新充電復原反復使用)的材料。
常見的一次電池有鋅–二氧化錳電池、鋅–氧化汞電池、鋅–氧化銀電池和鋰電池等。
常見的二次電池為鉛–酸電池、鎳–鎘電池、鎳–鋅電池和鎳–氫化合物電池、鈉–硫電池、鋰離子電池等。
儲氫合金及其應用
氫是自然界中儲量最大的元素,也是一種非常清潔的能源。儲氫合金所存儲的氫的密度比液態氫大得多(液氫的密度為4.2×1022大氣壓/厘米3,而LaNi5的氫密度為6.2×1022大氣壓/厘米3),並且釋放氫時所需的能量很小。
儲氫合金的工作壓力很低,操作簡單安全可靠。研發中的儲氫合金體系有AB5型混合稀土合金、AB2型Laves相合金、AB型鈦鐵系合金、A2B型Mg–Ni系合金和釩基固溶體合金等。
儲氫合金與氣體氫發生反應時生成金屬氫化合物,大量的氫以固態形式儲存於儲氫合金中。
儲氫合金的吸氫與放氫,實際上就是金屬氫化物的形成與分解。
儲氫合金的基本特徵是:能可逆地大量吸氫和放氫,伴隨著吸(放)氫過程出現放(吸)熱效應,對氫能選擇性地吸收,吸放氫的平衡壓力隨溫度急劇變化。
儲氫合金可用於鎳–氫化合物電池、氫的儲存和凈化、氫同位素分離、氫氣回收、熱泵、製冷等。
在儲能方面儲氫合金的應用主要有以下兩方面:①鎳–金屬氫化合物電池材料。這是一種以儲氫合金作為負極材料的新型二次電池,其能量密度比鎳–鎘電池高1.5~2.0倍,且無鎘的污染環境問題。所以,作為鎳–鎘電池的替代電池,已廣泛應用作各種攜帶型電子器具、移動通信、計算機等的電源。殲兆在各種儲氫合金中,AB5型混合稀土合金具有優良的性能價格比,作為負極材料廣泛應用於鎳–金屬氫化合物電池。
②氫燃料儲存器材料。氫的熱值高,易點燃,燃燒時無有害氣體和灰渣產生,是理想的環保能源之一。
由於燃油汽車對都市環境造成危害,因而氫燃料汽車的發展備受重視。AB5型混合稀土合金是廣泛應用的儲氫材料,為提高其性能,對其化學組成和組織結構優化不斷地開展著研究。
鋰電池與鋰離子電池材料
作為一次電池的鋰電池,是一種以鋰作為負極活性物質的化學電池。由於金屬鋰的電極電位最負(?3.03伏),並且鋰的密度很小,鋰電池具有很高的能量密度,它是高能電池的重要品種。自20世紀70年代以來,以金屬鋰為負極的各種高比能鋰一次電池相繼問世,獲得了廣泛應用。
其中以層狀化合物γ·β二氧化錳作正極,以鋰作負極和以有機電解液構成的鋰電池獲得最廣泛的應用。它是照相機、電子手錶、計算器等各種具有存儲功能電子器件或裝置的理想電源。此外,還開發出鋰–聚氟化碳電池、鋰–二氧化硫電池、鋰–硫化銅電池、鋰–碘電池等。鋰離子電池為二次電池,其原理為電池充電時鋰離子從正極脫嵌,通過電解質和隔膜,嵌入負極中,反困鬧之當電池放電時鋰離子又從負極中脫嵌,通過電解質和隔膜,重新嵌入到正極中。
由於鋰離子在正負極中有固定的空間和位置,因此,電池有很好的可逆性,其電容量大並且具有長循環壽命和安全性。鋰離子電池的正極材料包括氧化鈷鋰(LiCoO2)、氧化鎳鋰(LiNiO2)氏尺租、氧化錳鋰(LiMn2O4)等材料。而負極材料為碳材料。作為正極材料的導電聚合物的研究也受到重視。電解質的作用為在電池的正負極間形成良好的離子導電通道。
常用的電解質是由有機溶劑和鋰鹽構成的。
聚合物電解質是目前很重要的研發方向,因它有利於實現電池的小型化。自1990年鋰離子電池問世以來發展迅猛,它能滿足移動通信、筆記本電腦等對電源小型化、輕量化、工作時間長和對環境無污染的要求。鈉–硫電池材料這是一種新型高溫固體電解質二次電池,其負極和正極分別為熔融的金屬鈉和硫,其電解質為β–氧化鋁。鈉–硫電池的工作溫度為300~350℃,理論比能量很高(790瓦·時/千克),充放電循環壽命長(900次),並且電池所用的原材料豐富,成本低。
此種電池很受重視,目前仍處於研發中,以期用於電動汽車的動力源等。
❹ 用什麼材料可以儲存氫氣
1、合金儲氫材料
在一定溫度和氫氣壓力下,能可逆地大量吸收、儲存和釋放氫氣的金屬間化合物。
按儲氫合金金屬組成元素的數目劃分,可分為:二元系、三元系和多元系;按儲氫合金材料的主要金屬元素區分,可分為:稀土系、鎂系、鈦系、釩基固溶體、鋯系等;而組成儲氫合金的金屬可分為吸氫類(用A表示)和不吸氫類(用B表示),據此又可將儲氫合金分為:AB5型、AB2型、AB型、A2B型。
2、無機物及有機物儲氫材料
有機物儲氫技術始於 20 世紀 80 年代。有機物儲氫是藉助不飽和液體有機物與氫的一對可逆反應,即利用催化加氫和脫氫的可逆反應來實現。加氫反應實現氫的儲存(化學鍵合),脫氫反應實現氫的釋放。
3、納米儲氫材料
納米材料由於具有量子尺寸效應、小尺寸效應及表面效應,呈現出許多特有的物理、化學性質, 成為物理、化學、材料等學科研究的前沿領域。儲氫合金納米化後同樣出現了許多新的熱力學和動力學特性, 如活化性能明顯提高, 具有更高的氫擴散系數和優良的吸放氫動力學性能。
4、碳質材料儲氫
吸附儲氫具有安全可靠和儲存效率高等優點。而在吸附儲氫的材料中,碳質材料是最好的吸附劑,不僅對少數的氣體雜質不敏感,而且可反復使用。碳質儲氫材料主要是高比表面積活性炭(AC)、石墨納米纖維(GNF)、碳納米管(CNT)。
5、配位氫化物儲氫
配位氫化物儲氫是利用鹼金屬(Li、Na、K等)或鹼土金屬(Mg、Ca等)與第三主族元素可與氫形成配位氫化物的性質。其與金屬氫化物之間的主要區別在於吸氫過程中向離子或共價化合物的轉變,而金屬氫化物中的氫以原子狀態儲存於合金中。
6、水合物儲氫
氣體水合物,又稱孔穴形水合物,是一種類冰狀晶體,由水分子通過氫鍵形成的主體空穴在很弱的范德華力作用下包含客體分子組成。
(4)哪些元素適合做貯氫合金擴展閱讀
氫氣可以用作燃料,具有下列特點:
優點
1、資源豐富。以水為原料,電解便可獲得。水資源在地球上相對主要燃料石油,煤也較豐富。
2、熱值高。氫燃燒的熱值高居各種燃料之冠,據測定,每千克氫燃燒放出的熱量為1.4*10^8J,為石油熱值的3倍多。因此,它貯存體積小,攜帶量大,行程遠。
3、氫為燃料最潔凈。氫的燃燒產物是水,對環境不產生任何污染。
缺點
氫氣要安全儲藏和運輸並不容易,它重量輕、難捉摸、擴散速度快,需低溫液化,會導致閥門堵塞並形成不必要的壓力。
❺ 儲氫合金都包括哪些金屬
主要包括元素周期表中鎳附近的金屬,如鉑、銠等。
❻ 常用的儲氫材料有哪些
已實用和研究發展中的貯氫材料主要有:
①鎂系貯氫合金。主要有鎂鎳、鎂銅、鎂鐵、鎂鈦等合金。具有貯氫能力大(可達材料自重的5.1%~5.8%)、價廉等優點,缺點是易腐蝕所以壽命短,放氫時需要250℃以上高溫。
②稀土系貯氫合金。主要是鑭鎳合金,其吸氫性好,容易活化,在40℃以上放氫速度好,但成本高。
③鈦系貯氫合金。有鈦錳、鈦鉻、鈦鎳、鈦鐵、鈦鈮、鈦鋯、鈦銅及鈦錳氮、鈦錳鉻、鈦鋯鉻錳等合金。其成本低,吸氫量大,室溫下易活化,適於大量應用。
❼ 儲氫材料有哪些高中
主要有:
1、鎂系貯氫合金。主要有鎂鎳、鎂銅、鎂鐵、鎂鈦等合金。具有貯氫能力大(可達材料自重的5.1%~5.8%)、價廉等優點,缺點是易腐蝕所以壽命短,放氫時需要250℃以上高溫。
2、稀土系貯氫合金。主要是鑭鎳合金,其吸氫性好,容易活化,在40℃以上放氫速度好,但成本高。
氫
是一種化學元素,元素符號H,在元素周期表中位於第一位。氫通常的單質形態是氫氣,無色無味無臭,是一種極易燃燒的由雙原子分子組成的氣體,氫氣是最輕的氣體。醫學上用氫氣來治療疾病。
氫氣的爆炸極限為4.0~74.2%(氫氣的體積占混合氣總體積比)。