㈠ 鋁合金變質劑分類及原理舉例說明。
鑄造鋁合金中的共晶硅相在自然生長條件下會長成片狀。這種形狀的脆性相嚴重地割裂了基體,降低了合金的強度和塑性,因而需要使之改變成有利的形態。變質處理是改善共晶硅形態的有效途徑。
變質處理
1.鈉變質處理
(1)金屬鈉變質 直接將金屬鈉加入鋁液中,將使共晶硅變質。國內鈉的加入量為0.1%(質量分數)左右,將其壓入靠近坩堝底部, 1 ~ 2min反應完畢。因鈉的沸點低、活潑,處理時將引起鋁液沸騰和飛濺。鈉極易與水反應,生成氧化鈉和[H],造成不良影響。鈉的密度小,容易產生密度偏析,結果坩堝的上部鋁液中鈉量過多,造成過變質現象;而下部的鋁液,因鈉量過低而變質不足,因此,要注意攪拌。目前該工藝應用較少。
(2)鈉鹽變質 目前在生產中應用廣泛的鈉變質劑是含氟化物的鈉鹽和鉀鹽,起變質作用的主要是NaF。
鈉變質處理過程中,要注意防止過變質組織的出現,否則會對性能產生不利影響。出現過變質組織是鈉在局部區域含量過高所致。其主要原因是:沒有採取細化初晶α的處理,變質劑易分解,且處理溫度偏高或變質元素在鋁液中產生偏析,從而使初晶α相集聚,於是造成初晶α間隙中鈉含量過高,致使過變質帶出現。
如果變質溫度低,則反應速度慢,變質反應時間長。一般操作為:撒上變質劑,覆蓋10~15min後,攪拌2min;或覆蓋10~15min後,將已結殼的變質劑壓入鋁液內2~3min。其變質效果可維持30~4Omin。
鈉鹽變質的缺點為:加入量較大,能耗大,變質反應時間較長,對坩堝有一定的腐蝕作用。
近年來發展了雙色質塊。它分為上下兩層,以顏色區分,上層熔點高,在鋁液保溫停留時,以一定速度向鋁液提供鈉,使之不衰退;下層熔點低,反應速度快,使鋁液在15min之內達到變質。這樣,可維持變質時間2~3h,加入的質量分數為1.2% -1.3%,可滿足低壓鑄造和金屬型小件鑄造的工藝要求。
(3)無毒變質劑 為了減少公害,應盡量少用或不用氟鹽做變質劑。國內相繼出現了幾種無毒變質劑,其中一種是在750℃時發生反應而生成鈉,使合金液變質:
Na2C03 = Na20 + CO2
Na20 + Mg = MgO + 2Na
CO2 + 2Mg = 2MgO + C
Na2C03 + 3Mg = 3MgO + 2Na + C
無毒變質劑是否對鋁液有氧化作用,有待深入研究。
2.鍶變質處理
近十年來,鍶變質劑獲得了廣泛應用,似具有取代鈉變質劑的趨勢。
鍶變質劑與鈉鹽變質劑具有同等效果。但鍶變質具有以下主要優點:氧化少,易於加入和控制,過變質問題少;鍶不易揮發,故可延長變質的有效時間;處理方便,無蒸氣析出;變質劑易於保存;處理後,合金流動性好,對鑄件壁厚的敏感性小。
由於鍶的密度比鋁液大,故呈懸浮狀態沉澱,與鋁液接觸時間長,利用率可達60%~90%。通常較為合理的含量是0.01%~0.02%(質量分數)。若質量分數超過0.03%,則在共晶區內以初晶析出Al4SrSi4;若質量分數超過0.08%,則對伸長率影響很大。鍶吸收氫氣傾向大,處理後應脫氣。因與氯氣的反應激烈,所以應選用氮氣除氫。為了變質處理更有效,必須有一定的保持時間,這取決於中間合金中的Al4Sr的含量。日本開發了一種含Sr90%、Al10%(質量分數)的Ohromasco新型中間合金,用於生產效果極好。經鍶變質劑處理後的鋁合金,在重熔處理後,變質效果不會有明顯的損失,可以獲得永久性變質處理的效果。
Faderal.Mogul公司用鍶做變質劑,每月生產24000隻活塞。採用容量27t的熔煉爐熔化的鋁液經過和含氮87%、含氯13%(體積分數)的混合氣體,在容量為900kg的澆包中脫氣,然後轉入保溫爐,加入Al-Si-Sr(質量分數
為14%Si,10%Sr)中間合金,在676℃加入時,流動性提高17%,而在665℃加入時,流動性可提高32.5%。因此,鍶變質可降低鋁液澆注溫度。
俄羅斯使用長效變質劑處理AJI4合金液,其中以Al-Sr中間合金的方式最合理、方便,變質效果最好,主要表現為提高了鑄件力學性能,延長了有效變質時間。工藝如下:經氮氣精煉後在720 ~ 740℃用鍾罩壓入,Al-Sr中間合金塊度5 ~ 15mm,加入含Sr30%(質量分數)的Al-Sr中間合金,經20 ~ 25min澆注,鋁液保持6h,每隔1h取樣一次。Al-Sr30%中間合金加入量為金屬液質量的0.05%~ 0.07%,Al-Sr54%的中間合金加入量以0.06% ~0.08%最佳。鑄件經T6處理,抗拉強度250 ~ 280MPa;伸長率4% ~6%;硬度70 ~ 90HBS。
國內的生產經驗表明,加入ωSr=0.02% ~ 0.03%可獲得良好的變質效果。生產上多用Al-Sr(ωSr=10%)或Al-Si-Sr(ωSr=10%)合金形式加入。變質溫度為720 ~ 730℃。
鍶是長效變質劑,變質有效時間達6-8h,重熔後仍有變質效果,無過變質現象。變質後,鋁液流動性有所下降,故澆注溫度要適當提高。鍶變質的鋁液針孔傾向較大,當鋁液中存在氯、氟和磷時,與鍶起反應,使變質作用消失,故不能用氯鹽和氟鹽精煉,不能用含磷的回爐料。
3.稀土變質處理
加入0.03% - 0.05%(質量分數)的La、Eu、Ce或混合稀土金屬,可使Al-Si合金的共晶硅變質,其變質壽命較長。生產中多以混合稀土合金的中間合金形式加入,加入量為0.2%-0.3%(質量分數),這些合金同時兼有凈化鋁液作用。變質和精煉需要30~40min的孕育期。可以將稀土變質劑同爐料一起投入。變質溫度720~740℃。使用回爐料時,要考慮其中的稀土含量。稀土變質劑對坩堝無腐蝕作用,能改善鋁液的流動性。
4.銻變質處理
向合金中加入ωSb=0.1% ~0.5%的銻,使共晶硅細化,習慣上稱為銻變質。變質溫度720 ~ 740℃,變質處理存在約15 ~ 20min的孕育期,生產上多以Al-Sb(ωSb=5%~8%)合金加入。
銻是長效變質劑,變質壽命約100h,重熔後,仍有變質效果,對坩堝無腐蝕作用,鋁液氧化吸氣傾向小,不影響鋁液的流動性。
應注意防止密度偏析。此外,鈉能中和銻的變質作用:
Sh+3Na=Na3Sb
所以不能將鈉與銻復合使用。
銻變質對冷卻速度敏感,冷卻速度快時,變質效果顯著,故銻變質適用於金屬型鑄造。
除上述幾種元素外,鋇、鉍等也有變質作用,這里不作敘述。
變質機理
變質的機理是多年來國內外學者致力研究的一個理論問題。深入了解變質過程中硅相的生長方式以及變質處理如何使這種生長方式得以改變,對於發展變質處理技術,無疑具有重要的作用。早期的變質處理理論常常是根據變質處理過程的一些現象來分析和臆斷,難免與真實不符或片面。近年來由於晶體學理論的發展和電子顯微鏡等近代實驗技術的應用,才有可能建立科學的變質理論。
1.早期的變質機理學說
早期的學說認為變質是由於Na增大合金結晶過冷度的作用。在通常的Al-Si合金中常含有微量的P,在未經變質前以AlP化合物形式存在。這種化合物的晶格結構與硅相同,都屬於金剛石型,且晶格常數也相近(AlP的晶格常數為0.545μm,而Si為0.542μm,兩者的失配度僅為0.5%),因而兩者之間存在有共格關系。Si原子在鋁液中又有很高的擴散速度,因而在共晶結晶過程中,Si即以AlP為晶核而在其上迅速長大。加Na變質後發生AlP + 3Na→Al + Na3P,生成的Na3P則與Si的晶格不同。因而變質處理的作用是消除了鋁液中固有的晶核,從而使合金過冷至更低的溫度才開始以均質形核為特徵的結晶過程。在大的結晶過冷條件下形成大量的Si的均質晶核,因而使共晶硅細化。結晶過冷學說是從形核的角度來闡述變質的效果,但不能說明變質處理前後硅的共晶晶體形狀發生的根本變化。
吸附薄膜學說認為,Na的變質作用是在Si的晶體表面形成一層對Si晶體生長起阻礙作用的Na的吸附薄膜。Na是表面活性元素,當鋁液中生成Si晶體後,Na原子即富集在Si晶體與鋁液的界面上,形成正吸附。由於表面活性元素的吸附有選擇性,使得Si在不同的生長方向受到不同程度的抑制,在Si晶體的主要生長方向受到Na吸附薄膜的阻礙作用比其他方向更大,因而使得共晶硅成長為顆粒狀。吸附薄膜學說雖比結晶過冷學說前進了一步,但仍未能正確闡明硅晶體的生長機制以及Na變質對於生長機制的影響。近年來,用深腐蝕方法顯示鋁硅合金中共晶硅的空間形狀,並用掃描電子顯微鏡進行觀察發現,在Na變質的鋁硅合金的金相磨面上觀察到的大量細小的共晶硅顆粒原來是帶有很多細小晶枝的硅晶體的剖面,而不是單獨的細小晶粒,因此這一學說也未能反映真實的情況。
2.近期的變質機理學說
近年來國內外有兩種具有代表性的變質機理學說,即孿晶凹谷(TPRE)機制學說和界面台階機制學說。
(1)孿晶凹谷機制學說 孿晶凹谷機制學說的要點如下:
1)硅的晶體結構特性與孿晶凹谷生長機制。硅的晶體屬於金剛石立方型晶體結構(如下圖)。由於晶體結構的特性使得晶體的生長是各向異性的,其中生長最慢的方向是垂直於最密排的(111)晶面的,即沿[111]晶向,而沿較不密排晶面的[211]系列的晶向則生長得較快。而且在硅晶體生長中易於沿(111)晶面長成孿晶,並且在孿晶的結晶前沿形成141°的凹谷。此凹谷處有較低的能位,容易接鈉鋁液中的Si原子或由Si原子構成的四面體,這樣就更加速了沿[211]晶向的生長速度,從而促使硅晶體長成片狀,可能是單片,也可能是出於同一結晶核心而以輻射狀向四周伸展的一組矽片。但無論是單片或組片,矽片的面是與晶體的(111)晶面平行的。
a) 硅四面體(剖面線所示面為(111)晶面) b) 金剛石立方晶體中的多層孿晶
然而硅晶體的片狀生長並不是一成不變的,在生長過程中會產生分枝和改變生長方向。分枝經常是產生70.5°的方向改變,形成的枝晶仍保持沿[211]晶向的擇優生長趨勢。至於產生分枝的驅動力則是由於當硅晶體以輻射狀向外生長時,硅晶體生長端之間的距離不斷增加,造成原子擴散距離變長,而分枝則使其縮短,從而有利於晶體的生長。至於晶體不斷改變生長方向則是由於重復產生晶體分枝的結果。
硅晶體產生分枝和改變生長方向的傾向與合金的結晶過冷度及硅晶體生長的孿晶凹谷生長機制是否受到抑制有關。在結晶過冷度極小和孿晶凹谷機制不受阻礙時,硅晶體將一直向前伸展而不產生分枝或變更生長方向;反之則會產生分枝或變更方向,由此就產生兩種變質方法,即激冷變質和微量元素變質。用Na或Sr對鋁硅合金的變質,即屬於微量元素變質。
2)Na的變質作用。用Na進行變質處理後,鋁液中含有大量Na原子。由於Na原子的選擇性吸附,使硅晶體生長前端的孿晶凹谷處富集有Na的原子,從而降低了硅原子或硅原子四面體長上去的速度,因而使孿晶凹谷生長機制受到抑制。當這種機制被有效地抑制時,硅晶體的生長方向即改變晶向。這樣就使得硅晶體由片狀變為圓斷面的纖維狀。孿晶凹谷生長機制的抑制,也促進了硅晶體的分枝,因而Na變質使共晶硅由片狀變成高度分枝的、彎曲而具有圓斷面的纖維狀。
硅晶體生長機制的改變導致了AI-Si共晶體生長方式的變化。在未經變質條件下,硅與鋁的共晶結晶屬於小晶面/非小晶面共生方式。作為小晶面相的硅具有比鋁快得多的生長速率,因而固-液界面是不平滑的,硅晶體總是有一段超前距離。在這種生長條件下,共晶體的形態由主導相硅相所決定。經過Na變質後,由於生長機制的改變,硅晶體的生長速率比在未變質條件下大為降低,國-液界面是平滑的,硅相的超前量為零,硅相由小平面型生長變為非小平面型生長。硅相與鋁相伴同生長的結果形成互相協調的共晶組織。
3)激冷變質與微量元素變質的復合作用。採用激冷變質,即通過加大冷卻速率,增大硅晶體生長前沿處的過冷度,也能收到一定的變質效果。激冷變質的作用在於改變共晶兩相的擴散速率,因而使鋁相生長速率的降低程度比硅相小。同時硅相的小晶面結晶傾向隨過冷度的增加而減小,因而當達到一定的臨界轉變溫度時,能形成纖維狀生長方式。增大結晶過冷度也有利於促進密集分枝。微量元素變質與激冷變質具有復合的作用。如經過同樣變質處理的鋁液,在薄壁鑄件上產生的變質效果比厚壁鑄件大。又如金屬型鑄造時,輔之以Na變質,可使纖維狀硅晶體進一步細化,而使合金的力學性能得到進一步的提高。
(2)界面台階機制學說 界面台階機制學說的要點如下:
1)界面台階生長源。這種理論根據試驗研究結果指出,在未經變質的鋁硅合金中,生長中的硅晶體表面上只是偶然地存在有孿晶,其密度極小。而在晶體生長前沿上,存在很多固有的界面台階。這些台階提供了適於接鈉鋁液中硅原子或硅原子八面體的場所,從而使硅晶體擇優生長成為板片狀。當通過激冷變質時,可供共晶硅細化,並促進密集分枝,使之呈纖維狀生長。由於過冷度增大,硅晶體生長的各向異性受到抑制,因而晶體的橫斷面近似於圓形。盡管如此,硅晶體的生長機制並未因激冷而發生根本的變化,仍是以界面台階作為生長源。
2)Na的變質作用。當將鋁硅合金用Na(或Sr等)變質劑進行變質處理後,硅晶體的生長動力學發生了根本的變化。其一是Na原子吸附於硅晶體生長前沿的界面台階處,"毒化"了界面台階生長源,使之不能再起接鈉硅原子的作用;其二是由於Na變質處理的作用,在硅晶體表面上產生了高密度的孿晶(稱為誘發孿晶),而由孿晶凹谷代替界面台階來接納硅原子,從而構成硅晶體的生長源,即TPRE機制在硅晶體生長過程中起統治作用。
這種理論將誘發孿晶的產生歸因於吸附Na原子使相鄰晶面上Si原子的排列發生變化。Na原子吸附在硅晶體生長前沿處的密排,由於與Si原子在尺寸上的差別,使得該層原子的排列發生變化,從而在與其相垂直酌面上形成孿晶。根據理論計算,當尺寸因數即r變質劑/rSi = 1.648時,最適於形成孿晶。實際上,尺寸因數與這一理論值相接近的元素(Na為1.58)均有誘發孿晶的條件。
3)變質處理條件下硅晶體的結構。變質處理後,硅晶體按照孿晶凹谷機制生長的結構中,晶體主幹沿[100]晶向生長,而分枝則沿[211]晶向(多數情況下有四個對稱的晶枝在空間中互成90°)生長。這種理論認為,變質處理並不使硅的小晶面生長方式有所改變。同時,硅晶體的生長仍保留其各向異性的特徵,表現在硅晶體(包括主幹和晶枝)的橫斷面仍為片狀。
上面介紹的關於共晶硅生長的兩種機制理論-孿晶凹谷生長機制和界面台階生長機制都有大量試驗研究作為依據,具有可信性。但兩種理論中有一些方面是不一致的,因而關於這一理論問題,還有必要作進一步的研究。
變質效果檢驗
1.斷口檢驗
用砂型或金屬型澆注φ20mm的圓棒,凝固冷卻後擊斷,觀察其斷口。如果斷口呈銀白色,晶粒細小,呈絲絨狀,無硅相的小亮點,則表明變質良好;若斷口呈暗灰色,晶粒粗大,有明顯的硅相亮點,則表明變質不足,需要再次變質。
2.熱分析法
根據各變質元素對AI-Si合金凝固特性的影響不同,可以通過熱分析曲線加以判別。
(1)鈉和鍶的變質檢驗 鈉變質鋁液的冷卻曲線特點是:①共晶平台的溫度比未變質要低8℃左右;②典型的共晶平台表現為兩個階段,先是偽平台(pseudo-shelf),而後轉為真正的平台,約565℃。鍶變質的過冷度約4℃。
(2)銻變質的檢驗 銻變質引起冷卻曲線的過冷度較小,約2 ~ 3℃,處於一般熱電偶的誤差范圍之內,因此影響了測報率。可用凝固時間作為銻變質程度的判據。對一定成分的合金和在一定的凝固條件下,存在著一個臨界的凝固時間,若共晶凝固時間<臨界的凝固時間,則變質;否則變質不良或不變質。
㈡ 鋁合金門窗時間長了會發黑,怎麼擦都擦不掉,請介紹一種高效的清洗 方法,試用滿意再講50分,說到做到。
可以先用潔廁凈等洗干凈,再用碧麗珠噴幾下,擦擦應該會光澤很多。
如果是用了十幾二十年褪色的話,那隻能更換了。
㈢ 買了一個茶水櫃用了不到3個月,那些架子就是那些鋁材已經開始發黑色,這是怎麼回事
你一定是買的劣質的鋁合金茶水櫃碗櫃。優質的鋁合金茶水櫃碗櫃產品是採用拋光過的能抗氧化的鋁合金成型鋁管製造的。現在有些鋁合金組合櫃廠家為了節約成本,採用未拋光,沒有進行過抗氧化處理的鋁合金管來生產。組成的櫃子在一段時間內基本沒問題。但是經過幾個月的使用後,鋁管與空氣中的水份發生作用,就會開始氧化腐蝕鋁管,鋁管就會有發黑發霉的現象,擦洗不掉的。
優質鋁合金櫃與劣質的鋁合金櫃還有其他很多方面的差別:
1 板材:優質櫃用密度板纖維板,劣質櫃用刨花板蔗渣板;
2 鋁管:優質櫃用抗氧化鋁管,厚度也足夠,劣質櫃採用未氧化鋁管,管壁薄弱;
3 膠頭:優質櫃用新料,顏色光亮,劣質櫃用回收料,顏色暗淡;
4 尺寸:優質櫃尺寸與行業規格相差小,劣質櫃尺寸與行業規格相差大;
5 門料:優質櫃門料中間有帶遮門縫邊條設計,劣質櫃沒有;
6 顏色:優質櫃面板顏色清晰,鮮亮,劣質櫃面板顏色模糊,暗淡。
佛山市順德區海葉傢具廠生產的鋁合金茶水櫃是優質櫃,產品扎實牢固,用料十足,做工精細,經久耐用。網路搜索海葉傢具廠即可了解更多詳細信息。
㈣ 鑄造鋁合金的缺陷分析
缺陷特徵:氧化夾渣多分布在鑄件的上表面,在鑄型不通氣的轉角部位。斷口多呈灰白色或黃色,經x光透視或在機械加工時發現,也可在鹼洗、酸洗或陽極化時發現
產生原因:
1.爐料不清潔,回爐料使用量過多
2.澆注系統設計不良
3.合金液中的熔渣未清除干凈
4.澆注操作不當,帶入夾渣
5.精煉變質處理後靜置時間不夠
防止方法:
1.爐料應經過吹砂,回爐料的使用量適當降低
2.改進澆注系統設計,提高其擋渣能力
3.採用適當的熔劑去渣
4.澆注時應當平穩並應注意擋渣
5.精煉後澆注前合金液應靜置一定時間 缺陷特徵:三鑄件壁內氣孔一般呈圓形或橢圓形,具有光滑的表面,一般是發亮的氧化皮,有時呈油黃色。表面氣孔、氣泡可通過噴砂發現,內部氣孔 氣泡可通過X光透視或機械加工發現氣孔 氣泡在X光底片上呈黑色。
產生原因:
1.澆注合金不平穩,捲入氣體
2.型(芯)砂中混入有機雜質(如煤屑、草根 馬糞等)
3.鑄型和砂芯通氣不良
4.冷鐵表面有縮孔
5.澆注系統設計不良
防止方法 :
1.正確掌握澆注速度,避免捲入氣體。
2.型(芯)砂中不得混入有機雜質以減少造型材料的發氣量
3.改善(芯)砂的排氣能力
4.正確選用及處理冷鐵
5.改進澆注系統設計 缺陷特徵:鋁鑄件縮松一般產生在內澆道附近飛冒口根部厚大部位、壁的厚薄轉接處和具有大平面的薄壁處。在鑄態時斷口為灰色,淺黃色經熱處理後為灰白淺黃或灰黑色在x光底片上呈雲霧狀嚴重的呈絲狀縮松可通過X光、熒光低倍 斷口等檢查方法發現。
產生原因:
1.冒口補縮作用差
2.爐料含氣量太多
3.內澆道附近過熱
4.砂型水分過多,砂芯未烘乾
5.合金晶粒粗大
6.鑄件在鑄型中的位置不當
7.澆注溫度過高,澆注速度太快
防止方法:
1.從冒口補澆金屬液,改進冒口設計
2.爐料應清潔無腐蝕
3.鑄件縮松處設置冒口,安放冷鐵或冷鐵與冒口聯用
4.控制型砂水分,和砂芯乾燥
5.採取細化品粒的措施
6.改進鑄件在鑄型中的位置降低澆注溫度和澆注速度 缺陷特徵 :
1.鑄造裂紋。沿晶界發展,常伴有偏析,是一種在較高溫度下形成的裂紋在體積收縮較大的合金和形狀較復雜的鑄件容易出現
2.熱處理裂紋:由於熱處理過燒或過熱引起,常呈穿晶裂紋。常在產生應力和熱膨張系數較大的合金冷卻過劇。或存在其他冶金缺陷時產生
產生原因:
1.鑄件結構設計不合理,有尖角,壁的厚薄變化過於懸殊
2.砂型(芯)退讓性不良
3.鑄型局部過熱
4.澆注溫度過高
5.自鑄型中取出鑄件過早
6.熱處理過熱或過燒,冷卻速度過激
防止方法:
1.改進鑄件結構設計,避免尖角,壁厚力求均勻,圓滑過渡
2.採取增大砂型(芯)退讓性的措施
3.保證鑄件各部分同時凝固或順序凝固,改進澆注系統設計
4.適當降低澆注溫度
5.控制鑄型冷卻出型時間
6.鑄件變形時採用熱校正法
7.正確控制熱處理溫度,降低淬火冷卻速度 壓鑄件缺陷中,出現最多的是氣孔。
氣孔特徵。有光滑的表面,形狀是圓形或橢圓形。表現形式可以在鑄件表面、或皮下針孔、也可能在鑄件內部。
(1)氣體來源
1) 合金液析出氣體—a與原材料有關 b與熔煉工藝有關
2) 壓鑄過程中捲入氣體¬—a與壓鑄工藝參數有關 b與模具結構有關
3) 脫模劑分解產生氣體¬—a與塗料本身特性有關 b與噴塗工藝有關
(2)原材料及熔煉過程產生氣體分析
鋁液中的氣體主要是氫,約佔了氣體總量的85%。
熔煉溫度越高,氫在鋁液中溶解度越高,但在固態鋁中溶解度非常低,因此在凝固過程中,氫析出形成氣孔。
氫的來源:
1) 大氣中水蒸氣,金屬液從潮濕空氣中吸氫。
2) 原材料本身含氫量,合金錠表面潮濕,回爐料臟,油污。
3) 工具、熔劑潮濕。
(3)壓鑄過程產生氣體分析 由於壓室、澆注系統、型腔均與大氣相通,而金屬液是以高壓、高速充填,如果不能實現有序、平穩的流動狀態,金屬液產生渦流,會把氣體卷進去。
壓鑄工藝制定需考慮以下問題:
1) 金屬液在澆注系統內能否干凈、平穩地流動,不會產生分離和渦流。
2) 有沒有尖角區或死亡區存在?
3) 澆注系統是否有截面積的變化?
4) 排氣槽、溢流槽位置是否正確?是否夠大?是否會被堵住?氣體能否有效、順暢排出?
應用計算機模擬充填過程,就是為了分析以上現象,以作判斷來選擇合理的工藝參數。
(4)塗料產生氣體分析 塗料性能:如發氣量大對鑄件氣孔率有直接影響。
噴塗工藝:使用量過多,造成氣體揮發量大,沖頭潤滑劑太多,或被燒焦,都是氣體的來源。
(5)解決壓鑄件氣孔的辦法
先分析出是什麼原因導致的氣孔,再來取相應的措施。
1) 乾燥、干凈的合金料。
2) 控制熔煉溫度,避免過熱,進行除氣處理。
3) 合理選擇壓鑄工藝參數,特別是壓射速度。調整高速切換起點。
4) 順序填充有利於型腔氣體排出,直澆道和橫澆道有足夠的長度(>50mm),以利於合金液平穩流動和氣體有機會排出。可改變澆口厚度、澆口方向、在形成氣孔的位置設置溢流槽、排氣槽。溢流品截面積總和不能小於內澆口截面積總和的60%,否則排渣效果差。
5) 選擇性能好的塗料及控制噴塗量。
㈤ 鋁件本色陽極氧化後顏色發灰黑色怎麼回事
發灰發黑色是陽極化的時間太長,導致表面氧化膜太厚造成的。如果不著色的情況下。普通陽極氧化20MU以下是白色。大於25後就會變成灰色跟深綠色。發灰發黑是時間長了,厚度比較大的原因導致的。
陽極氧化原理:
鋁的陽極氧化是一種電解氧化過程,在該過程中,鋁和鋁合金的表面通常轉化為一層氧化膜,這層氧化膜具有保護性、裝飾性以及一些其他的功能特性。從這個定義出發的鋁的陽極氧化,只包括生成陽極氧化膜這一部分工藝過程。
一般來講陽極都是用鋁或者鋁合金當作陽極,陰極則選取鉛板,把鋁和鉛板一起放在水溶液,這裡面有硫酸、草酸、鉻酸等,進行電解,讓鋁和鉛板的表面形成一種氧化膜。在這些酸中,最為廣泛的是用硫酸進行的陽極氧化。
㈥ 鋁合金壓鑄件常見缺陷及產生原因
A、拉傷,沿開模方向鑄件表面呈現條狀的拉傷痕跡,有一定的深度,嚴重時為一面狀傷痕。另一種是金屬液與模具產生焊合,粘附而拉傷。以致鑄件表面多肉或缺肉。
產生原因:型腔表面有損傷,出模方向斜度太小或倒斜,頂出進偏斜,澆注溫度過高,模溫過高導致合金液產生粘附。脫模劑使用效果不好,鐵含量低於0。6%等。
B、氣泡:鋁合金壓鑄件表面有米粒大小的隆起也有皮下形成的空洞。
產生原因,合金液在壓室充滿度過低,易產生卷氣,壓射速度過高,模具排氣不良,熔液未除氣,熔煉溫度過高,模溫過高,金屬凝固時間不夠,強度不夠,而過早開模頂出鑄件,受壓氣體膨脹起來,脫模劑太多。
C、冷隔,壓鑄件表面有明顯的,不規則的、下陷線性紋路(有穿透與不穿透兩種)形狀細小而狹長,有時交接邊緣光滑,在外力作用下有發展的可能。
產生原因:兩股金屬流相互對接,但未完全熔合而又無夾雜存在其間,兩股金屬結合力奶薄弱。澆注溫茺或壓鑄模溫度偏低,選擇合金不當,流動性差,澆道位置不對或流路過長,真充速度低,壓射比壓低。
D、變色、斑點:鑄件表面上呈現出不同於基體金屬顏色。
產生原因:不合適的脫模劑,脫模劑使用量過多、過勤,含有石墨的潤滑劑中的石墨落入鑄件表面。
參考資料:http://wenku..com/link?url=-PfV5F_fax-