導航:首頁 > 合金材料 > 為什麼加工鈦合金用不等分刃型

為什麼加工鈦合金用不等分刃型

發布時間:2023-10-29 15:27:29

❶ 鈦合金的切削工藝措施有哪些

鈦合金以其比強度高、機械性能及抗蝕性良好而成為飛機及發動機理想的製造材料,但由於其切削性差,長期以來在很大程度上制約了它的使用。隨著工藝技術的發展,近年來鈦合金已廣泛使用於飛機發動機的壓氣機段、發動機罩、排氣裝置等零件的製造以及飛機的大梁隔框等結構框架件的製造。但是鈦合金導熱性差致使切削溫度很高,在切削過程中的這些特點使其變得十分困難,下面簡單介紹下鈦合金的各種切削工藝有哪些特點:
(1)車削工藝
鈦合金車削易獲得較好的表面粗糙度,硬化不嚴重,但切削溫度高刀具磨損快。針對這些特點主要在刀具、切削參數方面採取以下措施:合適的刀具前後角、刀尖磨圓、較低的切削速度、適中的進給量、較深的切削深度、專用切削油充分冷卻;車外圓時刀尖不能高於工件中心,否則容易扎刀;精車及車削薄壁件時,刀具主偏角要大。
(2)銑削工藝
鈦合金銑削比車削困難,因為銑削是斷續切削,並且切屑易與刀刃發生粘結,當粘屑的刀齒再次切入工件時,粘屑被碰掉並帶走一小塊刀具材料形成崩刃,極大地降低了刀具的耐用度。因此對鈦合金銑削採取措施:一般採用順銑、使用高速鋼刀具、使用專用鈦合金切削油、從工件裝夾及設備方面提高工藝系統剛性。
(3)磨削工藝
磨削鈦合金零件常見的問題是粘屑造成砂輪堵塞以及零件表面燒傷。其原因是鈦合金的導熱性差,使磨削區產生高溫,從而使鈦合金與磨料發生粘結、擴散以及強烈的化學反應。粘屑和砂輪堵塞導致磨削比顯著下降,擴散和化學反應的結果,使工件被磨表面燒傷,導致零件疲勞強度降低,這在磨削鈦合金鑄件時更為明顯。為解決這一問題採取的措施是:選用綠碳化硅砂輪材料、稍低的砂輪速度、稍小的進給量、用低粘度磨削油充分冷卻。
(4)鑽削工藝
鈦合金鑽削比較困難,常在過程中出現燒刀和斷鑽現象。這主要是由於鑽頭刃磨不良、排屑不及時、冷卻不佳以及工藝系統剛性差等幾方面原因造成的。因此在鈦合金鑽削加工中須注意以下幾點:選用高速鋼硬質合金刀具、勤退刀並及時清除切屑、使用專用深孔鑽切削油、提高工藝系統剛性。
(5)鉸削工藝
鈦合金鉸削時刀具磨損不嚴重,使用硬質合金和高速鋼鉸刀均可。使用硬質合金鉸刀時,要採取類似鑽削的工藝系統剛度,防止鉸刀崩刃。鈦合金鉸孔時出現的主要問題是鉸孔不光,可採取以下解決措施:修窄鉸刀刃帶寬度以免刃帶與孔壁粘結、切削刃磨損後要及時修磨、必要時可加大校準部分倒錐。
(6)攻絲工藝
鈦合金攻絲主要因為切屑細小,易與刀刃及工件粘結,造成表面粗糙度值大扭矩大。攻絲時絲錐選用不當及操作不當極易造成硬化,效率極低並時有絲錐折斷現象。其解決辦法如下:優先選用跳牙絲錐、切削錐部分磨出負傾角、先粗鑽再用擴孔鑽擴孔、盡量採用機攻避免硬化。

❷ 鈦合金的加工方式是什麼你知道嗎

鈦合金的硬度大於HB350時切削加工特別困難,小於HB300時則容易出現粘刀現象,也難於切削。但鈦合金的硬度只是難於切削加工的一個方面,關鍵在於鈦合金本身化學、物理、力學性能間的綜合對其切削加工性的影響。鈦合金有如下切削特點:變形系數小:這是鈦合金切削加工的顯著特點,變形系數小於或接近於1。切屑在前刀面上滑動摩擦的路程大大增大,加速刀具磨損。切削溫度高:由於鈦合金的導熱系數很小(只相當於45號鋼的1/5~1/7),切屑與前刀面的接觸長度極短,切削時產生的熱不易傳出,集中在切削區和切削刃附近的較小范圍內,切削溫度很高。在相同的切削條件下,切削溫度可比切削45號鋼時高出一倍以上。單位面積上的切削力大:主切削力比切鋼時約小20%,由於切屑與前刀面的接觸長度極短,單位接觸面積上的切削力大大增加,容易造成崩刃。同時,由於鈦合金的彈性模量小,加工時在徑向力作用下容易產生彎曲變形,引起振動,加大刀具磨損並影響零件的精度。因此,要求工藝系統應具有較好的剛性。

冷硬現象嚴重:由於鈦的化學活性大,在高的切削溫度下,很容易吸收空氣中的氧和氮形成硬而脆的外皮;同時切削過程中的塑性變形也會造成表面硬化。冷硬現象不僅會降低零件的疲勞強度,而且能加劇刀具磨損,是切削鈦合金時的一個很重要特點。刀具易磨損:毛坯經過沖壓、鍛造、熱軋等方法加工後,形成硬而脆的不均勻外皮,極易造成崩刃現象,使得切除硬皮成為鈦合金加工中最困難的工序。

❸ 鈦合金的銑削參數

鈦合金結構件中大量應用銑削加工,如零件內外型面。

刀具應選擇具有高硬度、高抗彎強度和韌性、耐磨性好、熱硬性好、工藝性好、散熱性好的材料,主要為高速鋼W6Mo5Cr4V2Al、W2Mo9Cr4VCo5(M42)和硬質合金YG8、K3O、Y330。 刀具幾何參數應以保證刀具強度高、剛性好、鋒利為原則,細長比不能過大,並分粗、精加工兩種,加工時最好採用順銑。銑削刀具參數見表1,常規加工銑削用量見表2。 銑削時必須注入充足的水溶性油質切削液來降低刀具和工件的溫度,切削液流量應不小於5L/min ,以延長刀具的使用壽命。

在上述常規加工的基礎上,為進一步提高銑削加工效率,我們在強力銑加工中心機床上進行了高效銑削試驗,獲得了較理想的切削用量、刀具和切削液,銑削用量數據見表3。 通過高效銑削與常規對比可以看出,高效銑削加工比常規加工效率提高了2~4倍,零件表面質量也得到較大的提高,加工周期大大縮短,製造成本相應降低。


❹ 鈦合金生產製造新方法——增材製造

增材製造技術的快速發展,為鈦合金的生產製造提供了新的方法,激光/電子束、熔焊和固態焊三種增材製造方法在鈦合金生產中得到了國內學者的廣泛研究。研究表明,鈦合金採用增材技術可得到高質量零件,但不同增材技術具有不同技術特徵,實際應用及未來發展中需要根據實際需求採用不同的增材方法。


1.序言


鈦及鈦合金因具有密度小、耐高溫、耐腐蝕等優異的物理性能及化學性能,在各工業領域都具有廣闊的應用前景,包括船舶製造、航天航空、汽車製造等,同時它也是國防工業的重要材料之一。鈦合金的應用對工業發展起到巨大的推動作用,優於傳統材料的性能使其產品質量有了很大提升,滿足了工業發展對新材料、新工藝的發展要求,加速了現代工業的發展。隨著鈦生產力的不斷改善,鈦合金已經成為工業生產中的第三金屬。


增材製造(Additive Manufacturing,AM)又稱「3D列印」,是一種可以實現構件的無模成形的數字化製造技術,具有設計和製造一體化、加工精度高、周期短,產品物理化學性能優異等特點。增材製造技術從20世紀70年代以來發展迅速,因其與傳統製造技術具有巨大差異,已然成為工業領域的研究熱點,在現代工業的多領域都得到了快速發展。


增材製造技術的迅速發展,理論上可以實現任何單一或多金屬復合結構,為復雜結構件的製造提供了新方法。鈦合金的增材製造技術,解決了精密結構件的加工難題,進一步加大了鈦合金的應用范圍。伴隨著工業社會的迅速發展,鈦合金增材製造技術日新月異,按照增材製造技術的熱源不同,可將鈦合金增材製造技術分為激光/電子束增材製造、熔焊增材製造和固態焊增材製造三種方式。國內外的專家學者通過不同的增材製造技術手段,優化工藝方法,穩定增材製造過程,減少或避免增材製造結構缺陷產生,使鈦合金增材製造技術朝著綠色、高效、穩定的方向繼續發展。


2. 激光/電子束增材製造


激光束和電子束作為高密度束源,能量密度高並可調控,被譽為21世紀最先進的製造技術。目前激光/電子束增材製造主要分為激光金屬沉積(Laser Mental Deposition,LMD)技術、激光選區熔化(Selective Laser Melting,SLM)技術、電子束熔絲沉積(Electron Beam Free Form Fabrication,EBF3)技術、電子束選區熔化(Electron BeamMelting,EBM)技術,在鈦合金增材製造領域皆有廣泛研究。


2.1 激光金屬沉積(LMD)


Mahamood等人採用LMD技術進行了Ti6Al4V/TiC 的功能梯度材料(Functionally gradedmaterials,FGM)研究,根據早期經驗模型進行工藝優化,獲得優化後的功能梯度材料,對其組織、顯微硬度、耐磨性進行表徵。研究結果表明,採用優化後工藝參數製造的功能梯度材料擁有更高的性能,硬度是基體硬度的4倍,高達1200HV。Silze等人利用新型半導體激光器採用LMD技術進行Ti6Al4V的增材製造試驗研究,LMD裝置是由6個200W半導體激光頭圓形環繞在進給槍上(見圖1),激光束直徑0.9mm,可以實現方向獨立的焊接工藝過程,顯微結構無缺陷。研究結果表明,隨著層間停留時間的延長,冷卻時間增加,晶粒厚度降低,有助於提高材料的力學性能,採用LMD技術增材製造均能滿足鍛造Ti6Al4V所規定的最低屈服強度和抗拉強度要求。


Heigel等人採用原位溫度、應力實時測量與熱機模型結合有限元熱-應力順序耦合模型的方式,研究了Ti6Al4V激光沉積增材製造過程中的熱、力演化過程,結果發現殘余應力最大力出現在增材層的中心下方,向兩側方向應力減小,隨著停留時間增加,層間溫度差變大,殘余應力增大。左士剛利用TA15鈦合金球形粉末採用激光沉積技術進行了TC17鈦合金增材修復製造過程研究,研究了修復件組織特性與力學性能影響規律。結果表明,採用激光沉積技術增材修復後的TA15/TC17修復件無焊接缺陷,修復件抗拉強度為1029MPa,採用退火處理後,力學性能明顯增強,抗拉強度基本可達TC17鍛件標准,伸長率優於標准。


綜上所述,對於鈦合金的LMD技術增材製造相對較為穩定,增材件力學性能基本滿足鍛件最低標准,對於某些特定需求鈦合金則要進行增材製造後熱處理的方式達到使用要求。


2.2 激光選區熔化(SLM)


唐思熠等人採用SLM技術制備Ti6Al4V鈦合金試樣(見圖2),並對微觀組織、力學性能和緻密化行為進行了分析研究。結果發現,激光功率從360W增加到400W時,緻密度提高明顯;在400W後繼續增加功率,緻密度受激光掃描速度的影響較大,最優工藝參數下的試樣質量遠高於鍛件標准。


Polozov等人採用SLM技術進行增材製造Ti-5Al、Ti-6Al-7Nb和Ti-22Al-25Nb塊狀合金,對Ti-Al-Nb系統進行退火處理,對試樣進行系統表徵研究。結果發現,Ti-5Al可以採用SLM增材製造成鈦合金,Ti-6Al-7Nb和Ti-22Al-25Nb則需要在1350℃下熱處理才能完全溶解Nb顆粒,但是此時樣品氧含量較高,力學性能降低。


Fan等人研究了SLM技術增材製造Ti-6Al-2Sn-4Zr-2Mo(Ti-6242)鈦合金在標准時效(595℃/8h)下的顯微組織穩定性。研究結果發現,隨著激光掃描速度的提高,相對密度增加到99.5%後急劇下降到大約95.7%,時效老化處理的Ti-6242相對剛製成的Ti-6242抗拉強度從1437MPa提升至1510MPa,延展性從5%降低到1.4%,同時硬度也從410HV增加到450HV,β相顆粒的沉澱硬化作用是產生這種變化的重要原因。


Ren等人採用SLM技術增材製造進行了Ti-Ni形狀記憶合金組織性能的研究工作,制備等原子Ti50Ni50(質量分數)樣品,結果發現,在激光功率為40J/mm3,掃描速度為1000mm/s下可製造幾乎完全緻密試樣,不同掃描速度對相組成、相變溫度和維氏硬度的影響作用有限,與傳統鑄件相比,SLM技術增材製造件擁有較高的真空壓縮和斷裂強度。


綜上所述,對於Ti6Al4V的SLM技術增材製造相對較容易實現,對於鈦與其他元素合金的SLM技術增材製造還需要做進一步地研究,需要進行預熱或者其他熱處理手段和進行氧含量的控制手段來增強其他鈦合金SLM技術增材製造的力學性能,獲得高質量的研究試樣。


2.3 電子束熔絲沉積(EBF3)


靳文穎研究了TC4鈦合金的電子束熔絲沉積增材修復技術,進行了普通TC4焊絲和自製TC4EH焊絲的增材修復性能對比。研究發現,採用自製TC4EH焊絲的抗拉強度(905.23MPa)明顯高於TC4普通焊絲(809.04MPa),硬度和沖擊韌度同樣較高,伸長率可達原材料的90%以上,具有優良的力學性能。


Chen等人進行了電子束熔絲沉積Ti6Al4V變形控制研究(見圖3),電子束以100~150mA之間的掃描電流和低於100mm/s的速度工作,則可以形成薄壁件,掃描形式對殘余應力分布影響不大,單向掃描變形更大,收縮變形在往返掃描情況下較為明顯,並且與電流變化成正比關系,同時,發現基板底部恆定溫度約束下,變形得到改善。


Yan等人研究了電子束熔絲沉積Ti6Al4V加強筋的殘余應力與變形,研究發現,兩個加強筋都對板產生不利的變形,縱向軌道比橫向軌道引起板更大的變形,加強筋的沉積軌跡對變形有很大影響,最大位移發生在與縱向軌道相關的加強筋的內底邊緣,高殘余應力區域主要集中在加強筋的根部。


綜上所述,對於鈦合金的電子束熔絲沉積增材製造的研究相對較少,主要偏向藉助有限元分析軟體的變形控制等領域。分析認為,電子束熔絲沉積增材製造可以克服傳統的鈦合金加工方式的弊端,藉助有限元分析軟體更為實際應用過程中提供了基礎理論的指導。


2.4 電子束選區熔化(EBM)


Murr等人採用EBM增材製造的方法制備多孔泡沫Ti6Al4V,研究了剛度與密度之間的關系。結果發現泡沫具有實心孔和中空孔結構,與實心、緊密的EBM製造件相比,中空孔結構的強度與硬度成正比,強度高出40%,並且剛度與孔隙率成反比,採用EBM增材製造的泡沫材料在生物醫學、航空航天等領域的應用具有巨大潛力。


許飛等人採用電子束選區熔化技術對制備的TC4鈦合金開展了大功率高速光纖激光焊接試驗研究。結果表明,受EBM技術增材製造TC4的晶粒尺寸差異的影響,激光焊接試驗熔合區靠近上下表面的β柱狀晶組織相對細小。焊縫區顯微硬度高於增材區硬度,且頂部硬度較高。


Seifi等人研究利用EBM增材製造Ti-48Al-2Cr-2Nb的組織性能研究,結果發現,所沉積的材料強度和硬度值超過了常規鑄造Ti-Al所獲得的強度和硬度值,這與目前測試的增材材料中存在更精細的微觀結構相一致。


Surmeneva等人研究了採用EBM技術增材Ti–10%Nb(質量分數,下同)的組織性能研究。結果發現,通過EBM技術元素Nb和Ti的粉末混合物中原位生產Ti-10%Nb合金,最大的Nb顆粒保留在EBM製造的樣品中,並且Nb僅部分擴散到Ti中,如圖4所示,應該對EBM工藝的參數優化進行更多的研究,以實現更均勻的合金顯微組織。



綜上所述,對於Ti6Al4V的EBM研究相對較為廣泛,發現對於Ti-Nb合金的EBM技術增材製造仍難很好地解決Nb顆粒的擴散問題,會導致顯微組織不均勻,因此對於Ti-xNb合金的增材製造還需要更多的工藝優化試驗進行材料性能的提升。


3.熔焊增材製造


與其他增材製造方式相比,熔焊增材製造操作性更強,成本更低,但結構可靠性相對較低。熔焊增材製造一般採用焊絲增材製造,但是由於基材和初始沉積層之間的熱梯度大,以及輻射和對流熱損失,會在製造的部件底部觀察到細晶粒結構。由於較低的熱梯度,傳熱速率較低,這阻礙了在增材過程的中間層形成細晶粒結構,而只在製造部件的中間形成長的柱狀晶粒。


3.1 CMT電弧增材製造


李雷等人採用CMT電弧增材TC4薄壁結構,研究其增材層組織性能。結果發現,由於增材過程熱循環的反復作用,原始β柱狀晶晶界、水平層帶條紋、馬氏體組織和網籃組織等形態出現在增材層中,由於時效作用,對中下部區域產生強化作用,造成上部增材層顯微硬度略低於中下部顯微硬度(見圖5)。

陳偉進行了CMT電弧增材TC4的微觀組織及力學性能研究。結果發現,在設定送絲速度為3.0m/min、焊接速度為0.48m/min的參數下,原始β晶粒剖面面積最小,CMT電弧增材製造TC4鈦合金在870℃,1h/固溶爐冷(FC)+600℃、2h/固溶空冷(AC)下熱處理,獲得的各區域微觀組織較均勻,固溶處理後的材料塑性較高。


3.2 等離子弧增材製造


Lin等人採用PAW增材製造Ti6Al4V,在微觀結構和顯微硬度方面進行了研究。結果發現,先前的β柱狀晶粒的外延生長受到脈沖擾動的抑制,這導致形成了具有接近等軸晶粒的柱狀晶粒,在沉積早期,由於熱循環不足,顯微硬度較低,在後續沉積中,硬度升高,在沉積層的頂部,不受連續熱循環的影響,導致第二相的體積減小,硬度值降低。


馬照偉進行了旁路熱絲等離子弧增材製造鈦合金的組織性能研究(見圖6)。結果發現,鈦合金增材構件的橫向抗拉強度為977MPa,強度與TC4母材的抗拉強度相當,斷裂位置在增材直壁結構尾部區域,這是由於橫向焊縫為連續熔化-凝固而來,焊縫中的缺陷和雜質較少,使得橫向焊縫具有良好強度性能的鈦合金增材構件的豎向抗拉強度為

936MPa,斷裂位置在增材直壁結構上部區域,性能較橫向焊縫稍差。靠近母材的熱影響區硬度相對較低,出現了小范圍的軟化區,整體的豎向硬度差別並不明顯。


3.3 復合電弧增材製造


Pardal等人進行了激光和CMT復合焊接增材製造Ti6Al4V的結構件穩定性研究。結果發現,激光可用於穩定焊接過程,減少焊接飛濺,改善電弧漂移的情況,改善單層和多層沉積的焊縫形狀,並將Ti6Al4V增材製造的沉積速率從1.7kg/h提高到2.0kg/h。


綜上所述,對於熔焊增材製造鈦合金主要集中在TC4的研究中,多採用CMT、等離子等高效熔絲工藝方式,同時採用其他熱源輔助焊接的方式穩定焊接過程,進行鈦合金的增材製造。分析認為,對於熔焊鈦合金增材製造的發展方向應開拓研究制備鈦合金功能性材料,便於多領域全方位的應用推廣,復合熱源的增材方式或其他可控熱輸入的穩定

增材方式會成為熔焊增材的熱門研究方向。


4.固態焊增材製造


4.1 攪拌摩擦增材製造(FSAM)


攪拌摩擦增材製造是一種從攪拌摩擦焊接技術發展而來的固相增材技術,原理如圖7所示。增材效率高、成本低;在增材過程中沒有金屬的熔化和凝固,可以避免熔池帶來的冶金缺陷問題,同時攪拌摩擦過程中塑性變形還可以起到晶粒細化的作用,獲得低成本、高質量增材產品。

張昭等人基於Abaqus生死單元法和移動熱源法建立兩種攪拌摩擦增材製造Ti6Al4V有限元模型,研究攪拌摩擦增材的溫度分布和晶粒生長情況。研究結果發現,橫向增材峰值溫度大於縱向增材峰值溫度,在攪拌區冷卻及增材累積過程晶粒粗化,並且由β相轉變為α相,由於不同熱循環次數的影響,低層攪拌區晶粒尺寸較大,高層攪拌區晶粒尺寸較小。


4.2 超聲波增材製造(UAM)


超聲波增材製造(UAM)是一種新的快速成形工藝,用於在室溫或接近室溫的條件下製造金屬基復合材料。較低的加工溫度使復合材料能夠通過利用嵌入在基體中的高度預應變的形狀記憶合金(SMA)纖維產生的回復應力。


Hahnlen等人利用UAM技術製造NiTi-Al復合結構界面強度研究,纖維-基體界面的強度是UAM復合材料的限制因素。結果發現,平均界面剪切強度為7.28MPa,纖維與界面結合方式是機械鍵合,未發生化學鍵合或冶金鍵合方式。

為提高碳纖維增強材料(CFRP)的承重能力,使其能在航空航天和汽車工業上進一步推廣應用,James等人進行了CFRP/Ti的超聲波增材製造中剪切破壞強度的研究,研究結果發現,採用UAM技術可以實現CFRP/Ti的結構製造,超聲波能量和表面粗糙度都對UAM製成結構的剪切強度產生積極影響,在焊接前增加界面的表面粗糙度有助於增加最終焊縫的剪切破壞負荷。


綜上所述,關於超聲波增材製造鈦合金的研究較少,主要進行的是金屬基復合材料的研究,以增強復合材料的特定性能滿足實際生產應用,分析認為,在未來研究中,應側重於提升復合材料的力學性能研究方向。


5 結束語


隨著現代工業的迅速發展,輕量化的設計成為結構件的發展方向,對結構件的性能和質量要求變的越來越嚴格,鈦合金增材製造技術的迅速發展,可以進一步擴大鈦合金結構件的應用范圍,提高鈦合金增材件的性能,增強結構穩定性。綜合國內外所研究的鈦合金增材製造技術和現代工業的發展方向,未來鈦合金增材製造技術註定將朝著綠色、經濟、穩定、快速的方向發展。


1)從綠色發展方向來看,攪拌摩擦增材製造起步階段較晚,還處於試驗研究階段,未來進行多金屬材料的復合結構增材製造,實現特定結構的特種性能,將是該技術的一個研究方向。


2)對於經濟、穩定的發展方向,則需要進行電弧增材的穩定性過程探索,尤其是新型復合電弧增材製造的穩定性研究。


3)對於快速性的發展方向,目前階段激光/電子束增材製造工藝相對較為成熟,應繼續探究激光增材製造的經濟適用性,從實際生產中的裝配精度到生產製造中的工藝優化過程,進而降低生產成本,為鈦合金增材製造結構件大面積的生產應用打下基礎。


❺ 加工鈦合金是三刃銑刀好還是四刃銑刀好

鈦合金銑刀關鍵要鋒利.前刀面的光潔度要好.而且刀子又要剛性好.這就決定了鈦合金專用銑刀必須要用好的硬質合金原棒加工,最好是數控磨床上加工製造下來的.不能濫竽充數.選三刃還是四刃主要看所用的加工設備.產品要求了.如果設備先進.用三刃粗加工或半精加工比較合適.具體情況可以找個刀具供應商給你們定做幾把刀子試用下.有需要的話找我吧.

❻ 加工鈦合金用什麼刀好

鈦合金硬度比鋼要低,用普通刀具即可。

切削加工鈦合金應從降低切削溫度和減少粘結兩方面出發,選用紅硬性好、抗彎強度高、導熱性能好、與鈦合金親和性差的刀具材料,YG類硬質合金比較合適。由於高速鋼的耐熱性差,因此應盡量採用硬質合金製作的刀具。

常用的硬質合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。

塗層刀片和YT類硬質合金會與鈦合金產生劇烈的親和作用,加劇刀具的粘結磨損,不宜用來切削鈦合金;對於復雜、多刃刀具,可選用高釩高速鋼等刀具材料,適於製作切削鈦合金的鑽頭、鉸刀、立銑刀、拉刀、絲錐等刀具。


(6)為什麼加工鈦合金用不等分刃型擴展閱讀:

1、熱強度高

使用溫度比鋁合金高幾網路,在中等溫度下仍能保持所要求的強度,可在450~500℃的溫度下長期工作這兩類鈦合金在150℃~500℃范圍內仍有很高的比強度,而鋁合金在150℃時比強度明顯下降。鈦合金的工作溫度可達500℃,鋁合金則在200℃以下。

2、抗蝕性好

鈦合金在潮濕的大氣和海水介質中工作,其抗蝕性遠優於不銹鋼;對點蝕、酸蝕、應力腐蝕的抵抗力特別強;對鹼、氯化物、氯的有機物品、硝酸、硫酸等有優良的抗腐蝕能力。

❼ 加工鈦合金用什麼材質的機夾刀片

加工鈦合金材質用CBN材質的機夾刀片。

原因:

  1. 對於鈦合金鈦合金具有高的強度,質量比,更好的強度、韌性、延展性.另外,鈦合金還具有較好抗氧喊手化性與耐腐蝕性,並且在高溫下還能保持良好的強度。

  2. 通過選擇合理的刀具材料改善鈦合金的切削加工性能是提高鈦合金加工效率的有效途徑.在鈦合金的切削加工中,切削刀仿行具材料多數選用硬質合金。

  3. 由於立方氮化硼(cubicboronnitride,備滲嘩CBN)刀具材料具有高的硬度、耐磨性,很高的熱穩定性,優良的化學穩定性,較好的導熱性及較低的摩擦因數。

  4. 這些性能特點正是加工鈦合金刀具材料所應該具備的,研究人員和工程技術人員已開始嘗試用CBN刀具來切削鈦合金。

❽ 鈦合金零件加工的原則有哪些呢

鈦合金零件加工的五大原則介紹:

一、切削速度:

切削速度是影響刀刃溫度的重要因素。過高的切削速度會導致刀刃過熱、刀刃粘結和擴散磨損嚴重,刀具重磨頻繁,會縮短刀具壽命。同時會導致鈦合金工件表面層開裂或氧化,影響其力學性能,所以應在保證較大的刀具耐用度的前提下,選擇適當的切削速度,降低成本,保證加工質量。

二、進刀深度和走刀量:

走刀量的變化對溫度的變化不大,所以降低切削速度增大走刀量是合理的切削方式。如果有氧化層和皮下氣孔層的情況,大的切深可以直接切到基本未氧化金屬層,提高刀具的壽命。

三、刀具的幾何角度:

在切削鈦合金時選擇與加工方法相適應的前角和後角等幾何參數並對刀尖適當的處理,會對切削效率和刀具的壽命有重要的影響。

試驗證明,當車削時為了改善散熱條件和增強切削刃,前角一般取5°~9°;為了克服因回彈而造成的摩擦,刀體的後刀面一般取10°~15°;當鑽孔時,縮短鑽頭長度、增加鑽心的厚度和導錐量,鑽頭的耐用度可提高好幾倍。

四、夾具的夾緊力:

鈦合金易變形,夾緊力不能過大,特別在精加工工序時,可以選擇一定的輔助支承。

五、切削液:

切削液是鈦合金加工中不可缺少的工藝潤滑油。切削液不僅可以有效降低切削溫度,減少刀具和切削摩擦產生的熱量,還可以充當切削過程的潤滑劑,減少鈦合金的切屑和刀具面的黏結,提高效率、降低成本,延長刀具的壽命。但不能使用含有氯或其他鹵元素和含硫的切削液,這類切削液會對鈦合金的力學性能產生不良影響。

❾ 加工鈦合金是三刃銑刀好還是四刃銑刀好

加工鈦合金的時候不是說那個好,但是加工一定要慢慢的,急不得,不然表面就會變黑的,就不能用了,我們有很多客戶都說鈦合金錶面會變黑,只有慢慢的來才可以的。

❿ 鈦合金零件加工有什麼注意事項

鈦合金加工需注意的問題鈦合金的壓力加工與鋼加工的相似之處多於與有色金屬和合金的加工。鈦合金在煅造、體積沖壓和板沖壓時的許多工藝參數接近於鋼加工時的參數。但也有一些重要的特點,在對欽和欽合金進行壓力加工時必須加以注意的。

雖然通常認為,鈦和鈦合金所含有的六方晶格在變形時塑性較低,但是用於其它結構金屬的各種壓力加工方法也都適用於鈦合金。屈服點與強度極限之比乃是指金屬能否經受塑性變形的特性指標之一。此比值愈大,金屬的塑性就愈差。對於在冷卻狀態下的工業純鈦來說,該比值為0.72-0.87,而碳鋼為0.6-0.65,不銹鋼為0.4-0.5。
在加熱狀態(高於=yS轉變溫度)下進行體積沖壓、自由煅造及其它一些與加工大截面和大尺寸坯件有關的操作。煅造及沖壓加熱溫度范圍掌捱在850-1150°C之間。合金BT;M)0、BT1-0、OT4~0及OT4-1在冷卻狀態下即具有令人滿意的塑性變形。因此,用這些合金製成的零件,大多是經過中間退火的坯件不加熱沖壓而成。鈦合金在冷塑性變形時,不管其化學成分和機械性能如何,強度會大大提髙,而塑性相應降低,為此就必須進行工序間的退火處理。
鈦合金加工時出現的刀片溝槽磨損是後面和前面在沿切削深度方向上的局部磨損,它往往是由於前期加工留下的硬化層所造成的。刀具與工件材料在加工溫度超過800℃的化學反應和擴散,也是形成溝槽磨損的原因之一。因為在加工過程中,工件的鈦分子在刀片的前面積聚,在高壓高溫下「焊接」到刀刃上,形成積屑瘤。當積屑瘤從刀刃上剝離時,將刀片的硬質合金塗層帶走。
由於鈦的耐熱性,冷卻在加工過程中至關重要,冷卻的目的是使刀刃和刀具表面不會過熱。使用端部冷卻液,這樣,當進行方肩銑以及面銑凹窩、型腔或全槽時,可達到最佳的排屑效果。切削鈦金屬時,切屑很容易粘住刀刃,造成下一輪銑刀旋轉再次切削切屑,往往會造成刃線崩刃。每一種刀片型腔都有各自的冷卻液孔/注液,用來解決這個問題,並強化恆定的刀刃性能。另一個巧妙的解決方案是螺紋型冷卻孔。長刃銑刀有許多刀片。對每個孔施加冷卻液需要有很高的泵容量和壓力。而則不同,它可以根據需要,堵住無需要的孔,從而最大限度地向有需要的孔提高液流。

閱讀全文

與為什麼加工鈦合金用不等分刃型相關的資料

熱點內容
不銹鋼鍋胡底怎麼洗 瀏覽:318
16個螺紋鋼比重是多少 瀏覽:559
不銹鋼菜刀跟鉻鋼菜刀哪個好 瀏覽:925
鋼筋負差戀怎麼算 瀏覽:616
福永插件焊接加工是什麼 瀏覽:889
山東哪裡有回收舊鋼材的 瀏覽:722
歐曼鋼板滑塊摩鋼板上方怎麼辦 瀏覽:389
不銹鋼扶手焊接用什麼打磨 瀏覽:914
坪山不銹鋼五金加工哪裡有 瀏覽:439
板上布置哪些鋼筋 瀏覽:595
鋼管桿如何放樣 瀏覽:209
鋼鐵雄心4怎麼加指揮官的經驗 瀏覽:619
大屏無縫切換台主要是什麼 瀏覽:281
碳鋼與鋁合金輪椅哪個耐用 瀏覽:679
家裡的窗戶玻璃是鋼化的么 瀏覽:686
無縫鋼管d25d是指的什麼 瀏覽:634
電焊接頭為什麼會斷裂 瀏覽:446
skd61鋼材硬度多少 瀏覽:483
鋁合金門切大了怎麼辦 瀏覽:421
怎麼清洗不銹鋼鍋百度經驗 瀏覽:413