導航:首頁 > 合金材料 > 鋁合金mig焊如何避免產生氣孔

鋁合金mig焊如何避免產生氣孔

發布時間:2024-06-23 01:19:03

① 鋁合金焊接缺陷

一、強的氧化能力鋁與氧的親和力很強,在空氣中極易與氧結合生成緻密而結實的AL2O3薄膜,厚度約為0.1μm,熔點高達2050℃,遠遠超過鋁及鋁合金的熔點,而且密度很大,約為鋁的1.4倍。在焊接過程中,氧化鋁薄膜會阻礙金屬之間的良好結合,並易造成夾渣。氧化膜還會吸附水分,焊接時會促使焊縫生成氣孔。這些缺陷,都會降低焊接接頭的性能。為了保證焊接質量,焊前必須嚴格清理焊件表面的氧化物,並防止在焊接過程中再氧化,對熔化金屬和處於高溫下的金屬進行有效的保護,這是鋁及鋁合金焊接的一個重要特點。具體的保護措施是:

1、焊前用機械或化學方法清除工件坡口及周圍部分和焊絲表面的氧化物;

2、焊接過程中要採用合格的保護氣體進行保護;

3、在氣焊時,採用熔劑,在焊接過程中不斷用焊絲挑破熔池表面的氧化膜。

二、鋁的熱導率和比熱大,導熱快盡管鋁及鋁合金的熔點遠比鋼低,但是鋁及鋁合金的導熱系數、比熱容都很大,比鋼大一倍多,在焊接過程中大量的熱能被迅速傳導到基體金屬內部,為了獲得高質量的焊接接頭,必須採用能量集中、功率大的熱源,有時需採用預熱等工藝措施,才能實現熔焊過程。

三、線膨脹系數大鋁及鋁合金的線膨脹系數約為鋼的2倍,凝固時體積收縮率達6.5%-6.6%,因此易產生焊接變形。防止變形的有效措施是除了選擇合理的工藝參數和焊接順序外,採用適宜的焊接工裝也是非常重要的,焊接薄板時尤其如此。另外,某些鋁及鋁合金焊接時,在焊縫金屬中形成結晶裂紋的傾向性和在熱影響區形成液化裂紋的傾向性均較大,往往由於過大的內應力而在脆性溫度區間內產生熱裂紋。這是鋁合金,尤其是高強鋁合金焊接時最常見的嚴重缺陷之一。在實際焊接現場中防止這類裂紋的措施主要是改進接頭設計,選擇合理的焊接工藝參數和焊接順序,採用適應母材特點的焊接填充材料等。

四、容易形成氣孔

焊接接頭中的氣孔是鋁及鋁合金焊接時極易產生的缺陷,尤其是純鋁和防銹鋁的焊接。氫是鋁及鋁合金焊接時產生氣孔的主要原因,這已為實踐所證明。氫的來源,主要是弧柱氣氛中的水分、焊接材料及母材所吸附的水分,其中焊絲及母材表面氧化膜的吸附水分,以焊縫氣孔的產生,常常佔有突出的地位。

鋁及鋁合金的液體熔池很容易吸收氣體,在高溫下溶入的大量氣體,在由液態凝固時,溶解度急劇下降,在焊後冷卻凝固過程中來不及析出,而聚集在焊縫中形成氣孔。為了防止氣孔的產生,以獲得良好的焊接接頭,對氫的來源要加以嚴格控制,焊前必須嚴格限制所使用焊接材料(包括焊絲、焊條、熔劑、保護氣體)的含水量,使用前要進行乾燥處理。清理後的母材及焊絲最好在2-3小時內焊接完畢,最多不超過24小時。TIG焊時,選用大的焊接電流配合較高的焊接速度。MIG焊時,選用大的焊接電流慢的焊接速度,以提高熔池的存在時間。Al-Li合金焊接時,加強正、背面保護,配合坡口刮削,清除概況氧化膜,可有效地防止氣孔。

五、焊接接頭容易軟化

焊接可熱處理強化的鋁合金時,由於焊接熱的影響,焊接接頭中熱影響區會出現軟化,即強度降低,使基體金屬近縫區部位的一些力學性能變壞。對於冷作硬化的合金也是如此,使接頭性能弱化,並且焊接線能量越大,性能降低的程序也愈嚴重。針對此類問題,採取的措施主要是制定符合特定材料焊接的工藝,如限制焊接條件,採取適當的焊接順序,控制預熱溫度和層間溫度,焊後熱處理等。對於焊後軟化不能恢復的鋁合金,最好採用退火或在固溶狀態下焊接,焊後再進行熱處理,若不允許進行焊後熱處理,則應採用能量集中的焊接方法和小線能量焊接,以減小接頭強度降低。

六、合金元素蒸發和燒損

某些鋁合金含有低沸點的合金元素,這些元素在高溫下容易蒸發燒損,從而改變了焊縫金屬的化學成分,降低了焊接接頭的性能。為了彌補這些燒損,在調整工藝的同時,常常採用含有這些沸點元素含量比母材高的焊絲或其他焊接材料。

七、鋁在高溫時的強度和塑性低

鋁在370℃時強度僅為10Mpa,焊接時會因為不能支撐住液體金屬而使焊縫成形不良,甚至形成塌陷或燒穿,為了解決這個問題,焊接鋁及鋁合金時常常要採用墊板。

八、焊接接頭的耐腐蝕性能低於母材

熱處理強化鋁合金(如硬鋁)接頭的耐腐蝕性的降低很明顯,接頭組織越不均勻,耐蝕性越易降低。焊縫金屬的純度或緻密性也影響接頭耐蝕性能。雜質較多、晶粒粗大以及脆性相析出等,耐蝕性就會明顯下降,不僅產生局部表面腐蝕而且經常出現晶間腐蝕,此外對於鋁合金,焊接應力的存在也是影響耐蝕性的一個重要因素。

為了提高焊接接頭的耐蝕性,主要採取以下幾個措施:

1、改善接頭組織成分的不均勻性。主要是通過焊接材料使焊縫合金化,細化晶粒並防止缺陷;同時調整焊接工藝以減小熱影響區,並防止過熱,焊後熱處理。

2、消除焊接應力,如局部表面拉應力可以採用局部錘擊辦法來消除。

3、採取保護措施,如採取陽極氧化處理或塗層等。

九、無色澤變化,給焊接操作帶來困難

鋁及鋁合金焊接時由固態轉變為液態時,沒有明顯的顏色變化,因此在焊接過程中給操作者帶來不少困難。因此,要求焊工掌握好焊接時的加熱溫度,盡量採用平焊,在引(熄)弧板上引(熄)弧等。

② 請問鋁合金焊接要注意哪些

焊前用機械或化學方法清除工件坡口及周圍部分和焊絲表面的氧化物;焊接過程中要採用合格的保護氣體進行保護;在氣焊時,採用熔劑,在焊接過程中不斷用焊絲挑破熔池表面的氧化膜。板厚在3mm以下的對接焊縫可不開坡口,只需在焊縫背面倒一0.5~1mm的角即可,這樣有利於氣體的排放和避免背面凹槽。背面是否倒角對焊縫的影響。鋁合金厚板的坡口角度較鋼板的要大。單邊坡口一般採用55°坡口,雙邊坡口採用每邊35°坡口。這樣可以使焊接的可達性提高,同時可降低未熔合缺陷的產生幾率。對於厚板T形接頭中的HV或HY接頭,要求填滿坡口外,再加一個角焊縫,使焊縫總尺寸S不小於板厚T。厚板T形接頭焊接。焊前清理工作焊接鋁合金需要最干凈的准備工作,否則其抗腐蝕能力下降,而且容易產生氣孔。焊接鋁合金應該與焊鋼的習慣徹底區分。焊鋼已經用過的工具,嚴禁焊接鋁合金時使用。

③ 異種金屬焊接鋁合金和鑄鋁焊如何接避免氣空

鑄件和鋁合金件產生氣孔是鑄件本身的結構和製造原因,並非操作和焊接工藝問題,解決這種問題可以通改變焊接方式,將原來的焊接方式改為低溫焊接,材料採用WE53低溫鋁焊條,用火焰焊接可以完全避免這種情況 ,可以參考如下的應用

壓鑄鋁ADC12與鋁合金6063的焊接
難點在於如下幾點:
1、壓鑄鋁ADC12的焊接容易產生返渣,或者氣孔,從而容易出現針眼的氣孔,或者成型特別難看,這是壓鑄鋁本身的客觀原因導致
2、一般的壓鑄鋁與擠壓或者拉巴出來的6063鋁合金焊接兩者在強度等級上是不一樣的,在選擇合適的焊接材料和焊接工藝有一些困難的
3、即使焊接好,成型都差強人意

解決辦法的分析:
解決這些辦法可以採用低溫的鋁釺焊,但是傳統的ER4047配合201的焊粉在焊接壓鑄鋁的過程中出現成堆的現象,難以將6063和AD12很平滑的鏈接,所以問題的關鍵就是在於要用不挑壓鑄鋁ADC12材質的低溫鋁焊焊接,為什麼要是低溫,是因為在盡量控制溫度低的情況下防止壓鑄過程中壓鑄鋁內部的局部缺陷部位影響到整體的焊縫成型,我這么講應該可以很好地理解。

解決辦法:
明確壓鑄鋁ADC12與鋁合金6063的尺寸大小和結構,可以根據這些選用WE53低溫鋁焊絲,配合WE53專用的多孔噴槍作為熱源進行焊接,主要優點在於WE53低溫鋁焊絲的溫度控制比較低,最大的優點在於對於壓鑄鋁的材質是不挑剔的,因此優點在很多壓鑄件的缺陷修復中逐漸地在運用,在以前關於WE53對於壓鑄鋁與鋁合金的焊接有過相關的案例參考的,你可以在網路搜索一下「威歐丁焊接之WE53低溫釺焊壓鑄鋁與鋁合金 」

④ 鋁合金焊接的保護措施是什麼

鋁合金焊接的最大問題是氣孔,為此必須嚴格控制氣體的來源。

母材及焊絲:母材要嚴格去除氧化膜及油污,必要時在焊前用刮刀刮削其表面,然後用氬氣吹其表面,其待焊材料,停留時間,一般不操過4-24h,否則得重新清洗。焊絲的比表面值很大,最好是採用光滑、光潔、光亮的拋光焊絲。

惰性氣體:純氬和純氦應符合國家標准,H2<0.0001%,O2<0.1%,H2O<0.02%,露點溫度不高於-55℃

焊槍結構:焊前應檢測焊槍及氣體管道可能附著的水分,焊前應先通一段時間的氣體。

現場環境:現場溫度不宜超過25℃,相對濕度不宜超過50%。操作人員也要注意,可能帶入的油污。

結構設計:避免多條焊接接頭,避免手工焊頻繁的引弧和息弧而引起的氣孔。

焊接方法:氣焊、電弧焊難以保證焊縫中無氣孔,在焊接質量不高時採用。TIG電弧穩定,生成焊縫氣孔的幾率小,薄板採用。MIG電弧相對穩定性差,中厚板採用。

焊接參數:應綜合考慮焊接結構、焊接材料、焊接方法,選擇焊接參數。

焊前預熱、減緩散熱:在鋁合金定位焊、焊接、補焊時,適當延長熔池的存在時間有利於氣孔的溢出。

操作技能:因人而已,

防止裂紋:需選擇化學成分合適的焊絲、合適的接頭形式和尺寸及合適的焊接工藝,減小結構因素及工藝因素形成的拘束度。

⑤ 鋁鎂的焊接工藝及技巧

鋁鎂合金焊縫中的氣孔主要是由氫引起的。氫的來源有:焊絲和板材中溶解的氫及 其表面氧化膜吸附的結晶水;氬氣中的氫和濕氣;焊接時由於保護不好空氣中的氫和水氣進入焊 接熔池等。氫在鋁的熔點溫度下溶解度發生突變,並隨溫度增加而急增。鋁鎂合金在焊接時,焊 縫中能否產生氣泡首先取決於溶入氫的濃度,在溶入氫的濃度小於0.69 cm/100g 時,形成氣泡 的可能性極小。但在實際焊接過程中,由於某些因素控制不嚴,在電弧高溫作用下,溶解於鋁中 氫的濃度就會大於0.69 cm/100g,此時氣孔的產生主要取決於結晶速度:當結晶速度快到恰好 抑制了氣泡的形成,則氫只能飽和固溶於焊縫金屬中,而不以氣泡形式逸出,氣孔就會發生;當 結晶速度足夠慢,已形成的氫氣泡來得及逸出焊縫溶池時,也不會形成氣孔;當結晶速度正好使 氣泡能夠形成而來不及逸出時便產生氣孔。其次鋁鎂合金的導熱性強,在同樣的工藝條件下其熔 合區的冷卻速度是鋼的4~7倍,不利於氣泡的浮出,實際冷卻條件下是非平衡狀態。實際生產中 發現鋁鎂合金對氫的溶解度較大,對氣孔的敏感性比純鋁低,出現的氣孔比較少。 弧柱氣氛中水分弧柱空間總是或多或少存在一定數量的水分,尤其在潮濕季節或濕度大的環境里進行焊接時,由 弧柱氣氛中的水分分解產生的氫,溶入過熱的熔融金屬中,是焊縫氣孔產生的主要原因。 弧柱氣氛中的氫形成焊縫的氣孔還與其在鋁鎂合金中溶解度的變化特性有關,如圖3-1所示。在 平衡狀態下,氫的溶解度沿圖中的實線發生變化,在凝固點時可從0.69 mL/100g 突降到 0.036mL/100g,相差約20倍(在鋼中只差不到2倍),這就是形成氣孔的重要原因之一。況且鋁鎂 合金的導熱性很強,在同樣的工藝條件下,熔合區的冷卻速度是高強鋼的4~7倍,不利於氣泡的 浮出,更易促使形成氣孔。而在實際的冷卻條件下是非平衡狀態,溶解度變化沿a 間溶解度差所造成的氣泡數量雖然不多,但可能來不及逸出,而在上浮途中被「擱淺」,形成粗大而孤立的「皮下氣孔」;同樣,若 冷卻速度較小,從a 到b』氣孔雖然多一些,但可能來得及聚合浮出,在凝固點時,由於溶解度 突變 c』),伴隨著凝固過程可在結晶的枝晶前沿形成許多微小氣泡,枝晶晶體的交互生長致使氣泡的生長受到限制,並且不利於浮出,因而可沿結晶的層撞線形成均布形式的 小氣孔,稱為「結晶層氣孔」。 不同的合金系統,對弧柱氣氛中水分的敏感性不同,純鋁對氣氛中水分最為敏感。Al-Mg 合金含 Mg 量增高,氫的溶解度和引起氣孔的臨界分壓PH2均隨之增大,因而對吸收氣氛中水分不太敏感。 相比起來,僅對氣氛中水分而言,同樣焊接條件下,純鋁焊縫產生氣孔的傾向要大些。 不同的焊接方法,對弧柱氣氛中水分的敏感性也是不同的。TIG 或MIG 焊接時氫的吸收速率和吸 收數量有明顯差別。在MIG 焊接時,焊絲是以細小熔滴形式通過弧柱而落入熔池,由於弧柱溫度 最高,且熔滴比面積很大,熔滴金屬顯然最有利於吸收氫;而TIG 焊接時,主要是熔池金屬表面 與氣體氫反應,因其比表面積小和熔池溫度低於弧柱溫度,吸收氫的條件不如MIG 焊時有利。同 時,MIG 焊的熔池深度一般大於TIG 焊時深度,也不利於氣泡的浮出。所以,MIG 焊焊接時,在 同樣的氣氛條件下,焊縫氣孔傾向要比TIG 焊時大些。 氧化膜中水分在正常的焊接條件下,對於氣氛中的水分已經盡量加以限制,這時,焊絲或工件的氧化膜中所吸 附的水分將是生產焊縫氣孔的主要原因。而氧化膜不緻密、吸水性強的鋁合金,要比氧化膜緻密 的純鋁具有更大的氣孔傾向。這是因為鋁鎂合金的氧化膜是由Al2O3和MgO 所構成,而MgO 越多, 形成的氧化膜越不緻密,因而更容易吸附水分。 MIG焊接時,焊絲表面氧化膜的作用將具有重要意義。MIG 焊接時,由於熔深較大,工件端 部的氧化膜迅速熔化掉,有利於氧化膜中水分的排除,坡口氧化膜對焊縫氣孔的影響就小得多了。 焊絲表面氧化膜的清理情況對焊縫含氫量的影響是比較大的, Al-Mg 合金焊絲,則其影響更顯 著。實踐表明,在嚴格限制弧柱氣氛水分的MIG 焊接條件下,用Al-Mg 合金焊絲比用純鋁焊絲時 具有較大的氣孔傾向。 TIG 焊接時,在熔透不足的情況下,母材坡口根部未除凈的氧化膜中所吸附的水分,常常是產生 焊縫氣孔的主要原因。這種氧化膜不僅提供了氫的來源,而且能使氣泡聚集附著。在剛剛形成熔 池時,如果坡口附近的氧化膜未能完全熔化而殘存下來,則氧化膜中水分因受熱而分解出氫,並 在氧化膜上萌生出氣泡;由於氣泡是附著在殘留氧化膜上,不容易脫離浮出,而且還因氣泡是在 熔化的早期形成的,有條件長大,所以常常造成集中形式的大氣孔。這種氣孔在焊縫根部有未熔 合是就更嚴重。坡口端部氧化膜引起的氣孔,常常沿著熔合區原坡口邊緣分布,且內壁呈氧化色 彩,是其重要特徵。由於Al-Mg 合金比純鋁更容易形成疏鬆而吸水性強的厚氧化膜,所以Al-Mg 合金比純鋁更容易產生這種集中形式的氧化膜氣孔。為此,焊接鋁鎂合金時,焊前必須特別仔細 地清理坡口端部的氧化膜。 順便提到,母材表面氧化膜也會在近縫區引起「氣孔」,主要發現於Al-Mg 合金氣焊的條件下, 實際上用氣焊火焰沿板表面加熱一道後,也能看到這種現象。這種「氣孔」往往以表面密集的小 顆粒狀的「鼓泡」形式呈現出來,也可認為是「皮下氣泡」。關於這種「氣孔」的產生機理,還 沒有比較合理的解釋。 材料特性由於液態鋁在高溫時能吸收大量的氫,冷卻時氫在其中的溶解能力急劇下降,在固態時又幾乎不 溶解氫,致使原來溶於液態鋁的氫大量析出,形成氣泡。同時,因鋁及鋁合金密度小、導熱性很 強,不利於氣泡的逸出,因此,鋁及鋁合金焊接易產生氣孔。此外,鋁鎂合金化學活潑性強,表 面極易形成熔點高的氧化膜Al2O3和MgO,由於MgO 的存在,形成的氧化膜疏鬆且吸水性強,這 就更難避免焊縫中產生密集氣孔。用TIG 焊,雖然負半周瞬間氬離子對氧化膜具有「陰極霧化」 作用,但並不能去除氧化膜中的水分,因而鋁鎂合金焊接比純鋁具有更大的氣孔傾向。 氬氣的流量與純度氬氣的流量是影響熔池保護效果的一個重要參數。流量過小,氬氣挺度不夠,排除周圍空氣能力 弱,保護效果差。但是流量過大,不僅浪費氬氣,而且會引起噴出氣流層流區縮短,紊流區擴大, 將空氣捲入保護區,反而降低了保護效果,使焊縫易產生氣孔。這一點在現場施焊時,往往被忽 視。因此,必須選擇合適的氬氣流量。氬氣流量與噴嘴直徑大小有關。氬氣的純度對焊接質量也 有較大的影響。氬氣純度低、雜質多,可增加弧柱氣氛中氫的含量,同時也降低「陰極霧化」效 焊接工藝焊件坡口准備、組對方式和焊接工藝參數的選擇對防止氣孔產生至關重要。焊件組對時根部留有 間隙,可使氧化膜有效地暴露在電弧作用范圍內。改變焊接參數可影響氣體逸出和溶入熔池條件。 焊接速度過慢,熔池保留時間長,增加氫的溶入量;焊接速度較快,易產生未焊透和未熔合缺陷。 實踐證明,採用較快的焊接速度,並配以較大的焊接電流,可有效防止氣孔的產生。增大焊接電 流不僅能保證根部熔合,而且能增加電弧對熔池的攪拌作用,有利於根部氧化膜中氣泡的浮出, 從而減少氣孔的產生。 焊接操作技術掌握熟練的操作技能也是防止氣孔的一個重要環節。鋁鎂合金管道現場焊接位置一般為全位置焊 接,施焊時金屬熔池所處空間位置不斷改變,操作難度較大。但焊槍與工件表面後傾角不能隨熔 池位置的改變而任意改變。若夾角過小,其內側產生紊流,外側則氬氣挺度不夠,氣體保護熔池 效果差。水平管仰焊接頭部位可採用交叉接頭法,以避免接頭部位產生密集氣孔。此外,鎢極伸 出長度過長、電弧過長或不穩等,都可能造成保護氣體的污染而使焊縫產生氣孔。 其它影響因素除上述因素外,還應注意環境因素等方面的影響。在高濕度的環境下,焊絲或輸氬管內壁易吸附 結晶水。因此,環境相對濕度愈低愈好。環境溫度低於5C 施焊時要預熱。

閱讀全文

與鋁合金mig焊如何避免產生氣孔相關的資料

熱點內容
高速公路鋼模如何焊接 瀏覽:490
順風鋼材是哪裡產的 瀏覽:493
q460鋼板多少價格 瀏覽:231
42crmo鋼材多少一噸 瀏覽:625
天衣無縫什麼時間開拍 瀏覽:569
廢彩鋼板多少錢1噸 瀏覽:140
4v符號在焊接里代表什麼 瀏覽:544
鋼鐵俠一代反應堆多少能量 瀏覽:358
不是推拉窗戶怎麼加防護欄 瀏覽:51
鋼材牌號里s代表什麼意思 瀏覽:647
鋼構房怎麼折舊 瀏覽:761
鋼構平方怎麼算 瀏覽:322
樂高中國工廠模具哪裡 瀏覽:297
不銹鋼手錶帶斷如何處理 瀏覽:585
鋼化弧形玻璃推拉門 瀏覽:314
重慶304不銹鋼窨井蓋哪裡買 瀏覽:114
氣保焊焊接時為什麼易燒穿 瀏覽:921
鋼化夾絲玻璃哪家比較好 瀏覽:549
熔點最低的銅合金有哪些 瀏覽:703
腳踝拆鋼板後多久復查 瀏覽:44