導航:首頁 > 合金材料 > 如何制備稀土鎂合金

如何制備稀土鎂合金

發布時間:2025-02-25 03:51:09

① 稀土鎂合金的常用元素

Y加入到鎂合金中可明顯細化組織的晶粒大小。白雲等[1]研究了Y對鑄造鎂合金Mg-6Zn-3Cu-0.6Zr的微觀組織和力學性能的影響,結果表明:由於Y的加入,試樣組織的平均晶粒尺寸有效減小(由 57 μm 降為 39 μm)。
Y可以提高鎂合金的耐腐蝕性能。齊偉光等[2] 研究了Y對AZ91D鎂合金微觀組織和腐蝕性能影響,結果表明:結果表明:AZ91D鎂合金加入Y後,顯微組織主要由α-Mg基體相、B相Mg17Al12、Al2Y相和Al6Mn6Y相組成。加入1%Y能顯著降低合金的腐蝕速度,提高合金的平衡電位和腐蝕電位,降低腐蝕電流。
Y可以明顯提高鎂合金的力學性能。李建平等[3]在高強韌鑄造鎂合金顯微組織和性能的研究中,研究了不同稀土Y含量(O%、1.2%、2.2%、3.2%和4.2wt%)對GZKl000鎂合金的顯微組織及其室溫拉伸性能和物理性能的影響在GZKl000合金中加入Y元素(0~4.2%wt)可以提高鑄卷GZKl000的抗拉強度,其延伸率也相應有所提高,當Y含量為3.2%wt時,其抗拉強度和延伸率都達到最大,抗拉強度達到237MPa,延伸率達到7.2%;經過固溶時效處理後合金的顯微組織由經過固溶時效處理後合金的顯微組織由α-Mg、Mg5Gd和Mg24Y5組成α-Mg、Mg5Gd和Mg24Y5組成。 Ce加入到鎂合金中,可以明顯細化組織晶粒。黎文獻等[4]研究了Ce對Mg-Al鎂合金晶粒尺寸的影響,。在Mg-Al系AZ31合金中添加微量稀土元素Ce,可明顯細化合金晶粒,當Ce的加入量為了0.8%時,晶粒細化效果最好,由未細化前的約300 u m下降到約20~40μm。Ce在鎂及鎂合金中的細化作用是由於稀途元素在凝固過程中固/液界面前沿富集而引起成分過冷,過冷區形成新的形核帶而形成細等軸晶。凝固過程中溶質再分配造成固液界面前沿成分過冷度增大是稀土元素細化鎂及鎂合金的主要機理。此外,稀土在固/液界面前沿的富集使其起到阻礙α-Mg晶粒長大的作用,進一步促進了晶粒的細化。
Ce可提高鎂合金的抗氧化燃燒性。趙洪金等[5]研究了稀土元素Ce對AZ91D鎂合金燃點的影響:利用自行開發的溫度採集系統,測試了加入少量稀土元素Ce的塊狀AZ91D鎂合金及其熔體在加熱過程中表面與心部的溫度.時間曲線。隨Ce含量的增加,氧化點與燃燒點均呈上升趨勢。w(Ce)=1%時,氧化點與燃燒點的平均值較AZ91D的分別提高了33℃和61℃。
Ce可以改善鎂合金的力學性能。陳芙蓉等[6]研究了Ce對AZ91D鎂合金組織和力學性能的影響。Ce加入到鎂合金組織後,細化合金組織起到細晶強化作用;使網狀的β相細小並彌散分布於晶界上;同時在晶界形成彌散分布的Al4Ce化合物起到第二相強化作用,當Ce含量為0.69%時,含金的抗拉強度、屈服強度、伸長率及硬度分刺比AZ91D鎂合金提高15.8%、8.7%、140%及15.7%,其綜合力學性能達到最佳。
Ce能夠改善鎂合金的耐腐蝕性能。楊潔等[7]研究了Ce對AZ91鎂合金微觀組織及耐蝕性的影響,結果表明:Ce細化了合金的微觀組織,使β—Mg17Al12相變得斷續、彌散,成分分布更為均勻,生成了A14Ce相及Mg—Al—Mn—Ce—Fe的金屬間化合物;稀土Ce使合金在3.5%NaCl溶液中的自腐蝕電位升高,與Al、O生成了不連續的保護性氧化膜,提高了合金的耐腐蝕性能;添加0.5%Ce時合金的耐蝕性最佳。 Z.L. Ning等研究了Nd對Mg–0.3Zn–0.32Zr 合金微觀結構和力學性能的影響。
當合金中Nd的加入量由0.21% 逐漸增加至 2.65%時,合金的的晶粒尺寸由120μm減小至60μm,同時晶粒形態從六面體結構轉變為類似玫瑰狀結構。當Nd的加入量小於0.84% 時,Nd能夠完全溶入鎂基體中,鑄錠中只有單相的α-Mg,當Nd的加入量超過1.62%,通過X射線衍射儀測試發現在晶界和晶界三角區有金屬間化合物Mg12Nd生成。晶粒和晶界中的Mg12Nd相能夠鎖定晶界,減少晶界限滑移和位錯滑移,能夠明顯改善鎂合金高溫下的抗拉強度,和屈服強度,同時伸長率稍有降低。
Li Mingzhao[8]等利用金相顯微鏡,SEM, EDS, XRD等手段研究了Nd對AZ31鎂合金微觀結構和力學性能。結果表明:在AZ31鎂合金中加入微量的Nd能夠在晶界和α-Mg相中生成金屬間化合物Al2Nd 和 Mg12Nd ,Nd的吸收率高達95%,能夠明顯改善AZ31鎂合金的微觀結構和提高合金的力學性能。在AZ31鎂合金中加入0.6wt%,抗拉強度達到245 MPa, 屈服強度為171 Mpa 延伸率為 9%。
侯志丹[9]研究了Nd對ZK60腐蝕性能的影響,研究表明ZK60-1%Nd 合金由α-Mg 基體和晶界的MgZn 相、MgZn2 相和Mg12Nd 相組成。晶界結構較為連續和緊實,晶界寬而明顯,晶粒更為細小,大量帶狀或鏈狀組織相互連接成網狀,且晶界的Nd 與O 結合生成Nd2O3 鈍化膜,Nd的加入可明顯提高ZK60合金在3.5%NaCl水溶液中的耐蝕性。
Yan Jingli等[10]研究了Mg–2wt.%Nd鎂合金的蠕變性能。在150至250?C,應力30至110 Mpa的條件下,在固溶強化和析出強化的作用下合金錶現出良好的抗蠕變性能。在蠕變過程中有細小的沉澱物析出,這對限制位錯的運動起到了重要作用。 Jie Yang等[11]研究了Gd對 Mg–4.5Zn合金微觀組織和力學性能的影響。結果表明,隨著Gd的加入,合金的晶粒尺寸逐漸細化,生成了Mg5Gd和 Mg3Gd2Zn3相,加入Gd後,合金的強度大大提高。當Gd的加入量為1.5%時,合金的強度最高,抗拉強度和屈服強度分別為231MPa 和113 Mpa。和未加入Gd前的Mg–4.5Zn合金相比,抗拉強度和屈服強度分別提高了22 MPa and 56Mpa。合金強化的主要和晶粒細化,Mg5Gd和Mg3Gd2Zn3相的強化作用以及Gd原子溶於鎂基體的強化效果有關。
Gd對鎂合金腐蝕性能的影響。王萍等[12]採用電化學方法研究了Gd含量對ZK60系鎂合金在3.5%NaCI溶液中的腐蝕行為,並用金相顯微鏡、SEM觀察了鑄態顯微組織及腐蝕形貌,對腐蝕產物進行了XRD分析。結果表明:稀土元素Gd可以細化合金晶粒,減少粗大共晶相MgZn的含量;在3.5%NaCI溶液中,腐蝕產物主要 Mg(OH)2;通過極化曲線測試,ZK60+1.6%Gd合金耐蝕性最好。在Cl作用下,腐蝕以點蝕為主,同時會形成以第二相MgZn和Mg5Gd為陰極,α-Mg為陽極的電偶腐蝕。 吳國華[13]等研究了稀土La對AZ91D鎂合金在NaCl溶液中耐蝕性的影響,AZ9lD合金中加入1%La(質量分數)後,不但形成了條狀的A111La3相和塊狀的Al8LaMn4相,而且在粗大p相(Mgl7All2)周圍形成了許多細小的層片狀β相,並使β相進一步網狀化.這些細小的層片狀p相明顯阻礙了腐蝕的擴展,提高了AZ91D鎂合金的耐蝕性.條狀的Al11La3相和塊狀的Al8LaMn4相都屬於陰極耐蝕相.其中Al11La3相由於較小的陰極面積,對加速其周圍鎂基體的腐蝕不起明顯作用;而塊狀的Al8LaMn4相陰極面積較大,與基體構成微電偶腐蝕,加速了基體的腐蝕.
Jinghuai Zhang等[14]研究了富Ce稀土和La對Mg–4Al–0.4Mn鎂合金的影響。研究表明:在Mg–4Al–4RE–0.4Mn (RE = Ce-rich mischmetal)合金中,沿著晶界有Al11RE3 andAl2RE兩種相生成,而在Mg–4Al–4La–0.4Mn合金中的主要相為α-Mg 相和Al11La3相。Al11La3相占據著晶界的大部分區域,且有著復雜的形態。當用La代替富Ce稀土加入到Mg–4Al–0.4Mn鎂合金中,改善了晶粒尺寸,並使晶界相分布一致性能,極大的提高Mg–4Al–0.4Mn鎂合金的抗拉強度。在室溫下,Mg–4Al–4La–0.4Mn的抗拉強度,屈服極限,延伸率分別為264 Mpa,146 Mpa,13%,優於Mg–4Al–4RE–0.4Mn的247Mpa, 140Mpa, 11%。Mg–4Al–4La–0.4Mn合金晶體附近范圍內的微觀結構的穩定性明顯優於Mg–4Al–4RE–0.4Mn合金,其原因是Al11La3 的熱力學穩定性優於Al11RE3。在蠕變測試中,Al11La3相能夠有效阻礙晶界附近的晶界滑移和位錯運動。在Mg–4Al–0.4Mn鎂合金中加入La後的力學性能明顯優於在合金中加入富Ce稀土。

② 稀土鎂合金的配方

中頻感應爐熔煉法:以稀土硅鐵台金,硅鐵,廢鋼鐵為原料進行熔配。常用設備規格為0.15~0.5
t,單爐產量為0.05~0.25
t,熔煉時間30min左右,熔煉坩堝材質為石墨或鎂砂。
用FeSiRE23熔配稀土鎂硅鐵合金:
該工藝加料順序為硅鐵--鎂--硅鐵--稀土硅鐵台金--廢鋼鐵
此外方法還有:用FeSi9(50-60)RE27熔配法,用FeSi(<44)RE13熔配法,硅熱還原REF3

電弧爐冶煉法:以稀土富渣、硅鐵、石灰
廢鋼鐵、鎂錠為原料進行電弧爐冶煉,具有生產成本低,效益好,適合大規模生產

③ 稀土鎂合金是什麼

稀土鎂合金是一種特殊的合金材料,由稀土金屬和鎂元素混合製成


稀土鎂合金具體指的是一種以鎂為主要基體,以稀土元素為主要合金元素的金屬材料。稀土金屬包括鑭、鈰、鐠等稀有元素,它們的加入能夠顯著提高鎂合金的性能。這種合金結合了稀土金屬和鎂的特點,既具有輕質的特點,又有良好的強度和耐腐蝕性。


稀土鎂合金具有一系列獨特的性能。由於稀土元素的加入,這種合金材料展現出了良好的高溫力學性能、抗蠕變性能以及優異的耐蝕性能。此外,它還具有密度低、比強度高等優點。這些特點使得稀土鎂合金在航空、汽車、電子和通訊等領域中得到了廣泛的應用。


在具體的工業生產中,稀土鎂合金的制備過程相對復雜,需要通過特定的冶煉工藝將稀土金屬與鎂進行混合,並在高溫下進行熔煉和加工。由於其優良的物理和化學性能,稀土鎂合金被廣泛應用於製造高性能的零部件和產品。比如在航空領域,它可以用於製造飛機發動機部件,提高飛機的整體性能;在汽車領域,它可以用於製造輕量化的汽車零部件,提高汽車的燃油效率和性能。總的來說,稀土鎂合金是現代工業領域中一種重要的高性能材料。

閱讀全文

與如何制備稀土鎂合金相關的資料

熱點內容
17年中國為世界提供了多少鋼鐵 瀏覽:729
如何計算一平方鋼管的有多少重量 瀏覽:144
電焊接怎麼焊才能焊好 瀏覽:939
不銹鋼桶鹵菜粘桶底怎麼辦 瀏覽:451
ai如何快速修改無縫接 瀏覽:479
焊接時產生的煙霧是什麼物質 瀏覽:7
什麼材質的無縫壁布好 瀏覽:172
煙台汽車門板焊接機多少錢 瀏覽:414
鋼鐵廠需要哪些潤滑油 瀏覽:219
ggj如何繪制雨棚鋼筋 瀏覽:684
外牆裝飾鋼板一般厚度多少 瀏覽:448
襯塑鋼管支架怎麼算重量 瀏覽:189
鋼鐵俠代表什麼含義 瀏覽:6
沒有模具如何做枕頭麵包 瀏覽:561
焊接掉落的火星如何接 瀏覽:881
棚子搭建不焊接用什麼緊固 瀏覽:691
如何將鋼筋復制到相同層 瀏覽:601
異型q235b方管價格 瀏覽:25
鋼鐵力量多少升軍銜 瀏覽:794
蛋糕模具多少錢一平方 瀏覽:111