導航:首頁 > 合金材料 > 熔煉鈦合金常用方法有哪些

熔煉鈦合金常用方法有哪些

發布時間:2023-12-17 08:08:35

㈠ 鈦合金的焊接方法是什麼

在生活當中常常能看到鈦合金的工藝,它們具有較高的力學性能、優良的沖壓性能,並可進行各種形式的焊接,焊接接頭強度可達基體金屬強度的90%,且切削加工性能良好,因此很多人在關注鈦合金的焊接方法是什麼?接下來,就和小編一起去了解吧!
鈦合金的焊接方法是什麼
以GTAW為主,純鈦焊接的話焊絲 ERTi-1/2等,鈦合金的話用鈦合金焊碧桐絲,一般小電流焊接對焊縫質量最有好處,一般的厚度90-120A為合適,有效率也能保證質量,如果特別薄的材料,需要進一步降低電流,才能焊接。
鈦合金怎麼焊接
1、氣孔的產生。鈦及鈦合金焊接時最常見的缺陷是氣孔,主要產生在熔合線附近。氫是形成氣孔的重要原因,在焊接時由於鈦吸收氫的能力很強,而隨著溫度的下降氫的溶解度顯著下降,所以溶解於液態金屬中的氫往往來不及逸出形成氣孔。
2、接頭的脆化問題 。在常溫下,鈦與氧反應生成緻密的氧化膜,從而使伍慧寬其具有高腔亮的化學穩定性與耐腐蝕性,在進行鈦合金焊接時,對熔池、熔滴及高溫區,不管是正面還是反面都應進行全面可靠的氣體保護。這是保證鈦及其合金焊接質量的關鍵。在焊後一段時間內,鈦及其合金的近縫區很容易產生裂紋,這是由氫從高溫熔池向低溫熱影響區的擴散引起的。隨著氫含量的增加,再加上析出的氫化物體積膨脹時產生的組織應力,導致裂紋的產生。
小編結語:以上內容就是關於鈦合金的焊接方法是什麼?的相關內容介紹,希望能夠幫助到您。相信通過內容介紹後,您會對鈦合金怎麼焊接?有更多的了解,後續若是有需求,也可以參考看看。

㈡ 鈦合金的熱處理

常用的熱處理方法有退火、固溶和時效處理。退火是為了消除內應力、提高塑性和組織穩定性,以獲得較好的綜合性能。通常α合金和(α+β)合金退火溫度選在(α+β)─→β相轉變點以下120~200℃;固溶和時效處理是從高溫區快冷,以得到馬氏體α′相和亞穩定的β相,然後在中溫區保溫使這些亞穩定相分解,得到α相或化合物等細小彌散的第二相質點,達到使合金強化的目的。通常(α+β)合金的淬火在(α+β)─→β相轉變點以下40~100℃進行,亞穩定β合金淬火在(α+β)─→β相轉變點以上40~80℃進行。時效處理溫度一般為450~550℃。
總結,鈦合金的熱處理工藝可以歸納為:
(1)消除應力退火:目的是為消除或減少加工過程中產生的殘余應力。防止在一些腐蝕環境中的化學侵蝕和減少變形。
(2)完全退火:目的是為了獲得好的韌性,改善加工性能,有利於再加工以及提高尺寸和組織的穩定性。
(3)固溶處理和時效:目的是為了提高其強度,α鈦合金和穩定的β鈦合金不能進行強化熱處理,在生產中只進行退火。α+β鈦合金和含有少量α相的亞穩β鈦合金可以通過固溶處理和時效使合金進一步強化。
此外,為了滿足工件的特殊要求,工業上還採用雙重退火、等溫退火、β熱處理、形變熱處理等金屬熱處理工藝。

㈢ 鈦合金的焊接方法是什麼

1、焊接方法:以GTAW為主,純鈦焊接的話焊絲ERTi-1/2等,鈦合金的話用鈦合金焊絲。

2、焊接清理:鈦焊接過程對坡口表面和附近的污物非常敏感,故焊接前坡口及兩側至少20mm范圍內應使用丙酮清理干凈並在乾燥後焊接。

3、氣體保護顫滾:鈦材料的焊接用使用99.99%Ar作為保護氣,氣體露點-40度以下。

4、坡口正面與反面都應該使用保護氣,保護拖罩應保證焊縫金屬顏色為銀白色或者金黃色,如果出現蘭色則應加大加長保護氣拖罩。

5、焊接電流:一般小電流焊接對焊縫質量最有好處,一般的厚度90-120A為合適飢爛,有效率也能保證質量,如果特別薄的材料,需要進一步降低電流。

6、鈦焊縫檢驗,肉眼檢測無缺陷後用PT檢測,不得存在氣孔、裂紋等缺陷;依據圖紙要求RT。

以上就是爛洞漏關於鈦合金的焊接方法是什麼的相關內容介紹了,通過以上的相信大家都有所了解了,希望對大家有用。

㈣ TZM合金的制備方法

TZM合金(鉬鋯鈦合金)的常用制備方法有:電弧熔化一鑄造法和粉末冶金技術。
電弧熔化一鑄造法是用電弧將純鉬熔化後按重量百分比添加一定量的Ti、Zr等合金元素,然後用常規鑄造的方法得到TZM合金(鉬鋯鈦合金);
粉末冶金具有獨特的化學組成和機械、物理性能,而這些性能是用傳統的熔鑄方法無法獲得的。其用高純鉬粉與TiH2粉、ZrH2粉及石墨粉按比例均勻混合後經冷等靜壓成形,然後在保護氣氛下高溫燒結,得到TZM坯料。坯料再經過高溫熱軋(高溫鍛造)、高溫退火、中溫熱軋(中溫鍛造)、中溫退火消除應力、然後溫軋(溫鍛)而得到TZM成品料。坯料的軋制(鍛造)工藝及隨後的熱處理對材料的性能、各向異性及織構有較大的影響。
採用粉末冶金法可以節省真空自耗電弧爐、大型擠壓機和鍛錘以及相應的高溫加熱爐等大型設備,使工序簡化,生產周期縮短,能耗降低,生產能力及成品率成倍提高,因此成本大大降低。
TZM合金(鉬鋯鈦合金)通常制備成棒材和板材。粉末冶金法可以節省真空自耗電弧爐、大型擠壓機和鍛錘以及相應的高溫加熱爐等大型設備,使工序簡化,生產周期縮短,消耗降低,生產能力及成品率得以提高,因此成本大大降低。

㈤ 鈦合金絲加工工藝有那些

鈦及鈦合金絲由於具有良好的耐蝕性、比強度高、無磁性、與人體的親和性好和形狀記憶功能等特點, 因而不但廣泛應用於航空航天等高技術領域, 而且正越來越多地進入各種民用領域。例如在航天領域廣泛應用的鈦合金絲緊固件, 不僅可以達到減重、耐腐蝕的目的, 而且是鈦合金、碳纖維復合材料等結構件必需的連接件;汽車領域採用鈦合金絲製成的彈簧, 同鋼彈簧相比, 可減重60%~70%;醫療領域採用的鈦合金絲由於具有無毒、質輕、耐生物腐蝕及良好的生物相容性等特性而受到醫生及患者的青睞;在海水養殖方面, 用鈦絲織成的養殖網使用15 年後仍毫無損壞。
鈦及鈦合金屬於難加工材料, 由於鈦的屈強比較高, 一般為0.70~0.95, 彈性較好, 變形抗力大, 而其彈性模量相對較低, 故加工時變形抗力大, 回彈性也較嚴重;而且在加工過程中的粘著問題對製品的表面質量也產生了極為惡劣的影響。目前, 鈦合金絲材的制備工藝通過不斷改進、完善,並採用各種新興技術使鈦合金絲材產品的質量迅速提高, 種類不斷增加, 應用領域進一步擴大。拉拔仍是現今生產鈦合金絲所採用的最普遍方法,通常絲材的生產工藝流程為: 原料→鑄錠熔煉→鍛造→軋制→拉拔→熱處理→檢驗→成品。本文以絲材的生產工藝流程為主線, 重點介紹絲材的拉伸工藝, 簡單介紹絲坯的制備工藝(熔煉、鍛造、軋制)以及絲材加工技術。
1 絲坯制備工藝
1.1 熔煉工藝
鈦是非常活潑的金屬, 在液態下與氧、氮、氫及碳的反應相當快, 因此鈦合金熔煉必須在較高的真空度或惰性氣體(Ar 或Ne)保護下進行。熔煉技術主要有真空自耗電極電弧爐熔煉、真空自耗電極凝殼爐熔煉、電子束冷床爐熔煉、等離子冷床爐熔煉、真空感應爐熔煉等。從耗電量、熔化速度、成本技術經濟指標對比來看, 前兩種仍是目前最經濟適用的熔煉方法。但真空電弧熔煉對消除鈦合金中高密度夾雜和低密度夾雜的能力有限, 而冷床爐熔煉在這方面有獨特的優勢。熔煉鑄錠的質量將影響後續加工工藝以及成品質量, 可通過精選原材料, 選擇合理的熔煉工藝參數(熔煉電流、電弧電壓、真空度、漏氣率、冷卻速度、攪拌磁場強度), 嚴格控制工藝過程, 得到高質量的鑄錠。由於絲材尺寸較小, 加工工藝比較復雜, 對合金內部冶金缺陷(偏析、夾雜)的敏感性增加, 因此熔煉工藝對精確控製成分, 減少合金中的雜質含量, 確保絲材優良的性能非常關鍵。
1.2 鍛造工藝
鍛造的目的是改善組織、提高金屬的綜合性能, 為軋制工序提供坯料。其工序基本流程為: 鑄錠→加熱→開坯鍛造→冷卻→表面清理→變形坯料→加熱→鍛棒→檢驗→成品。
鑄錠和變形坯料的加熱應選擇合適的加熱溫度、加熱速度和加熱時間, 並控制好爐內氣氛, 才能保證產品質量。加熱溫度應選擇變形塑性好、鍛件質量高、變形抗力低的溫度范圍。鑄錠的開坯加熱是在(α+β)/β相變點以上100~200℃(β鈦合金除外)的范圍內; 經過鍛造變形的坯料, 粗大的鑄造組織已得到一定程度的破碎, 內部組織得到改善, 塑性提高, 因此再鍛造加熱溫度可隨退火次數增加而逐漸降低; 成品前的鍛造加熱, 為防止β脆性的發生, 獲得良好的組織及綜合性能, 對於α合金和α+β合金應在相變點以下的溫度進行, 對於β合金, 實際上是在β區加熱和鍛造的。由於鈦的導熱系數低, 在室溫下為0.0397K/cm·s·℃, 約是中碳鋼的1/4, 在高溫時卻又相近。因此, 在較低溫度加熱時應採用慢速, 避免加熱過程中表層與中心層形成很大溫度差。在高溫時, 鈦的導熱系數增加, 可採用稍快的速度加熱。
鍛造加工中, 變形溫度、變形量以及變形速度對鍛件質量有重要的影響, 必須正確控制。如前所說, 一般將鍛前的鑄錠加熱到相變點以上, 因為在此溫度下變形抗力低、塑性高, 但若鑄錠開坯的變形量過低, 鑄態組織將不能得到有效地破碎, 其性能較差, 也將直接影響到後續加工。鍛造過程中,若變形量選擇不當將嚴重影響合金的組織與性能。如TC4 合金, 當加熱溫度高於相變點之上, 而變形量不夠大時, 往往得到粗大的片狀或針狀α間β組織, 也稱粗大魏氏組織。這種組織的強度變化不大, 但塑性顯著下降。當變形量增大時則出現歪扭程度不同的條狀α+β組織, 稱為網籃狀組織。這種組織的高溫性能和斷裂韌性有所改善, 而塑性有所下降。應當選擇合適的變形量, 得到較細小的具有一定量的等軸初生α加轉變的β組織。這種組織的綜合性能較好。變形速度對鍛件質量也有很重要的影響, 當變形速度過快時, 不僅使變形抗力提高, 而且變形熱效應使鍛件局部或整體溫度過高, 得到的鍛件組織和綜合性能較差。最後須指出的是: 變形溫度、變形速度和變形量絕不是孤立的影響鍛件的質量。例如加熱溫度稍高, 但是用足夠大的變形量和較低的變形速度也可以得到較好的組織和性能。
1.3 軋制工藝
軋制加工主要為絲材拉伸提供絲坯, 進一步改善合金組織, 提高金屬的綜合性能。同鍛造工藝一樣, 對絲材的組織以及表面質量都有重要的影響。其主要工藝參數有: 加熱溫度、軋制速度和熱軋加工率。
(1) 加熱溫度
經鍛造加工後, 坯料組織均勻性和緻密性已經大大提高, 故加熱溫度可略低於鍛造溫度。α+β型合金的軋前加熱溫度一般都稍低於(α+β)/β相變溫度, 即在(α+β)相區進行加熱, 使軋制過程在(α+β)相區完成, 保證產品的組織性能較好; α型合金的加熱溫度也在(α+β)相區內, 此時熱加工性能良好且室溫性能較好; β型合金的加熱溫度在高於β相變轉變溫度以上進行, 使其變形在β相區完成, 此時合金的變形抗力小、塑性較好。不同的加熱溫度對合金的組織性能有很大影響, 如對TC9 棒材在1050 ℃軋制時, 由於其軋制溫度在β轉變溫度以上, 得到的是針狀組織, 性能較差。在α+β相區(980 ℃以下)軋制時, 得到的是等軸組織, 其性能較好。
(2) 軋制速度
目前, 鈦及其合金軋制時, 由於產量不大, 鈦製品長度較短, 大多採用手工操作, 所以不適宜高速軋制。而且軋速過快將造成軋件快速升溫, 影響最終產品組織性能。理論計算表明: 軋制速度大於12m/s後, 軋件升溫與軋制速度成正比增加; 當軋制速度大於30m/s 時, 終軋溫度與加熱溫度無關。
(3) 熱軋加工率
由於變形量的不同, 合金的組織和性能有明顯的差別。如在920 ℃下熱軋的TC4 棒材, 在28%變形量下軋制, 其組織基本上是α相被β相網格分割成等軸狀, 這種組織性能較差;在變形量為44%時, β相網格已被破碎, α相粒度較大, 這種組織性能也較差; 在變形量為66%~78%時, 有大致相同的組織, 以α相為基體, 加上細小分散的α+β組織, 這種組織性能較好。
為充分加工與細化組織, 提高材料性能, 在20世紀70年代,發明了步進軋制工藝,它是一種將軋制和鍛造兩種變形特點結合在一起的加工方式, 具有鍛造的大變形和軋制的高速度等特點。借鑒國外少數先進國家絲材的制備工藝流程為:鑄錠→開坯鍛造→熱連軋成線材。秦伯祥等人研究了採用合金鋼熱連軋機組, 生產大卷重10mm純鈦高速線材工藝, 並對產品組織、性能、外形、尺寸公差進行了分析討論, 研究表明, 用該方法生產的產品力學性能良好, 組織均勻一致, 而且表面質量良好。
2 拉伸工藝
2.1 拉伸溫度
對冷加工性能差的鈦合金常用熱拉伸進行加工, 拉伸溫度對絲材的組織、性能、間隙元素含量以及表面質量均有重要影響。朱恩科等人對Ti2Cu鈦合金絲材拉伸方法的研究結果表明, Ti2Cu 鈦合金絲材不適宜冷拉伸, 而熱拉伸方法能夠順利拉制出合格的Ti2Cu 鈦合金絲材。在拉伸過程中C、O、N 和H 的增加量, 可以通過鹼、酸洗和真空退火消除。圖1 為在冷拉伸與熱拉伸下Ti2Cu 鈦合金絲材的拉伸性能,可以看出,冷拉伸時,絲材的抗拉強度隨直徑減小而增加, 伸長率隨直徑減小而迅速降低。熱拉伸在8mm~6.19mm區間抗拉強度隨直徑減小迅速增加, 伸長率顯著下降, 這是由於只發生了部分再結晶, 硬化作用大於軟化作用; 在6.19 mm~1.15mm 區間抗拉強度和伸長率基本保持不變, 這是由於變形造成的硬化和回復再結晶引起的軟化作用達到了動態平衡。
2.2 拉伸道次加工率
熱拉伸時, 道次加工率的大小主要取決於加工溫度和絲材直徑。對於在室溫下的冷拉伸, 道次加工率主要取決於氧化、塗層的質量和潤滑劑的好壞。表1為室溫下拉伸時, 隨直徑變化道次加工率分配的一般規范。
2.3 拉伸應力
在拉伸時, 拉伸應力應小於被拉出金屬材料的屈服強度, 這是實現拉伸過程的基本條件。影響拉伸應力的因素很多, 如拉伸溫度、拉伸速度、加工率以及模具的圓錐角等等。加工率的增加、拉伸溫度的降低、圓錐角過大或過小都將引起拉伸應力的增大; 在直線拉伸時, 拉伸速度對拉伸應力無顯著改變, 而在絲材以直線式通過模孔後向牽引絞盤上纏繞時, 拉伸速度超過一定范圍將引起拉伸應力的增大。為減小拉伸過程中的拉伸應力,可通過潤滑、減小變形量、提高金屬變形塑性等方法。為此, 人們研究了多種加工技術, 其中包括輥模拉伸、超聲振動拉伸等方法。
2.4 拉伸潤滑
由於鈦合金拉伸時具有粘附模具的傾向, 造成拉絲困難, 因此除了必須採用良好的潤滑劑之外, 還應採取塗層、氧化等其他增強潤滑措施。鈦合金拉伸前大多進行氧化、塗層處理。採用的塗料有石墨乳、鹽石灰、鈣基塗層等等, 選擇塗層的依據是不僅與所加工的絲材要結合緊密, 與潤滑劑之間要有良好的浸潤性, 而且要便於清除。拉伸工藝條件不同, 使用的潤滑劑也不相同。在鈦絲拉伸工藝中, 採用的潤滑劑有工業皂粉、石墨乳以及肥皂粉與其他材料的混合物, 應選擇與塗層有良好浸潤性、熱穩定性較好的潤滑劑。如在TB2 鈦合金絲材加工中, 塗層選擇鈣基塗層, 輔以自製潤滑劑(HTK-SM), 可以獲得令人滿意的絲材表面。為增強潤滑效果, 還常採用增壓模來提高絲材的表面質量。
2.5 拉伸模
拉絲模具材質主要有硬質合金、天然金剛石、合成金剛石、聚晶金剛石。細絲生產中常用單晶天然金剛石模。天然金剛石模具雖然造價高, 但經久耐用, 尺寸變化小, 不易出現粘拉磨損、絲材劃傷等。為使待加工的絲材順利通過模具, 實現變形的目的, 形成所需的規格尺寸, 要求加工後的模具形狀有利於潤滑並減少斷絲現象, 有利於產生的變形熱量散發得快。由於經過一段時間的拉伸,模具表面發生磨損現象, 即表面因摩擦、撕裂等使模具表面有物質脫落, 會因此劃傷絲材表面。因此需要提高模具光潔度, 減少模具缺陷, 加強對模
具的管理控制。
2.6 表面處理
在絲材拉伸過程中, 表面處理也是影響絲材表面質量及組織性能的影響因素。其方式有酸洗、機械拋光、電解拋光、磷化、氧化、電鍍等。西北有色金屬研究院與有研億金新材料股份有限公司分別對鈦鉭合金絲與鈦鎳合金絲進行了表面處理的研究, 結果表明, 酸洗、機械拋光與電解拋光拉伸試樣均表現為韌性斷裂, 但電解拋光由於減少了試樣表面裂紋源而有效改善了鈦鎳合金絲材的力學性能, 而酸洗由於減少了表面夾雜物對拉伸的影響, 表現出了比機械拋光更好的綜合性能。磷化、氧化處理由於其磷化層和氧化層具有較高的硬度, 可以有效地保證絲材拉伸過程中表面不被劃傷, 但在拉伸過程中會出現表面和心部變形不協調性, 容易在表面出現裂紋, 導致材料斷裂。電鍍後的絲材雖然表面光潔, 但由於易發生氫脆現象, 試樣表現為脆性斷裂, 材料的力學性能顯著降低。
2.7 熱處理工藝
鈦及鈦合金絲熱處理時應用最多的是退火,包括中間退火和成品退火, 其目的是提高絲材繼續拉伸的加工塑性和達到所要求的成品性能。在制定退火工藝時, 不僅要考慮生產的具體條件, 更重要的應考慮金屬的力學性能與變形程度、退火溫度之間的關系。如工業純鈦, 隨著加工率的增加, 伸長率下降, 而抗拉強度升高, 說明冷加工硬化快, 因此必須進行中間退火。絲材成品的退火溫度應根據所要求的成品性能來選擇, 以達到最佳的性能匹配。如Ti-2Al-2.5Zr 絲材的優選真空退火溫度在700~850 ℃, 在這區間內, 伸長率和抗拉性能均能達到絲材的要求。表2與表3為鈦及鈦合金絲的一般退火規范, 可以看出, 絲材的退火制度還應考慮絲材的尺寸。實際應用中, 應根據合金成分以及加工工藝, 進行試驗研究, 來選擇最佳退火工藝。
除退火工藝外, 為達到各種用途所需要的性能, 還常常需要進行固溶時效等熱處理。如眼鏡架用Ti-22V-4Al 合金絲, 經780℃×30min 退火處理, 其組織均勻, 伸長率達20%以上; 再經520℃×4 h 時效處理, 維氏硬度達到2800MPa, 可達到眼鏡架用絲材對材料硬度的技術要求。
3 加工技術
傳統的固定模拉伸(即常規拉伸)有著本身固有的缺陷, 其突出問題是模具與變形金屬接觸面的摩擦以及伴隨產生的熱效應。為此, 人們發明了多種加工技術來解決上述問題。
(1) 輥模拉伸: 該技術結合了傳統的軋制與拉伸的特點, 減少了拉拔力, 增加了道次加工率,降低了加工硬化程度。由於輥模拉伸是在由非傳動的、自由旋轉的輥輪組成的孔型中拉伸, 將固定模拉伸時材料與模孔的大部分滑動摩擦轉變為非常小的滾動摩擦, 從而大幅度減小拉伸摩擦力。輥模拉伸的缺點是尺寸精度沒有固定模拉伸高, 適用於粗拉絲, 而在細拉絲中用固定模拉伸進行精整。
(2) 超聲振動拉伸: 該方法是從20世紀50年代發展起來的,拉伸時,對拉伸模施以超聲振動,可以有效降低拉伸力, 提高道次加工率。
(3) 無模拉伸: 該工藝是採用感應線圈或激光使絲材局部加熱軟化, 並施加張力使絲材變細。其優點是不需要拉伸模和潤滑劑, 變形率大, 效率高, 缺點是成品尺寸均勻性差, 質量不穩定。
(4) 增壓模拉伸: 該工藝是指在拉伸模前安裝增壓噴嘴裝置, 在絲材拉伸時, 能造成自動增壓強制潤滑效果的方法。其優點是斷絲頻率減少4/5、拉絲模壽命提高20 倍以上、改善表面質量等。
(5) 鍍層- 包套集束拉伸: 該方法首先在鈦絲表面鍍一層低碳鋼, 再將鍍好的鈦絲集束裝入低碳鋼管內, 然後進行集束拉伸加工並進行中間退火, 加工到最終尺寸後, 用硫酸酸洗將低碳鋼包套和鍍層除去。其優點是效率高、生產成本低。
(6) 包套- 碎屑擠壓: 該工藝是日本東北大學開發的, 主要用於TiNi 形狀記憶合金絲的加工,可提高產品質量、降低生產成本。首先通過包覆軋制制備由不同金屬片組成的多層復合片材, 各種金屬層的厚度比取決於所確定的化學成分, 然後把軋成的包覆片切成碎屑, 將切成的碎屑裝填到容器中製成坯料, 並將坯料擠壓成細棒, 接著再加工成細絲, 最後通過熱擴散處理, 將復合絲轉化成想要得到的金屬間化合物絲材。
(7) 四輥絲材軋機連軋生產絲材: 這種軋機是由四個軋輥組成一個圓的孔形, 工作時由一個主動輥帶動另外三個輥轉動。多個這樣的機架組成連軋機組可進行鈦合金絲材的生產, 從而大幅度提高了絲材的生產率和成品率。
4 結語
鈦及鈦合金絲材應用廣泛, 但其昂貴的價格是阻礙其應用的主要障礙, 需要開發並普及絲材制備新工藝, 以降低絲材加工成本。國外對絲材加工技術研究報道較多, 並且採用了很多新技術,因此國外的鈦合金絲材產品質量好、規格多。而國內鈦合金絲材生產技術仍然較落後, 生產流程長、效率低、成本高是目前需要解決的問題。因此我國應加大對鈦合金絲材加工的研究投入, 盡快提高在該領域的技術水平和裝備水平, 生產出質優價廉的鈦合金絲材產品, 以適應市場的需求。

㈥ 什麼是鈦合金材料焊接常用的焊接方法有哪些

通過加熱或加壓,或兩者並用,使用或不用填充材料,使鈦合金材料的工件達到原子結合的方法。
鈦及鈦合金常用的焊接方法有:溶融焊接、釺焊、固相結合、機械結合等。其中,熔融焊接用途最廣泛,可分為:電弧焊、電子束焊、電阻焊等,使用較多的是惰性氣體。
鈦材料的焊接性,取決於材料本身的化學活性和物理性能。室溫下,鈦的表面具有薄而緻密的氧化膜,性能穩定。隨著溫度的升高,鈦的活性急劇增大,當焊接溫度高於600℃時,緻密的氧化膜被破壞,氣體能通過疏鬆的氧化膜向金屬內部擴散、和氫、氧、氮等元素產生劇烈化學反應,這些元素以間隙雜質存在於鈦中,使其焊接接
頭的性能特別是塑性下降。氫氣的存在也常是焊接出現氣孔和冷裂的原因。

㈦ 鈦的冶煉方法

製取金屬鈦的原料主要為金紅石,其中含TiO2大於96%。缺少金紅石礦的國家,例如蘇聯,則採用鈦鐵礦製成的高鈦渣,其中含TiO290%左右。因天然金紅石漲價和儲量日減,各國都趨向於用鈦鐵礦製成富鈦料,即高鈦渣和人造金紅石。鈦在1791年被發現,而第一次製得純凈的鈦卻是在1910年,中間經歷了一百餘年。原因在於:鈦在高溫下性質十分活潑,很易和氧、氮、碳等元素化合,要提煉出純鈦需要十分苛刻的條件。
工業上常用硫酸分解鈦鐵礦的方法製取二氧化鈦,再由二氧化鈦製取金屬鈦。濃硫酸處理磨碎的鈦鐵礦(精礦),發生下面的化學反應:
FeTiO3+3H2SO4 == Ti(SO4)2+FeSO4+3H2O
FeTiO3+2H2SO4 == TiOSO4+FeSO4+2H2O
FeO+H2SO4 == FeSO4+H2O
Fe2O3+3H2SO4 ==Fe2(SO4)3+3H2O
為了除去雜質Fe2(SO4)3,加入鐵屑,Fe3+還原為Fe2+,然後將溶液冷卻至273K以下,使得FeSO4·7H2O(綠礬)作為副產品結晶析出。
Ti(SO4)2和TiOSO4水解析出白色的偏鈦酸沉澱,反應是:
Ti(SO4)2+H2O == TiOSO4+H2SO4
TiOSO4+2H2O == H2TiO3+H2SO4
鍛燒偏鈦酸即製得二氧化鈦:
H2TiO3== TiO2+H2O
工業上制金屬鈦採用金屬熱還原法還原四氯化鈦。將TiO2(或天然的金紅石)和炭粉混合加熱至1000~1100K,進行氯化處理,並使生成的TiCl4,蒸氣冷凝。
TiO2+2C+2Cl2=TiCl4+2CO
在1070K 用熔融的鎂在氬氣中還原TiCl4可得多孔的海綿鈦:
TiCl4+2Mg=2MgCl2+Ti
這種海綿鈦經過粉碎、放入真空電弧爐里熔煉,最後製成各種鈦材。
也可以通過反應:Ti+2CI2=TiCI4
得到的TiCI4經過高溫(1250℃左右)情況下分解:
TiCI4=Ti+2CI2
由此得到純鈦棒。
鈦及鈦合金的特性、用途
純鈦是銀白色的金屬,它具有許多優良性能。鈦的密度為4.54g/立方厘米,比鋼輕43% ,比久負盛名的輕金屬鎂稍重一些。機械強度卻與鋼相差不多,比鋁大兩倍,比鎂大五倍。鈦耐高溫,熔點1942K,比黃金高近1000K ,比鋼高近500K。
鈦屬於化學性質比較活潑的金屬。加熱時能與O2、N2、H2、S和鹵素等非金屬作用。但在常溫下,鈦表面易生成一層極薄的緻密的氧化物保護膜,可以抵抗強酸甚至王水的作用,表現出強的抗腐蝕性。因此,一般金屬在酸、鹼、鹽的溶液中變得千瘡百孔而鈦卻安然無恙。
液態鈦幾乎能溶解所有的金屬,因此可以和多種金屬形成合金。鈦加入鋼中製得的鈦鋼堅韌而富有彈性。鈦與金屬Al、Sb、Be、Cr、Fe等生成填隙式化合物或金屬間化合物。
鈦合金製成飛機比其它金屬製成同樣重的飛機多載旅客100多人。製成的潛艇,既能抗海水腐蝕,又能抗深層壓力,其下潛深度比不銹鋼潛艇增加80%。同時,鈦無磁性,不會被水雷發現,具有很好的反監護作用。
鈦具有「親生物」性。在人體內,能抵抗分泌物的腐蝕且無毒,對任何殺菌方法都適應。因此被廣泛用於制醫療器械,制人造髖關節、膝關節、肩關節、脅關節、頭蓋骨,主動心瓣、骨骼固定夾。當新的肌肉纖維環包在這些「鈦骨」上時,這些鈦骨就開始維系著人體的正常活動。
鈦在人體中分布廣泛,正常人體中的含量為每70kg體重不超過15mg,其作用尚不清楚。但鈦能刺激吞噬細胞,使免疫力增強這一作用已被證實。
鈦的化合物及用途
重要的鈦化合物有:二氧化鈦(TiO2)、四氯化鈦(TiCl4)、偏鈦酸鋇(BaTiO3)。
純凈的二氧化鈦是白色粉末,是優良的白色顏料,商品名稱「鈦白」。它兼有鉛白(PbCO3)的遮蓋性能和鋅白(ZnO)的持久性能。因此,人們常把鈦白加在油漆中,製成高級白色油漆;在造紙工業中作為填充劑加在紙槳中;紡織工業
中作為人造纖維的消光劑;在玻璃、陶瓷、搪瓷工業上作為添加劑,改善其性能;在許多化學反應中用作催化劑。在化學工業日益發展的今天,二氧化鈦及鈦系化合物作為精細化工產品,有著很高的附加價值,前景十分誘人。
四氯化鈦是一種無色液體;熔點250K、沸點409K,有刺激性氣味。它在水中或潮濕的空氣中都極易水解,冒出大量的白煙。
TiCl4+3H2O == H2TiO3+4HCl
因此TiCl4在軍事上作為人造煙霧劑,猶其是用在海洋戰爭中。在農業上,人們用TiCl4形成的濃霧地面,減少夜間地面熱量的散失,保護蔬菜和農作物不受嚴寒、霜凍的危害。
將TiO2和BaCO3一起熔融製得偏鈦酸鋇:
TiO2+BaCO3 == BaTiO3十CO2
人工製得的BaTiO3具有高的介電常數,由它製成的電容器有較大的容量,更重要的是BaTiO3具有顯著的「壓電性能」,其晶體受壓會產生電流,一通電,又會改變形狀。人們把它置於超聲波中,它受壓便產生電流,通過測量電流強弱可測出超聲波強弱。幾乎所有的超聲波儀器中都要用到它。隨著鈦酸鹽的開發利用,它愈來愈廣泛地用來製造非線性元件、介質放大器、電子計算機記憶元件、微型電容器、電鍍材料、航空材料、強磁、半導體材料、光學儀器、試劑等。
鈦、鈦合金及鈦化合物的優良性能促使人類迫切需要它們。然而,生產成本之高,使應用受到限制。我們相信在不久的將來,隨著鈦的冶煉技術不斷改進和提高,鈦、鈦合金及鈦的化合物的應用將會得到更大的發展。
鈦產品:
鈦及鈦合金是極其重要的輕質結構材料,在航空、航天、車輛工程、生物醫學工程等領域具有非常重要的應用價值和廣闊的應用前景。
類型:碘化鈦,工業純鈦, α 型鈦, β 型鈦, α +β型鈦

閱讀全文

與熔煉鈦合金常用方法有哪些相關的資料

熱點內容
模具車間怎麼做防滲油 瀏覽:369
哪裡生產的不銹鋼最便宜 瀏覽:573
方管52替代 瀏覽:240
壓月餅模具去哪裡可以買到 瀏覽:382
好的不銹鋼污水泵多少錢 瀏覽:287
鋼鐵比爾用什麼槍 瀏覽:419
電磁加熱鐵鍋和不銹鋼哪個熱得快 瀏覽:276
鋼板上打螺紋孔用什麼 瀏覽:439
四季沐歌太陽能免焊管件漏水維修 瀏覽:42
睡眠銀行卡能綁三方存管嗎 瀏覽:41
哪裡有安裝玻璃鋼管道的 瀏覽:257
搜荊門鋼筋多少錢一噸 瀏覽:694
鋼鐵雄心4怎麼換兵圖標 瀏覽:213
筏板厚度是600鋼筋彎折是多少 瀏覽:563
壓機模具錯誤怎麼回事 瀏覽:703
無衣無縫的反義詞是什麼 瀏覽:612
曲柄鋁合金和鐵的哪個好 瀏覽:45
縱向受力鋼筋的排距怎麼算的 瀏覽:122
一噸螺紋鋼筋多少方 瀏覽:942
用方管做一個活動腿 瀏覽:849