導航:首頁 > 合金材料 > 怎麼查合金相圖

怎麼查合金相圖

發布時間:2023-11-01 16:19:40

㈠ 鐵碳合金相圖的具體分析過程

一丶鐵碳合金相圖分析如下:

Fe—Fe3C相圖看起 來比較復雜,但它仍然是由一些基本相圖組成的,我們可以將Fe—Fe3C相圖分成上下兩個部分來分析.

1.【共晶轉變】

(1)在1148℃,2.11%C的液相發生共晶轉變:Lc (AE+Fe3C),

(2)轉變的產物稱為萊氏體,用符號Ld表示.

(3)存在於1148℃~727℃之間的萊氏體稱為高溫萊氏體,用符號Ld表示,組織由奧氏體和滲碳體組成;存在於727℃以下的萊氏體稱為變態萊氏體或稱低溫萊氏體,用符號Ldˊ表示,組織由滲碳體和珠光體組成.

(4)低溫萊氏體是由珠光體,Fe3CⅡ和共晶Fe3C組成的機械混合物.經4%硝酸酒精溶液浸蝕後在顯微鏡下觀察,其中珠光體呈黑色顆粒狀或短棒狀分布在Fe3C基體上,Fe3CⅡ和共晶Fe3C交織在一起,一般無法分辨.

2.【共析轉變】

(1)在727℃,0.77%的奧氏體發生共析轉變:AS (F+Fe3C),轉變的產物稱為珠光體.

(2)共析轉變與共晶轉變的區別是轉變物是固體而非液體.

3.【特徵點】

(1)相圖中應該掌握的特徵點有:A,D,E,C,G(A3點),S(A1點),它們的含義一定要搞清楚.根據相圖分析如下點:

(2)相圖中重要的點(14個):

1.組元的熔點: A (0, 1538) 鐵的熔點;D (6.69, 1227) Fe3C的熔點

2.同素異構轉變點:N(0, 1394)δ-Fe γ-Fe;G(0, 912)γ-Fe α-Fe

相圖

3.碳在鐵中最大溶解度點:

P(0.0218,727),碳在α-Fe 中的最大溶解度;E(2.11,1148),碳在γ-Fe 中的最大溶解度

H (0.09,1495),碳在δ-Fe中的最大溶解度;Q(0.0008,RT),室溫下碳在α-Fe 中的溶解度

4.【三相共存點】

S(共析點,0.77,727),(A+F +Fe3C);C(共晶點,4.3,1148),( A+L +Fe3C)

J(包晶點,0.17,1495)( δ+ A+L )

5.【其它點】

B(0.53,1495),發生包晶反應時液相的成分;F(6.69,1148 ) , 滲碳體;K (6.69,727 ) , 滲碳體

6.【特性線】

(1)相圖中的一些線應該掌握的線有:ECF線,PSK線(A1線),GS線(A3線),ES線(ACM線)

(2)水平線ECF為共晶反應線.

(3)碳質量分數在2.11%~6.69%之間的鐵碳合金, 在平衡結晶過程中均發生共晶反應.

(4)水平線PSK為共析反應線

(5)碳質量分數為0.0218%~6.69%的鐵碳合金, 在平衡結晶過程中均發生共析反應.PSK線亦稱A1線.

(6)GS線是合金冷卻時自A中開始析出F的臨界溫度線, 通常稱A3線.

(7)ES線是碳在A中的固溶線, 通常叫做Acm線.由於在1148℃時A中溶碳量最大可 達2.11%, 而在727℃時僅為0.77%, 因此碳質量分數大於0.77%的鐵碳合金自1148℃冷至727℃的過程中, 將從A中析出Fe3C.析出的滲碳體稱為二次滲碳體(Fe3CII). Acm線亦為從A中開始析出Fe3CII的臨界溫度線.

(8)PQ線是碳在F中固溶線.在727℃時F中溶碳量最大可達0.0218%, 室溫時僅為0.0008%, 因此碳質量分數大於0.0008%的鐵碳合金自727℃冷至室溫的過程中, 將從F中析出Fe3C.析出的滲碳體稱為三次滲碳體(Fe3CIII).PQ線亦為從F中開始析出Fe3CIII的臨界溫度線.Fe3CIII數量極少,往往予以忽略.

(9)Ac1— 在加熱過程中,奧氏體開始形成的溫度。

(10)Ac3— 在加熱過程中,奧氏體完全形成的溫度

(11)Ar1— 在冷卻過程中奧氏體完全轉變為鐵素體或鐵素體加滲碳體的溫度

(12)Ar3— 在冷卻過程中奧氏體開始轉變為鐵素的溫度

(13)Arcm— 在過共析鋼冷卻過程中滲碳體開始沉澱的溫度,

·(14)Accm— 在過共析鋼加熱過程中,滲碳體完全轉化為奧氏體的溫度。

6.【相圖相區】

1.單相區(4個+1個): L,δ,A,F ,(+ Fe3C)

2.兩相區(7個):L + δ,L + Fe3C,L + A, δ+ A ,A + F ,A + Fe3C ,F + Fe3C.

㈡ 鐵合金三元相圖怎麼看,看不懂。幫我講講,謝謝了!

看三個三角形頂點是單質還是氧化物,單質是鐵合金相圖,氧化物是渣圖
如果是鐵合金相圖,那麼隨便其中取一點,作三條平行於三個邊的不平行線。與邊上交界處會有一個百分比數值,這個數值就是這種狀態下,三種元素的百分含量。同時在那一點上會有溫度值,這樣就決定你冶煉不同的鐵合金所需要的溫了

㈢ 鐵碳合金相圖中有幾條線這個要怎麼數

鐵碳合金相圖貌似理論,實際上它的實用價值非常大,指明了含碳量不同的黑色金屬、在不同溫度下的組織變化,掌握了這張圖基本就掌握了熱處理的內容。學習鐵碳合金相圖的目的,主要是看懂它,記住幾個關鍵點,實在記不住也要會從這張圖上查數據。主要的特徵線有:
ACD---液相線,此線以上全部為液體、
AECF---固相線,此線以下全部為固態、
GS、ECF、PSK共5條線。

㈣ 二元金屬相圖一般用什麼方法測定,「二元金屬相圖」是採用什麼方法

提起二元金屬相圖一般用什麼方法測定,大家都知道,有人問「二元金屬相圖」是採用什麼方法,另外,還有人想問二元合金相圖(很好很強大),你知道這是怎麼回事?其實二組分金屬相圖的繪制思考題匯總,下面就一起來看看「二元金屬相圖」是採用什麼方法,希望能夠幫助到大家!

二元金屬相圖一般用什麼方法測定

1、二元金屬相圖一般用什麼方法測定:「二元金屬相圖」是採用什麼方法

1、合金凝固過程有哪些相形成。2、可以計算各溫度下,平衡相的相對含量。3、可以簡單的看出合金的一些工藝性能和機械性能

2、二元金屬相圖一般用什麼方法測定:二元合金相圖(很好很強大)

3、二元金屬相圖一般用什麼方法測定:二組分金屬相圖的繪制思考題匯總

內容來自用戶:sunzhenguoyear

二組分金屬相圖的繪制思考題匯總

1.有一失去標簽的Pb-Sn合金樣品,用什麼方以確定其組成?

答:將其熔融、冷卻的同時記錄溫度,作出步冷曲線,根據步冷曲線上拐點或的溫度,與溫度組成圖加以對照,可以粗略確定其組成。

2.總質量相同但組成不同的Pb-Sn混合物的步冷曲線,其水平段的長度有什麼不同?為什麼?答:(1)混合物中含Sn越多,其步冷曲線水平段長度越長,反之,亦然。(2)因為Pb和Sn的熔化熱分別為23.0和59.4jg-1,熔化熱越大放熱越多,隨時間增長溫度降低的越遲緩,故熔化熱越大,樣品的步冷曲線水平段長度越長。

3.有一失去標簽的Pb-Sn合金樣品,用什麼方以確定其組成?

4.總質量相同但組成不同的Pb-Sn混合物的步冷曲線,其水平段的長度有什麼不同?為什麼?

(查表:Pb熔點℃,熔化熱23.0jg-1,Sn熔點℃,熔化熱59.4jg-1)

5、何謂熱分析法?用熱分析法繪制相圖時應注意些什麼?

熱分析法是相圖繪制工作中的一種常用的實驗方法,按一定比例配製均勻的液相體系,讓他們緩慢冷卻,以體系溫度對時間作圖,則為步冷曲線。曲線的轉折點表徵了某一溫度下發生的相變的信息。

6、為什麼要控製冷卻速度,不能使其迅速冷卻?

答:使溫度變化均勻,接衡態,必須緩慢降低溫度,一般每分鍾降低答:使混合液充分混融,減小測定誤差。

4、二元金屬相圖一般用什麼方法測定:第三章 金屬的相變和相圖

5、二元金屬相圖一般用什麼方法測定:二組分金屬相圖的測定作圖時應注意哪些問題

事先測出入射光的頻率,然後由小頻率逐漸改為大頻率,當剛好有電子逸出時記錄入射光的頻率,根據w=hγ算出。

6、二元金屬相圖一般用什麼方法測定:怎樣用熱分析法測繪Si-Bi二元合金相圖?

有實驗測量繪出漸冷曲線,然後有間歇點等作出相圖

主要看圖的共熔點,分析之

7、二元金屬相圖一般用什麼方法測定:金屬相圖是做什麼用的

金屬相圖應該是顯示和分析金屬的金相結構用的。

相同成分的金屬,如果金相結構不同,機械性能會有顯著不同。

以上就是與「二元金屬相圖」是採用什麼方關內容,是關於「二元金屬相圖」是採用什麼方法的分享。看完二元金屬相圖一般用什麼方法測定後,希望這對大家有所幫助!

㈤ 怎麼看合金相圖

那就拿鋁的說吧
一.Al-Mg-Si系合金的基本特點: 6063鋁合金的化學成份在GB/T5237-93標准中為0.2-0.6%的硅、0.45-0.9%的鎂、鐵的最高限量為0. 35%,其餘雜質元素(Cu、Mn、Zr、Cr等)均小於0.1%。這個成份范圍很寬,它還有很大選擇餘地。
6063鋁合金是屬鋁-鎂-硅系列可熱處理強化型鋁合金,在AL-Mg-Si組成的三元系中,沒有三元化合物,只有兩個二元化合物Mg2Si和Mg2Al3,以α(Al)-Mg2Si偽二元截面為分界,構成兩個三元系,α(Al)-Mg2Si-(Si)和α(Al)-Mg2Si-Mg2Al3,如圖一、田二所示:
在Al-Mg-Si系合金中,主要強化相是Mg2Si,合金在淬火時,固溶於基體中的Mg2Si越多,時效後的合金強度就越高,反之,則越低,如圖2所示,在α(Al)-Mg2Si偽二元相圖上,共晶溫度為595℃,Mg2Si的最大溶解度是1.85%,在500℃時為1. 05%,由此可見,溫度對Mg2Si在Al中的固溶度影響很大,淬火溫度越高,時效後的強度越高,反之,淬火溫度越低,時效後的強度就越低。有些鋁型材廠生產的型材化學成份合格,強度卻達不到要求,原因就是鋁捧加熱溫度不夠或外熱內冷,造成型材淬火溫度太低所致。
在Al-Mg-Si合金系列中,強化相Mg2Si的鎂硅重量比為1.73,如果合金中有過剩的鎂(即Mg:Si>1. 73),鎂會降低Mg2Si在鋁中的固溶度,從而降低Mg2Si在合金中的強化效果。如果合金中存在過剩的硅,即Mg:Si<1.73,則硅對Mg2Si在鋁中的固溶度沒有影響,由此可見,要得到較高強度的合金,必須Mg:Si<1.73。 二.合金成份的選擇 1.合金元素含量的選擇
6063合金成份有一個很寬的范圍,具體成份除了要考慮機械性能、加工性能外,還要考慮表面處理性能,即型材如何進行表面處理和要得到什麼樣的表面。例如,要生產磨砂料,Mg/Si應小一些為好,一般選擇在Mg/Si=1-1.3范圍,這是因為有較多相對過剩的Si,有利於型材得到砂狀表面;若生產光亮材、著色材和電泳塗漆材,Mg/Si在1.5-1.7范圍為好,這是因為有較少過剩硅,型材抗蝕性好,容易得到光亮的表面。
另外,鋁型材的擠壓溫度一般選在480℃左右,因此,合金元素鎂硅總量應在1.0%左右,因為在500℃時,Mg2Si在鋁中的固溶度只有1.05%,過高的合金元素含量會導致在淬火時Mg2Si不能全部溶入基體,有較多的末溶解Mg2Si相,這些Mg2Si相對合金的強度沒有多少作用,反而會影響型材表面處理性能,給型材的氧化、著色(或塗漆)造成麻煩。
2.雜質元素的影響
①鐵,鐵是鋁合金中的主要雜質元素,在6063合金中,國家標准中規定不大於0.35,如果生產中用一級工業鋁錠,一般鐵含量可控制在0.25以下,但如果為了降低生產成本,大量使用回收廢鋁或等外鋁,鐵就根容易超標。Fe在鋁中的存在形態有兩種,一種是針狀(或稱片狀)結構的β相(Al9Fe2Si2),一種為粒狀結構的α相(Al12Fe3Si),不同的相結構,對鋁合金有不同的影響,片狀結構的β相要比粒狀結構α相破壞性大的多,β相可使鋁型材表面粗糙、機械性能、抗蝕性能變差,氧化後的型材表面發青,光澤下降,著色後得不到純正色調,因此,鐵含量必須加以控制。
為了減少鐵的有害影響可採取如下措施。
a)熔煉、鑄造用所有工具在使用前塗涮塗料,盡可能減少鐵溶人鋁液。
b)細化晶粒,使鐵相變細,變小,減少其有害作用。
c)加入適量的鍶,使β相轉變成α相,減少其有害作用。
d)對廢雜料細心挑選,盡可能的減少鐵絲、鐵釘、鐵屑等雜物進入熔鋁爐造成鐵含量升高。
②其它雜質元素
其它雜質元素在電解鋁錠中都很少,遠遠低於國家標准,在使用回收廢雜鋁時就可能超過標准;在生產中,不但要控制每個元素不能超標,而且要控制雜質元素總量也不能超標,當單個元素含量不超標,但總量超標時,這些雜質元素同樣對型材質量有很大影響。特別需要提出強調的是,實踐證明,鋅含量到0.05時(國標中不大於0.1)型材氧化後表面就出現白色斑點,因此鋅含量要控制到0.05以下。 三.6063鋁合金的熔煉 1.控制好熔煉溫度
鋁合金熔煉是生產優質鑄棒的最重要工藝環節之一,若工藝控制不當,會在鑄捧中產生夾渣、氣孔,晶粒粗大,羽毛晶等多種鑄造缺陷,因此必須嚴加控制。
6063鋁合金的熔煉溫度控制在750-760℃之間為佳,過低會增大夾渣的產生,過高會增大吸氫、氧化、氮化燒損。研究表明,鋁液中氫氣的溶解度在760℃以上急劇上升,當熱減少吸氫的途徑還有許多,如烘乾溶煉爐和熔煉工具,防止使用熔劑受潮變質等。但熔煉溫度是最敏感因素之一,過離的熔煉溫度不但浪費能源,增加成本,而且是造成氣孔,晶粒粗大,羽毛晶等缺陷的直接成因。
2.選用優良的熔劑和適當的精煉工藝
熔劑是鋁合金熔煉中使用的重要輔助材料,目前市場上所售熔劑中主要成份為氯化物,氟化物,其中氯化物吸水性強,容易受潮,因此,熔劑的生產中必須烘乾所用原料,徹底除去水份,包裝要密封,運輸、保管中要防止破損,還要注意生產日期,如保管日期過長,同樣會發生吸潮現象,在6063鋁合金的熔煉中,使用的除渣劑、精煉劑、覆蓋劑等熔劑如果吸潮,都會使鋁液產生不同程度的吸氫。
選擇好的精煉劑,選擇合適的精練工藝也是非常重要的,目前6063鋁合金的精煉絕大多數採用噴粉精煉,這種精煉方法能使精煉劑與鋁液充分接觸,可使精煉劑發揮最大效能。雖然這個特點是顯而易見的,但是精煉工藝也必須注意,否則得不到應有效果,噴粉精煉中所用氮氣壓力以小為好,能滿足吹出粉劑為佳,精煉中如果使用的氮氣不是高純氯(99.99%N2),吹入鋁液的氮氣越多,氟氣中的水份使鋁液產生的氧化和吸氫越多。另外,氟氣壓力高,侶液產生的翻卷波浪大,增大產生氧化夾渣的可能性。如果精煉中使用的是高純氮,精煉壓力大,產生的氣泡大,大氣泡在鋁液中的浮力大,氣泡迅速上浮,在鋁液中的停留時間短,除氫效果並不好,浪費氮氣,增加成本。因此氮氣應少用,精煉劑應多用,多用精煉劑只有好處,沒有壞處。噴粉精煉的工藝要點是用盡可能少的氣體,噴進鋁液盡可能多的精煉劑。
3.晶粒細化
晶粒細化是鋁合金熔鑄中暈重要的工藝之一,也是解決氣孔、晶粒粗大、光亮晶、羽毛晶、裂紋等鑄造缺陷的最有效措施之一。在合金鑄造中,均是非平衡結晶,所有的雜質元素(當然也包括合金元素)絕大部分集中分布在晶界,晶粒越小,晶界面積就越大,雜質元素(或合金元素)的均勻度就越高。對雜質元素而言,均勻度高,可減少它的有害作用,甚至將少量雜質元素的有害變為有益;對合金元素麵言,均勻度高,可發揮合金元素更大的合金化艘能,達到充分利用資源的目的。
細化晶粒、增大晶界面積、增大元素均勻度的作用可通過下面的計算加以說明。
假設金屬塊1與2有同樣的體積V,均由立方體晶粒構成,金屬塊1的晶粒邊長為2a,2的邊長為a,那麼金屬塊1的晶界面積為: 金屬塊2的晶界面積為: 金屬塊2的晶界面積是金屬塊1的2倍。
由此可見合金晶粒直徑減小一倍,晶界面積就要增大—倍,晶界單位面積上的雜質元素將減少一倍。
在6063鋁合金的生產中,對磨砂料來說,由於要通過腐蝕使型材產生均勻砂面,那麼合金元素及雜質元素的均勻分布就顯得尤為重要。晶粒越細,合金元素(雜質元素)的分布越均勻,腐蝕後得到的砂面就越均勻。 四.6063鋁合金的澆鑄 1.選擇合理的澆鑄溫度
合理的澆鑄溫度也是生產出優質鋁棒的重要因素,溫度過低,易產生夾渣、針孔等鑄造缺陷。溫度過高,易產生晶粒粗大、羽毛晶等鑄造缺陷。
做了晶粒細化處理後的6063鋁合金液,鑄造溫度可適當提高,一般可控制在720-740℃之間,這是因為:①鋁液經晶粒細化處理後變粘,容易凝固結晶。②鋁棒在鑄造中結晶前沿有一個液固兩相過度帶,較高的鑄造溫度有較窄的過度帶,過度帶窄有利於結晶前沿排出的氣體逸出,當然溫度不可過高,過高的鑄造溫度會縮短晶粒細化劑的有效時間,使晶粒變得相對較大。
2.有條件時,充分預熱,烘幹流槽、分流盤等澆鑄系統,防止水分與鋁液反應造成吸氫。
3.鑄造中,盡可能的避免鋁液的紊流和翻卷,不要輕易用工具攪動流槽及分流盤中的鋁液,讓鋁液在表面氧化膜的保護下平穩流人結晶器結晶,這是因為工具攪動鋁液和液流翻卷都會使鋁液表面氧化膜破裂,造成新的氧化,同時將氧化膜捲入鋁液。經研究表明,氧化膜有極強的吸附能力,它含有2%的水份,當氧化膜捲入鋁液後,氧化膜中的水份與鋁液反應,造成吸氫和夾渣。
4.對鋁液進行過濾,過濾是除去鋁液中非金屬夾渣最有效的方法,在6063鋁合金的鑄造中,一般用多層玻璃絲布過濾或陶瓷過濾板過濾,無論是採取何種過濾方法,為了保證鋁液能正常的過濾,鋁液在過濾前應除去表面浮渣,因為表面浮渣易堵塞過濾材料的過濾網孔,使過濾不能正常進行,除去鋁液表面浮渣的最簡單方法是在流槽中設置一擋渣板,使鋁液在過濾前除去浮渣。 五.6063鋁合金的均化處理 1.非平衡結晶
如圖三所示,是由A、B兩種元素構成的二元相圖的一部分,成份為F的合金凝固結晶,當溫度下降到T1時,固相平衡成份應為G,實際成份為G』,這是因為在鑄造生產中,冷卻凝固速度快,合金元素的擴散速度小於結晶速度,即固相成份不是按CD變化,而是按CD』變化,從而產生了晶粒內化學成份的不平衡現象,造成了非平衡結晶。
2.非平衡結晶產生的問題
鑄造生產出的鋁合金棒其內部組織存在兩方面的問題:①晶粒間存在鑄造應力;②非平衡結晶引起的晶粒內化學成份的不平衡。由於這兩個問題的存在,會使擠壓變得困難,同時,擠壓出的產品在機械性能、表面處理性能方面都有所下降。因此,鋁棒在擠壓前必須進行均勻化處理,消除鑄造應力和晶粒內化學成份不平衡。
3.均勻化處理
均勻化處理就是鋁棒在高溫(低於過燒溫度)下通過保溫,消除鑄造應力和晶粒內化學成份不平衡的熱處理。Al-Mg-Si系列的合金過燒溫度應該是595℃,但由於雜質元素的存在,實際的6063鋁合金不是三元系,而是一個多元系,因此,實際的過燒溫度要比595℃低一些,6063鋁合金的均勻化溫度可選在530-550℃之間,溫度高,可縮短保溫時間,節約能源,提高爐子的生產率。
4.晶粒大小對均勻化處理的影響
由於固體原子之間的結合力很大,均勻化處理是在高溫下合金元素從晶界(或邊沿)擴散到晶內的過程,這個過程是很慢的。容易理解,粗大晶粒的均化時間要比細晶粒的均勻化時間長得多,因而晶粒越細,均勻化時間就越短。
5.均勻化處理的節能措施
均勻化處理需要在高溫下通過較長時間保溫,對能源需求大,處理成本高,因此,目前絕大多數型材廠對鋁棒未進行均勻化處理。其最重要的原因就是均勻化處理需要較高成本所致。降低均勻化處理成本的主要措施有:
①細化晶粒
細化晶粒可有效的縮短保溫時間,晶粒越細越好。
②加長鋁棒加熱爐,按均勻化和擠壓溫度分段控制,滿足不同工藝要求。這一工藝主要好處是:
a)不增加均勻化處理爐。
b)充分利用鋁捧均勻化後的熱能,避免擠壓時再次加熱鋁棒。
c)鋁捧加熱保溫時間長,內外溫度均勻,有利於擠壓和隨後的熱處理。
綜上所述,生產出優質6063鋁合金鑄棒,首先是根據生產的型材選擇合理的成分,其次是嚴格控制熔煉溫度、澆鑄溫度,做好晶粒細化處理、合金液的精煉、過濾等工藝措施,細心操作,避免氧化膜的破裂與捲入。最後,對鋁棒進行均勻化處理,這樣就可生產出優質鋁棒,為生產優質型材提供一個可靠的物質基礎。
先看水平線,每條水平線都表示一個恆溫轉變,然後根據和水平線中間相接的相的位置和兩端相連相的狀態來判斷轉變的類型,最後再根據相區接觸法則作進一步的判斷,最好把相圖分開來分別研究就會相對簡單,如果整個一起來看那就有點難了.

㈥ 如何看懂鐵碳相圖如何確定鐵碳合金的相變點如何確定某一成分合金在某一溫度下的確切的組織和相組成

鐵碳合金的相變點、某一成分合金在某一溫度下的確切的組織和相組成等等都在鐵碳合金相圖中標注著吶!只要看懂鐵碳相圖,這些都不是問題。關鍵問題是如何看懂鐵碳相圖!
如何看懂鐵碳相圖呢?
1、學習一下金屬學基礎知識
2、學習一下晶體學基礎知識
3、學習一下二元相圖的基礎知識
4、理解組元、相、組織、共析反應、共晶反應、包晶反應、勻晶反應、杠桿定律等一些基本概念
5、掌握鐵素體、奧氏體、珠光體、萊氏體、滲碳體等等鐵碳相圖的一些基本概念
掌握以上五條基本上看鐵碳相圖就入門了。

㈦ 什麼是合金相圖

合金相圖一般指鐵碳合金相圖。如圖:

鐵碳合金相圖實際上是Fe-Fe3C相圖,鐵碳合金的基本組元也應該是純鐵和Fe3C。鐵存在著同素異晶轉變,即在固態下有不同的結構。不同結構的鐵與碳可以形成不同的固溶體,Fe—Fe3C相圖上的固溶體都是間隙固溶體。由於α-Fe和γ-Fe晶格中的孔隙特點不同,因而兩者的溶碳能力也不同。

在鐵碳合金中一共有三個相,即鐵素體、奧氏體和滲碳體。但奧氏體一般僅存在於高溫下,所以室溫下所有的鐵碳合金中只有兩個相,就是鐵素體和滲碳體。由於鐵素體中的含碳量非常少,所以可以認為鐵碳合金中的碳絕大部分存在於滲碳體中。鐵和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等,有實用意義並被深入研究的只是Fe-Fe3C部分,通常稱其為Fe-Fe3C相圖,此時相圖的組元為Fe和Fe3C。

由於實際使用的鐵碳合金其含碳量多在5%以下,因此成分軸從0~6.69%,所謂的鐵碳合金相圖實際上就是Fe—Fe3C相圖。

閱讀全文

與怎麼查合金相圖相關的資料

熱點內容
不銹鋼鍋胡底怎麼洗 瀏覽:318
16個螺紋鋼比重是多少 瀏覽:559
不銹鋼菜刀跟鉻鋼菜刀哪個好 瀏覽:925
鋼筋負差戀怎麼算 瀏覽:616
福永插件焊接加工是什麼 瀏覽:889
山東哪裡有回收舊鋼材的 瀏覽:722
歐曼鋼板滑塊摩鋼板上方怎麼辦 瀏覽:389
不銹鋼扶手焊接用什麼打磨 瀏覽:914
坪山不銹鋼五金加工哪裡有 瀏覽:439
板上布置哪些鋼筋 瀏覽:595
鋼管桿如何放樣 瀏覽:209
鋼鐵雄心4怎麼加指揮官的經驗 瀏覽:619
大屏無縫切換台主要是什麼 瀏覽:281
碳鋼與鋁合金輪椅哪個耐用 瀏覽:679
家裡的窗戶玻璃是鋼化的么 瀏覽:686
無縫鋼管d25d是指的什麼 瀏覽:634
電焊接頭為什麼會斷裂 瀏覽:446
skd61鋼材硬度多少 瀏覽:483
鋁合金門切大了怎麼辦 瀏覽:421
怎麼清洗不銹鋼鍋百度經驗 瀏覽:413