⑴ 合金化是什麼
提高鋼的強度既簡便又便宜的方法是增加碳含量。然而,這種方法使其他所希望的性能遭到消弱,如成型性,焊接性,韌性和其他一些性能。幾個性能都重要的情況下的幾種應用,碳含量必須保持在低水平。在低碳鋼中為了獲得高強度並同時保持高水平的綜合性能最經濟的方法是應用微合金化技術。
為什麼要高強度
應用高強度鋼可以降低板厚度從而在許多應用中降低重量。在汽車工業,車體減輕可以節省燃油從而保護環境(減少排氣量)。在造船工業,船體減輕可以裝載更多的貨物。圖3顯示的是管道在管線結構中的應用。對於一個18m長,外徑1000mm的管道,當用高強度鋼X70代替低強度鋼時其重量可以從14t降低到6t。另一個重要的例子是民用建築,如圖4所示,的建築形式,用460MPa的高強度鋼代替低強度鋼(235MPa)可以節省材料40%,重量降低超過50%,焊接材料可以節約超過70%。
微合金化的效果
圖5表明了主要微合金化元素Nb,V和Ti對提高強度和韌性的作用以及其強化機理。這三個元素均是通過細化晶粒和沉澱強化提高強度,但每種機理強化程度不同。Nb具有最強的晶粒細化強化效果,而V具有最強的沉澱強化效果,Ti介於上述兩者之間。如圖6所示,晶粒細化是唯一的能夠同時提高韌性的強化機理。因此,當同時需要高強度和高韌性綜合性能時就需要添加鈮,譬如管線鋼和結構鋼。在圖5中還可以反映出鈮是經濟有效的。如要使低碳鋼的屈服強度提高100MPa,需要添加0.02%的鈮,而釩則需要添加兩倍的量。
鈮的晶粒細化引起的強烈效果與其在軋制時通過固溶,特別是碳氮化鈮析出延遲奧氏體再結晶有關系。圖7顯示了分別含Nb,V,Ti鋼的效果。鈮阻止在軋制最後階段奧氏體的再結晶,促進了扁平晶粒的變形,從而導致非常細的鐵素體晶粒。
鈮的另一個重要影響是在中低碳鋼中降低轉變溫度促使貝氏體組織的形成,這一研究已經比較多了,如圖8所示。降低轉變溫度是由於在軋制過程中仍有一部分鈮留在固溶體中而沒有發生沉澱反應。這一效果在同時加入Nb和Mo或同時加入Nb和B時由於協同作用而加強,如圖所示。其中一個實際例子是X80管線鋼,鐵素體-低珠光體組織在得到韌性要求的同時卻達不到強度級別。
微合金化不僅僅對軋制產品有作用。V可以在熱處理級別鋼種提高強度,而鈮可以細化晶粒。如圖9所示,在正常熱處理之後,鈮明顯的細化了晶粒。
為了得到所希望的高水平性能,在煉鋼時很好的控制雜質含量如S、N、P等也是非常重要的,特別是對需要高韌性的板材產品。圖10表明了S是如何影響沖擊性能的。為了把S含量控制在低的水平,應用硫化物形狀控制(通常用鈣處理)對於避免生成對橫向韌性有損害的延長硫化鎂是非常重要的。
如圖11所示,氮對熱影響區的韌性的損害是非常大的,因此低氮是值得提倡的。這一損害可以用鈦固定游離的氮以降低其影響。氮化鈦在高溫時非常穩定,因此它可以阻止晶粒的增長。圖12顯示了鈦固氮處理提高熱影響區韌性的益處。然而用鈦需要很好的控制手段。加入到鋼中的鈦的量要以固定氮所需要的量為上限。如果多加了鈦將促使形成碳化鈦,這樣對熱影響區的韌性有損害,如圖13所示。氮對焊接金屬的韌性也是有影響的,如圖14。
板材產品的微合金化
板材產品方面的技術進展可以作如下描述:
50年代後期: Nb的引入
60年代: 控制軋制的試驗探索
70年代: 全面實行微合金化和控制軋制
80年代: 實行加速冷卻
90年代: 實行直接淬火
圖15表示的是微合金化元素Nb、V和Ti在不同的冷卻工藝下在板材中的強化效果,Nb的提高強韌性的效果尤為突出。
微合金化板材有著非常廣泛的應用,如管線鋼,造船鋼,海洋平台,民用建築(橋梁、高架橋,建築)以及其它領域。
如表1所示,管線鋼產品的發展,表明雖然碳的含量在不斷降低,但其強度卻在增加,這一原因前面已經說明。提高到X80級的產品已經進行商業生產,一些鋼鐵公司已經開發了X100級別。提高抗氫致裂紋需要更嚴格的煉鋼工藝並需要非常低的碳和硫含量,如表2所列的工業產品。
最後,表3對幾種管線鋼進行了總結,包括熱軋和爐卷產品。在表中我們可以注意到一些鋼中的含鈮量高於正常情況的含鈮量,在0.07~0.09%之間。這些鋼最近幾年在北美已經進行商業生產。高鈮含量可以把奧氏體再結晶延遲到更高的溫度(如圖7所示),這使控軋工藝更加寬松,如高的終軋溫度,這對有功率限制的鋼板軋機是有益的。而且,這些超低碳高Nb鋼具有非常好的韌性特性。
對於海洋平台和造船業來講,自70年代以來的趨勢是降低含碳量,特別是在高焊接工作量並需要提高焊接性能的情況下。表4顯示的是分別通過正常的熱處理和加速冷卻工藝生產的335MPa級的典型的化學成分。
在民用建築方面,圖16表明了在瑞典現代橋梁應用的高強度微合金化鋼。用高強度鋼,屈服強度460MPa級,熱機械工藝(TMCP)可以降低重量15,000t,降低費用2500萬美元。表5顯示的是50mm厚結構板材產品典型的化學成分,工藝分別為正常情況(N),控軋(TM),淬火和回火(QT),熱機械工藝(TMCP)和直接淬火(DQ)。最近幾年,安全防火變得越來越重要。如圖17所示,防火結構鋼已經發展起來,該鋼添加Nb和Mo以提高高溫強度。
汽車工業用熱軋和冷軋薄鋼板
在70年代初第一次石油危機之後,微合金化熱軋和冷軋薄鋼板在汽車工業獲得了廣泛應用。用高強度鋼代替低強度鋼過去是現在依然是降低汽車車重的有效方法,以節省燃料。安全方面的需要也激發了高強度鋼的應用。
熱軋薄鋼板
熱軋低合金高強度鋼(HSLA)薄鋼板主要用於卡車的底盤部分,也用於大客車的車輪,輪轂等部件。傳統的屈服強度水平在350MPa到550MPa之間,具有鐵素體加少量珠光體組織。表6列出了一些典型的化學成分。過去,這些鋼也用Ti作為主要微合金化元素來生產,尤其是在過去鋼的含硫水平比較高。加入鈦的另外一個主要作用是控制硫化物的形狀。但是由於其碳化物形成的動力學原因,軋制工藝十分復雜,大部分情況下是不允許的,以避免出現典型的最終產品性能大范圍的分散,圖18。在鐵素體-少量珠光體鋼中,當薄板的厚度方向需要使用兩種微合金化元素來獲得更高的強度時,Nb和V的結合將使性能分散范圍小些。以上考慮涉及到Ti的碳化物沉澱強化作用。如果只用來固定N,則Ti很有效。在含Nb鋼中,強度進一步提高,因為更多的Nb將使鑄造性能也得到改善。
最近,開發出690MPa級卡車大梁用鋼,它利用了在由熱帶軋機直接軋出的貝氏體鋼中所有的強化機理,圖19。表7列出了兩種歐洲產品的合金設計。
鐵素體-貝氏體鋼,含10~30%的貝氏體,用於車輪、輪轂和底盤,它比鐵素體-珠光體鋼具有更優越的凸緣壓邊延伸性能。與鐵素體-馬氏體——雙相鋼相反,當焊接的輪轂輪箍被拉伸時,使用這種鋼不會出現局部頸縮。如圖20所示,當合金設計、軋制參數——卷取溫度——得到控制從而第二相主要為貝氏體相時,就可達到強度和成型性的最優配合。
冷軋薄鋼板
傳統的微合金高強度冷軋薄板用鋼在汽車工業已使用了25年,但部分汽車零件不需要高的成型性。圖21顯示了罩式退火鋼板的典型化學成分。傳統的微合金鋼也可在連續退火線上生產,此時,對於給定的鋼種,可以獲得更高的強度。例如,如圖22所示的用於汽車側擋板的雙相鋼。
更復雜形狀的產品——汽車車體(integrated
panels)的開發以及傳統鋼達不到罩式退火同樣的成型性而引入連續退火生產薄鋼板,需要開發一種新的類型鋼,即無間隙鋼——超低碳IF鋼。
無間隙鋼添加Ti、Nb或Ti+Nb生成無間隙原子。尤其在鍍鋅產品中,TiNb無間隙鋼可獲得最優配合的機械性能以及更好的表面質量,如圖23、24、25、26、27、28所示。僅添加Ti的無間隙鋼易於產生表面缺陷。
匹茲堡大學的最新研究工作已經表明,當鈮在鐵素體晶界溶解時,它能起到重要的作用。晶界處溶解的鈮改善冷加工脆性,並能降低鍍鋅產品的粉化趨勢。
用於鍛造的微合金鋼
微合金化技術在鍛造汽車零件鋼中的應用允許除掉傳統的淬回火熱處理生產汽車零件,從而顯著節省生產成本。表8列出了一些在市場上出現的鋼種。
現已生產了僅含微合金元素V、僅含Nb以及Nb、V復合微合金鋼。研究表明,復合添加Nb和V對提高強度比單獨添加這兩種微合金元素中的任何一種更有效。Nb提高了V的析出潛能。
在這種產品上,最新成果包括有直接淬火(馬氏體)或空冷獲得的低碳馬氏體+貝氏體或貝氏體鋼,它們表現出韌性得到改善。表9給出了一個例子。
高強度緊固件與懸掛彈簧
傳統的冷鍛高強度緊固件用鋼為中碳鋼,由淬回火得到最終產品所需的性能。用低碳微合金鋼替代中碳鋼,不需要熱處理就能得到最終所需的機械性能,並且消除了在收線過程中的中間球化處理。表10給出了8.8級鋼(鐵素體—珠光體)與10.9級鋼(鐵素體—貝氏體)的化學成分。
懸掛彈簧是另一種使用微合金化技術而達到減重的產品。北美生產出熱處理後抗拉強度為2000MPa級、HRc為53-55的鋼。化學成分與機械性能在表11中列出。
滲碳鋼
在滲碳處理鋼中,尤其在溫鍛條件下,晶粒非正常長大較為普遍。這些鋼中加入鈮抑制晶粒非正常長大,這項技術已在日本使用多年,最近在北美也取得應用。微合金元素添加到這些鋼中而帶來的另一個好處是通過更高的加熱溫度而有可能減少滲碳時間。鈮的加入抑制晶粒長大,因而使在更高溫度滲碳成為可能。
結構用型鋼
在結構用型鋼技術上的最新主要進展是僅使用一種化學成分就可滿足幾種技術條件的含鈮結構型鋼/橫梁鋼已工業化。這種由Chaparral鋼鐵公司開發的「多級別」鋼,典型的成分僅含0.01-0.02%Nb(目標為0.015%),這足夠將ASTM
A36的屈服強度提高到345MPa以上而抗拉強度限制在550MPa以下,從而既能滿足ASTM A36又能滿足 ASTM
A572-50的技術條件。鈮是選擇性添加微量元素,因為為了滿足50級鋼的最低屈服強度要求,可能要多添加一些V,為0.02-0.03%(與0.015%Nb相比),這會提高結構型鋼的抗拉強度,使它接近或超過550MPa,而當滿足A572-50的技術要求時,又超過了A36所允許的要求。其它ASTM鋼的技術要求可由A572-42、A572-50、A529-42、A5290-50、A709-36與A709-50等多級別鋼滿足。
鋼筋
該產品用於大型混凝土結構以提高抗拉能力。大直徑高強度級別鋼筋添加了V和Nb。一些現代軋鋼廠採用水冷技術取代微合金化提高強度。圖29為V和Nb在焊接用鋼筋中的強化效果。
世界微合金化鋼的發展
世界微合金化鋼的發展可由Nb的總消耗量來描述,因為Nb是一種主要微合金化元素,並且75%的Nb用於微合金化鋼,見圖30。70年代Nb的消耗量急劇上升。當時控軋工藝在全世界范圍內被採用,同時汽車工業使用量也在增加。80年代是穩定期,但微合金化鋼產量繼續增加。Nb消耗量的穩定是因為鋼鐵廠效率的提高,如連鑄設備的安裝、加速冷卻,對給定量的最終產品,這可節省原材料。然而在Nb消耗量達到飽和點後,在90年代Nb的需求又顯著增加。這是受許多重要的鋼鐵公司產品結構調整的影響,他們的品種集中在附加值產品,包括微合金化鋼。圖31很好的顯示出在歐洲微合金化鋼增加情況。從圖中明顯看出,在該地區,與粗鋼相比,FeNb的消耗量顯著增加。在歐洲,每噸鋼中的FeNb為60g。
除了微合金鋼產量增加外,Nb使用領域也在增加。如圖32所示,在70年代中期,Nb主要用在管線鋼產品。為開發該產品中而發展起來的微合金化技術在隨後的時間里被應用在其他領域,如該圖所示的2000年情況。
結論
微合金化技術是一條生產高強度和其它所需性能的高質量產品的經濟有效途徑。
世界范圍內的微合金化鋼的產量不斷增加。新的鋼種已開發出來,並應用在許多領域,保持著鋼在材料領域的良好競爭能力。
⑵ 什麼是合金化
提高鋼的強度既簡便又便宜的方法是增加碳含量。然而,這種方法使其他所希望的性能遭到消弱,如成型性,焊接性,韌性和其他一些性能。幾個性能都重要的情況下的幾種應用,碳含量必須保持在低水平。在低碳鋼中為了獲得高強度並同時保持高水平的綜合性能最經濟的方法是應用微合金化技術。
為什麼要高強度
應用高強度鋼可以降低板厚度從而在許多應用中降低重量。在汽車工業,車體減輕可以節省燃油從而保護環境(減少排氣量)。在造船工業,船體減輕可以裝載更多的貨物。圖3顯示的是管道在管線結構中的應用。對於一個18m長,外徑1000mm的管道,當用高強度鋼X70代替低強度鋼時其重量可以從14t降低到6t。另一個重要的例子是民用建築,如圖4所示,的建築形式,用460MPa的高強度鋼代替低強度鋼(235MPa)可以節省材料40%,重量降低超過50%,焊接材料可以節約超過70%。
微合金化的效果
圖5表明了主要微合金化元素Nb,V和Ti對提高強度和韌性的作用以及其強化機理。這三個元素均是通過細化晶粒和沉澱強化提高強度,但每種機理強化程度不同。Nb具有最強的晶粒細化強化效果,而V具有最強的沉澱強化效果,Ti介於上述兩者之間。如圖6所示,晶粒細化是唯一的能夠同時提高韌性的強化機理。因此,當同時需要高強度和高韌性綜合性能時就需要添加鈮,譬如管線鋼和結構鋼。在圖5中還可以反映出鈮是經濟有效的。如要使低碳鋼的屈服強度提高100MPa,需要添加0.02%的鈮,而釩則需要添加兩倍的量。
鈮的晶粒細化引起的強烈效果與其在軋制時通過固溶,特別是碳氮化鈮析出延遲奧氏體再結晶有關系。圖7顯示了分別含Nb,V,Ti鋼的效果。鈮阻止在軋制最後階段奧氏體的再結晶,促進了扁平晶粒的變形,從而導致非常細的鐵素體晶粒。
鈮的另一個重要影響是在中低碳鋼中降低轉變溫度促使貝氏體組織的形成,這一研究已經比較多了,如圖8所示。降低轉變溫度是由於在軋制過程中仍有一部分鈮留在固溶體中而沒有發生沉澱反應。這一效果在同時加入Nb和Mo或同時加入Nb和B時由於協同作用而加強,如圖所示。其中一個實際例子是X80管線鋼,鐵素體-低珠光體組織在得到韌性要求的同時卻達不到強度級別。
微合金化不僅僅對軋制產品有作用。V可以在熱處理級別鋼種提高強度,而鈮可以細化晶粒。如圖9所示,在正常熱處理之後,鈮明顯的細化了晶粒。
為了得到所希望的高水平性能,在煉鋼時很好的控制雜質含量如S、N、P等也是非常重要的,特別是對需要高韌性的板材產品。圖10表明了S是如何影響沖擊性能的。為了把S含量控制在低的水平,應用硫化物形狀控制(通常用鈣處理)對於避免生成對橫向韌性有損害的延長硫化鎂是非常重要的。
如圖11所示,氮對熱影響區的韌性的損害是非常大的,因此低氮是值得提倡的。這一損害可以用鈦固定游離的氮以降低其影響。氮化鈦在高溫時非常穩定,因此它可以阻止晶粒的增長。圖12顯示了鈦固氮處理提高熱影響區韌性的益處。然而用鈦需要很好的控制手段。加入到鋼中的鈦的量要以固定氮所需要的量為上限。如果多加了鈦將促使形成碳化鈦,這樣對熱影響區的韌性有損害,如圖13所示。氮對焊接金屬的韌性也是有影響的,如圖14。
板材產品的微合金化
板材產品方面的技術進展可以作如下描述:
50年代後期: Nb的引入
60年代: 控制軋制的試驗探索
70年代: 全面實行微合金化和控制軋制
80年代: 實行加速冷卻
90年代: 實行直接淬火
圖15表示的是微合金化元素Nb、V和Ti在不同的冷卻工藝下在板材中的強化效果,Nb的提高強韌性的效果尤為突出。
微合金化板材有著非常廣泛的應用,如管線鋼,造船鋼,海洋平台,民用建築(橋梁、高架橋,建築)以及其它領域。
如表1所示,管線鋼產品的發展,表明雖然碳的含量在不斷降低,但其強度卻在增加,這一原因前面已經說明。提高到X80級的產品已經進行商業生產,一些鋼鐵公司已經開發了X100級別。提高抗氫致裂紋需要更嚴格的煉鋼工藝並需要非常低的碳和硫含量,如表2所列的工業產品。
最後,表3對幾種管線鋼進行了總結,包括熱軋和爐卷產品。在表中我們可以注意到一些鋼中的含鈮量高於正常情況的含鈮量,在0.07~0.09%之間。這些鋼最近幾年在北美已經進行商業生產。高鈮含量可以把奧氏體再結晶延遲到更高的溫度(如圖7所示),這使控軋工藝更加寬松,如高的終軋溫度,這對有功率限制的鋼板軋機是有益的。而且,這些超低碳高Nb鋼具有非常好的韌性特性。
對於海洋平台和造船業來講,自70年代以來的趨勢是降低含碳量,特別是在高焊接工作量並需要提高焊接性能的情況下。表4顯示的是分別通過正常的熱處理和加速冷卻工藝生產的335MPa級的典型的化學成分。
在民用建築方面,圖16表明了在瑞典現代橋梁應用的高強度微合金化鋼。用高強度鋼,屈服強度460MPa級,熱機械工藝(TMCP)可以降低重量15,000t,降低費用2500萬美元。表5顯示的是50mm厚結構板材產品典型的化學成分,工藝分別為正常情況(N),控軋(TM),淬火和回火(QT),熱機械工藝(TMCP)和直接淬火(DQ)。最近幾年,安全防火變得越來越重要。如圖17所示,防火結構鋼已經發展起來,該鋼添加Nb和Mo以提高高溫強度。
汽車工業用熱軋和冷軋薄鋼板
在70年代初第一次石油危機之後,微合金化熱軋和冷軋薄鋼板在汽車工業獲得了廣泛應用。用高強度鋼代替低強度鋼過去是現在依然是降低汽車車重的有效方法,以節省燃料。安全方面的需要也激發了高強度鋼的應用。
熱軋薄鋼板
熱軋低合金高強度鋼(HSLA)薄鋼板主要用於卡車的底盤部分,也用於大客車的車輪,輪轂等部件。傳統的屈服強度水平在350MPa到550MPa之間,具有鐵素體加少量珠光體組織。表6列出了一些典型的化學成分。過去,這些鋼也用Ti作為主要微合金化元素來生產,尤其是在過去鋼的含硫水平比較高。加入鈦的另外一個主要作用是控制硫化物的形狀。但是由於其碳化物形成的動力學原因,軋制工藝十分復雜,大部分情況下是不允許的,以避免出現典型的最終產品性能大范圍的分散,圖18。在鐵素體-少量珠光體鋼中,當薄板的厚度方向需要使用兩種微合金化元素來獲得更高的強度時,Nb和V的結合將使性能分散范圍小些。以上考慮涉及到Ti的碳化物沉澱強化作用。如果只用來固定N,則Ti很有效。在含Nb鋼中,強度進一步提高,因為更多的Nb將使鑄造性能也得到改善。
最近,開發出690MPa級卡車大梁用鋼,它利用了在由熱帶軋機直接軋出的貝氏體鋼中所有的強化機理,圖19。表7列出了兩種歐洲產品的合金設計。
鐵素體-貝氏體鋼,含10~30%的貝氏體,用於車輪、輪轂和底盤,它比鐵素體-珠光體鋼具有更優越的凸緣壓邊延伸性能。與鐵素體-馬氏體——雙相鋼相反,當焊接的輪轂輪箍被拉伸時,使用這種鋼不會出現局部頸縮。如圖20所示,當合金設計、軋制參數——卷取溫度——得到控制從而第二相主要為貝氏體相時,就可達到強度和成型性的最優配合。
冷軋薄鋼板
傳統的微合金高強度冷軋薄板用鋼在汽車工業已使用了25年,但部分汽車零件不需要高的成型性。圖21顯示了罩式退火鋼板的典型化學成分。傳統的微合金鋼也可在連續退火線上生產,此時,對於給定的鋼種,可以獲得更高的強度。例如,如圖22所示的用於汽車側擋板的雙相鋼。
更復雜形狀的產品——汽車車體(integrated
panels)的開發以及傳統鋼達不到罩式退火同樣的成型性而引入連續退火生產薄鋼板,需要開發一種新的類型鋼,即無間隙鋼——超低碳IF鋼。
無間隙鋼添加Ti、Nb或Ti+Nb生成無間隙原子。尤其在鍍鋅產品中,TiNb無間隙鋼可獲得最優配合的機械性能以及更好的表面質量,如圖23、24、25、26、27、28所示。僅添加Ti的無間隙鋼易於產生表面缺陷。
匹茲堡大學的最新研究工作已經表明,當鈮在鐵素體晶界溶解時,它能起到重要的作用。晶界處溶解的鈮改善冷加工脆性,並能降低鍍鋅產品的粉化趨勢。
用於鍛造的微合金鋼
微合金化技術在鍛造汽車零件鋼中的應用允許除掉傳統的淬回火熱處理生產汽車零件,從而顯著節省生產成本。表8列出了一些在市場上出現的鋼種。
現已生產了僅含微合金元素V、僅含Nb以及Nb、V復合微合金鋼。研究表明,復合添加Nb和V對提高強度比單獨添加這兩種微合金元素中的任何一種更有效。Nb提高了V的析出潛能。
在這種產品上,最新成果包括有直接淬火(馬氏體)或空冷獲得的低碳馬氏體+貝氏體或貝氏體鋼,它們表現出韌性得到改善。表9給出了一個例子。
高強度緊固件與懸掛彈簧
傳統的冷鍛高強度緊固件用鋼為中碳鋼,由淬回火得到最終產品所需的性能。用低碳微合金鋼替代中碳鋼,不需要熱處理就能得到最終所需的機械性能,並且消除了在收線過程中的中間球化處理。表10給出了8.8級鋼(鐵素體—珠光體)與10.9級鋼(鐵素體—貝氏體)的化學成分。
懸掛彈簧是另一種使用微合金化技術而達到減重的產品。北美生產出熱處理後抗拉強度為2000MPa級、HRc為53-55的鋼。化學成分與機械性能在表11中列出。
滲碳鋼
在滲碳處理鋼中,尤其在溫鍛條件下,晶粒非正常長大較為普遍。這些鋼中加入鈮抑制晶粒非正常長大,這項技術已在日本使用多年,最近在北美也取得應用。微合金元素添加到這些鋼中而帶來的另一個好處是通過更高的加熱溫度而有可能減少滲碳時間。鈮的加入抑制晶粒長大,因而使在更高溫度滲碳成為可能。
結構用型鋼
在結構用型鋼技術上的最新主要進展是僅使用一種化學成分就可滿足幾種技術條件的含鈮結構型鋼/橫梁鋼已工業化。這種由Chaparral鋼鐵公司開發的「多級別」鋼,典型的成分僅含0.01-0.02%Nb(目標為0.015%),這足夠將ASTM
A36的屈服強度提高到345MPa以上而抗拉強度限制在550MPa以下,從而既能滿足ASTM A36又能滿足 ASTM
A572-50的技術條件。鈮是選擇性添加微量元素,因為為了滿足50級鋼的最低屈服強度要求,可能要多添加一些V,為0.02-0.03%(與0.015%Nb相比),這會提高結構型鋼的抗拉強度,使它接近或超過550MPa,而當滿足A572-50的技術要求時,又超過了A36所允許的要求。其它ASTM鋼的技術要求可由A572-42、A572-50、A529-42、A5290-50、A709-36與A709-50等多級別鋼滿足。
鋼筋
該產品用於大型混凝土結構以提高抗拉能力。大直徑高強度級別鋼筋添加了V和Nb。一些現代軋鋼廠採用水冷技術取代微合金化提高強度。圖29為V和Nb在焊接用鋼筋中的強化效果。
世界微合金化鋼的發展
世界微合金化鋼的發展可由Nb的總消耗量來描述,因為Nb是一種主要微合金化元素,並且75%的Nb用於微合金化鋼,見圖30。70年代Nb的消耗量急劇上升。當時控軋工藝在全世界范圍內被採用,同時汽車工業使用量也在增加。80年代是穩定期,但微合金化鋼產量繼續增加。Nb消耗量的穩定是因為鋼鐵廠效率的提高,如連鑄設備的安裝、加速冷卻,對給定量的最終產品,這可節省原材料。然而在Nb消耗量達到飽和點後,在90年代Nb的需求又顯著增加。這是受許多重要的鋼鐵公司產品結構調整的影響,他們的品種集中在附加值產品,包括微合金化鋼。圖31很好的顯示出在歐洲微合金化鋼增加情況。從圖中明顯看出,在該地區,與粗鋼相比,FeNb的消耗量顯著增加。在歐洲,每噸鋼中的FeNb為60g。
除了微合金鋼產量增加外,Nb使用領域也在增加。如圖32所示,在70年代中期,Nb主要用在管線鋼產品。為開發該產品中而發展起來的微合金化技術在隨後的時間里被應用在其他領域,如該圖所示的2000年情況。
結論
微合金化技術是一條生產高強度和其它所需性能的高質量產品的經濟有效途徑。
世界范圍內的微合金化鋼的產量不斷增加。新的鋼種已開發出來,並應用在許多領域,保持著鋼在材料領域的良好競爭能力。
⑶ 河鋼舞鋼:鋼種的分類及鋼板中碳含量影響分析
(1)碳素鋼指碳含量一般為0.02%〜2%的鐵碳合金。其中含有限量的硅、錳和磷、硫及其他微量殘余元素。一般統稱為非合金鋼,但碳素鋼的內涵沒有非合金鋼廣泛,不包括具有特殊性能的非合金鋼。
碳素鋼按碳含量分類:
①低碳鋼:碳含量小於0.25%的碳素鋼。
②中碳鋼:碳含量為0.25%〜0.60%的碳素鋼。
③高碳鋼:碳含量大於0.60%的碳素鋼。
(2)微合金化鋼:指微合金化低合金高強度鋼,是在低碳鋼或低合金高強度鋼中加人一種或多種能形成碳化物、氮化物或碳氮化物的微量合金元素的鋼。常用的微合金元素為鈮、釩和鈦,可加一種或多種,如加人多種,其總含量一般不大於0.22%。
(3)低合金鋼:至少應有一種合金元素的含量在GB/T13304相應規定界限范圍內,合金元素總含量大於5%的鋼。
(4)髙合金鋼:合金元素含量大於10%的合金鋼。高合金鋼通常包括不銹鋼、耐熱鋼、鉻不銹軸承鋼、高速工具鋼及部分合金工具鋼、無磁鋼等。
以下為按用途及使用特性分類的鋼:
(5)碳素結構鋼:用於建築、橋梁、船舶、車輛及其他結構,必須有一定的強度、必要時要求沖擊性能和焊接性能的碳素鋼。
(6)低合金高強度結構鋼:用於建築、橋梁、 船舶、車輛、壓力容器及其他結構,碳含量(熔煉分析)一般不大於0.20%,合金元素含量總和一般不大於2.5%,屈服強度不小於295MPa,具有較好的沖擊韌性和焊接性能的低合金鋼。
(7)耐候鋼(耐大氣腐蝕鋼):加人銅、磷、鉻、鎳等元素提高耐大氣腐蝕性能的鋼。這類鋼分為高耐候鋼和焊接結構用耐候鋼。
(8)建築結構用鋼:用於建造高層和重要建築結構的鋼。要求具有較高的沖擊韌性、足夠的強度、良好的焊接性能、一定的屈強比,必要時還要求厚 度方向性能。
(9)橋梁用鋼:用於建造鐵路和公路橋梁的鋼。要求具冇較高的強度和足夠的韌性、低的缺口敏感性、良好的低溫韌性、抗時效敏感性、抗疲勞性能和焊接性能。主要用鋼為Q345q、Q370q、Q420q等低合金高強度鋼。
(10)船體用鋼:焊接和其他性能良好,適用於修造船舶和艦艇殼體主要結構的鋼。艦艇鋼要求具有更高的強度、更好的韌性、抗爆性和抗深水壓潰性。
(11)壓力容器用鋼:用於製造石油化工、氣體分離和氣體儲運等設備的壓力容器的鋼。要求具有足夠的強度和韌性、良好的焊接性能和冷熱加工性 能。常用的鋼主要是低合金高強度鋼和碳素鋼。
(12)低溫用鋼:用於製造在-20℃以下使用的壓力設備和結構,要求具有良好的低溫韌性和焊接性能的鋼。根據使用溫度不同,主要用鋼冇低合金高強度鋼、鎳鋼和奧氏體不銹鋼。
(13)鍋爐用鋼:用於製造過熱器、主蒸汽管、水冷壁管和鍋爐汽包 的鋼。要求具有良好的室溫和高溫力學性能、抗氧化和抗鹼性腐蝕性能、足夠的持久強度和持久斷裂塑性。主要用鋼有珠光體耐熱鋼(鉻-鉬鋼)、奧氏體耐熱鋼(鉻-鎳鋼)、優質碳素鋼(20鋼)和低合金高強度鋼。
(14)管線用鋼:石油、天然氣長矩離輸送管 線用鋼。要求具有高強度、高韌性、優良的加工性、焊接性和抗腐蝕性等綜合性能的低合金高強度鋼。
(15)Z向性能鋼:保證厚度方向性能,不易沿厚度方向產生裂紋,抗層狀撕裂的鋼。按厚度方向斷面收縮率,這類鋼分為 Z15、Z25、Z35 等3個級別。
(16)CF鋼:在焊接前不用預熱,焊接後不熱處理的條件下,不出現焊接裂紋的鋼。這類鋼的合金元素含量少,碳含量和碳當量、焊接裂紋敏感指數都很低,純潔度很高。
(17)錨鏈用鋼:用於製作船舶錨鏈的圓鋼。要求具有較高的強度和韌性。主要採用含錳的低碳鋼或中碳鋼。
(18)混凝土鋼筋用鋼:用於泥凝土構件鋼筋的鋼。要求具有一定的強度和焊接性能、冷彎性能,常採用低合金鋼和碳素鋼,有熱軋鋼筋和冷乳鋼筋,外形有帶肋和光圓兩種。
(19)礦用鋼:以煤炭強化開采為主的礦山用鋼,包括巷道支護、液壓支架管、槽幫鋼、圓環鏈、刮板鋼等。主要採用耐磨低合金鋼。
(20)汽車用鋼:主要包括車身、車架和車輪用鋼,要求有良好的成型性能、焊接性能、耐蝕性能及塗裝性能等。
(21)車輛用鋼:用於製造鐵道貨車和客車車廂的鋼。要求具有足夠的強度、韌性和良好的耐蝕性。主要使用含有磷、銅、鉻、鎳的高耐候低合金鋼。
(22)車輪鋼:用於製造鐵道車輪的鋼。要求具有較高的強度、韌性、抗疲勞性、耐磨性和抗熱裂性。主要採用低合金鋼和碳素鋼。
(23)車軸鋼:用於製造鐵道機車車軸的鋼。要求鋼具有良好的沖擊韌性和很髙的抗拉強度。通常採用含錳量較高的中碳鋼。
(24)鋼軌鋼:用於製造重軌、輕軌、起重機軌和其他專用軌的鋼。要求具有足夠的強度、硬度、耐磨性和沖擊韌性。主要採用含錳較高的高碳鋼(輕軌為中碳鋼)和含錳、硅、釩、銅的低合金鋼。
(25)焊接用鋼:用於對鋼材進行焊接的鋼(包括焊條、焊絲、焊帶)。對化學成分要求比較嚴格,要控制碳含量,限制硫、磷等有害元素。按化學成分,焊接用鋼可以分為非合金鋼、低合金鋼和合金鋼三類。
(26)易切削鋼:在鋼中加人硫、磷、鉛、砸、銻、鈣等元素(加入一種或一種以上)明顯的改善切削性能,以利於機械加工自動化的鋼。
(27)深沖用鋼:具有優良沖壓成型性能的鋼。通常為鑰鎮靜的低碳鋼。一般通過降低碳、硅、錳、硫、磷含量,控制鋁含量范圍和加工工藝,以獲得最佳深沖性能。按沖壓級別分為深沖鋼和超深沖鋼。
(28)IF鋼:在含碳量不大於0.01%的低碳鋼中加人適量的鈥、鈮,使其吸收鋼中的間隙原子碳、氮,形成碳化物、氮化物粒子,獲得深沖性能極佳的鋼。
(29)雙相鋼:一種低合金高強度可成型的鋼。顯微組織由軟的鐵素體晶粒基體和硬的彌散馬氏體顆粒組成,具有較高的強度和塑性以及較好的成型性能。
(30)烘烤硬化鋼:鋼中Nb和Ti含量沒有IF鋼髙,使得BH鋼中含有一定數量的碳和氮間隙原子,但這些間隙原子並沒有影響其沖壓性能,或者影響不 大。BH鋼板主要應用在汽車外殼上,它經過沖壓後要進行噴漆和烤漆。在沖壓成形過程中產生了位錯,在隨後的170t上下的溫度范圍內烘烤塗漆時,固溶碳原子集結到位錯的周圍,形成「科氏氣團」,將位錯釘扎住,使帶鋼的強度上升,強度提高40〜80MPa,產生人工應變時效硬化。這種鋼最突出的優點在於具有較低的屈服強度,易於沖壓成形,經烘烤後帶鋼的強度得到進一步提高。
(31)相變誘導塑性鋼:通過相變誘導塑性效應而使鋼板中殘余奧氏體在塑性變形作用下誘發馬氏體形核,引人相變強化和塑性增長機制,提高鋼板的強度和韌性。trip鋼具有多相組織,既有軟相鐵素體,也有硬相貝氏體,還有亞穩定的殘余奧氏體,在變形過程中能逐步轉化成馬氏體。trip鋼組織決定了其優異的力學性能,因此trip鋼在具有高強度的同時還具有優異的塑性。鐵素體是軟相,在拉伸 過程中能協調貝氏體的變形;貝氏體能提高trip鋼的強度;奧氏體在室溫拉伸時轉化成馬氏體,馬氏體相變產生應力鬆弛,使塑性增加。另外相變生成的馬氏體又能夠強化trip鋼,使 trip鋼的強度提高。trip鋼與其他同級別的高強度鋼相比,最大特點是兼具高強度和高延伸性能,可沖制較復雜的零件;還具有高碰撞吸收性能,一旦遭遇碰撞,會通過自身形變來吸收能量,而不向外傳遞。
(32)孿晶誘導塑性鋼:twip鋼抗拉強度可以達到600〜llOOMPa,伸長率可達到60%〜95%。twip鋼的成分通常主要是鐵,添加 15%〜30%的Mn,並加人少量Al和Si,也有再加人少量的Ni、V、Mo、Cu、Ti、Nb等元素。在TV的層錯能大於20mJ/m2時會發生機械孿晶,所有增加層錯能的合金都有助於孿 晶發生,比如鋁就增加層錯能,硅則降低層錯能。twip鋼在無外載荷時,冷卻到室溫下的組織是穩定的殘余奧氏體,在外部載荷下,因為應變誘導產生機械孿晶,會產生大的無頸縮延伸,並且會顯示非常優異的力學性能,如高的應變硬化率、高的塑性值和高的強度。
(33)非調質鋼:在中碳鋼中添加釩、鈮、鈦等微量元素,通過控制軋制(或鍛制)溫度和冷卻工藝產生強化相,使塑性變形與固態相變相結合,獲得與調質鋼相當的良好綜合性能的鋼。
(34)調質鋼:中碳或低碳結構鋼先經過粹火後再經過 高溫回火處理,獲得較高的強度和沖擊韌性等更好的綜合力學性能的鋼。
(35)超高強度鋼:屈服強度和抗拉強度分別超過1200MPa和1400MPa的鋼。其主要特點是具有很髙的強度,足夠的韌性,能承受很大的應力,同時具有很大的比強度,使結構盡可能地減輕自重。
(36)優質碳素結構鋼:與普通碳素結構鋼比較,硫、 磷及非金屬夾雜物含量較低的鋼。按碳含量和用途不同分為低碳鋼、中碳鋼和高碳鋼等3類,主要用於製造機械零部件和彈簧等。
(37)合金結構鋼:在碳素結構鋼的基礎上加人適當的合金元素,主要用於製造截面尺寸較大的機械零件的鋼。具有合適的淬透性,經相應熱處理後有較高的強度、韌性和疲勞強度,較低的脆性轉變溫度。這類鋼主要包括調質鋼、表面硬化鋼和冷塑性成型鋼。
(38)壓力加工用鋼:供壓力加工(如軋、鍛、拉拔等)經過塑性變形製成零件或產品用的鋼。按加工前鋼是否先經加熱,分為熱壓力加工用鋼和冷壓力 加工用鋼。
(39)切削加工用鋼:供切削機床(如車、銑、 刨、磨等)在常溫下切削加工成零件的鋼。
(40)冷頂鍛用鋼:用於在常溫下進行鐓粗,製造鉚釘、螺栓和螺母用的鋼。在鋼牌號前面加字母「ML」表示。除了化學成分和力學性能外,還要求表面脫碳層和冷頂鍛性能等。主要是優質碳素結構鋼和合金結構鋼。
(41)保證淬透性鋼:按相關標准規定的端淬法進行端部淬火,保證距離淬火端一定距離內硬度的上下限在一定范圍內的鋼。這類鋼的牌號常用「H」(保證淬透性帶的符號)表示。
(42)裝甲鋼:製造坦克、裝甲等防禦各種穿甲彈、破甲彈的鋼板鋼。要求具有較高的硬度和足夠的韌性,特別是低溫韌性。通常為中碳合金鋼。
(43)槍鋼:製造各種手槍、步槍、機關槍的槍管和射擊 機構等部件用鋼。
(44)火炮用鋼:製造不同類型火炮的炮身、炮尾和炮門等主要結構件用鋼。要求具有高強度、高韌性和耐蝕性能。通常使用中碳鉻-鎳-鉬鋼。
(45)炮彈用鋼:製造炮彈彈體用鋼,要求強度和硬度高,在爆炸載荷作用下破片率高。一般用中碳鋼或中碳合金鋼。
(46)滲碳鋼:用於表面滲碳的鋼,包括碳鋼和合金鋼。一般含碳最為0.10%〜0.25%。表曲滲碳後,經過淬火和低溫回火,提高表面硬度,而心部具有足夠的韌性。
(47)滲氮鋼:含有鉻、鋁、鉬、鈦等元素,經滲氮處理後,使表面硬化的鋼。
(48)彈簧鋼:製造各種彈簧和彈性元件的鋼。要求具有優異的力學性能 (特別是彈性極限、強度極限和屈強比)、疲勞性能、淬透性、物理化學性能(耐熱、耐低溫、耐腐蝕)、加工成型性能。按化學成分可分為碳素彈簧鋼、合金彈簧鋼和特殊彈簧鋼。
(49)工具鋼:用於製造各種切削工具、成型工具及測量工具用鋼的總稱。通常分為非合金工具鋼、合金工具鋼和高速工具鋼。要求的性能主要是強度、韌性、硬度、 耐磨性和回火穩定性。
(50)碳素工具鋼:不添加合金元素,用於製造各種一般的小型工具的鋼。含碳量在0.65%〜1.35%之間,屬於共析鋼或過共析鋼。
(51)合金工具鋼:含有較高的碳和鉻、鎢、鉬、釩、鎳等合金元素的工具鋼。按用途和性能可分為量具刃具鋼、耐沖擊工具鋼、冷作模具鋼、熱作模具鋼、塑料模具鋼和無磁模具鋼等。
(52)高速工具鋼:主要用作機床高速切削工具的高碳高合金鋼。按合金基本組成系列分成鎢系鋼、鉬系鋼、鎢鉬系和鑽鉬系鋼等。按用途分為通用型高速鋼和超硬沏高速鋼。
(53)軸承鋼:滾動軸承的滾珠、滾柱、內圈、外圈所用的合金鋼。要求具有高疲勞強度和耐磨性、純潔度和組織均勻性。按其成分和用途可分為高碳鉻軸承鋼、 滲碳軸承鋼、不銹軸承鋼和高溫軸承鋼四類。
(54)不綉鋼:鉻含量不小於10.5%的不鎊鋼和耐酸鋼的總稱。不銹鋼是指在大氣、蒸汽和水等弱腐蝕介質中不易生銹的鋼。耐酸鋼是指在酸、鹼、鹽等侵蝕性 較強的介質中能抵抗腐蝕作用的鋼。
(55)耐熱鋼:在高溫下具有較高的強度和良好的化學穩定性的合金鋼。包括抗氧化鋼(或稱為耐熱不起皮鋼)和熱強鋼兩類。抗氧化鋼一般要求較好的化學穩定性,但承受的載荷較低。熱強鋼則要求較高的高溫強度和相當的抗氧化性。
(56)無磁鋼:以碳、錳、鉻、鎳、氮等為主要合金成分,具有穩定的奧氏體組織,沒有磁性或磁性極低的合金鋼。
(57)閥門鋼:以鉻及硅、鎳、鉬為主要合金元素,主要作內燃機進氣閥、排氣閥用的耐熱鋼。
(58)葉片鋼:以鉻及鉬、鎳、鎢、釩等為主要合金元素,製造汽輪機葉片用的鋼。根據工作溫度不同,要求常溫力學性能及高溫瞬時力學性能和持久強度及塑性、 蠕變強度等。
(59)電工用桂鋼:主要用於各種變壓器、電動機和發動機鐵芯,碳含量極低,硅含量一般在0.5%〜4.5%的硅鐵軟磁材料。分為晶粒取向硅鋼和晶粒無取向硅鋼兩類。
(60)晶粒取向掛鋼:通過形變和再結晶退火使晶粒發生 擇優取向,晶粒取向沿著軋制方向排列.軋制方向的磁性明顯優於垂直乳制方向。一般含硅 量約3.2%。
(61)晶粒無取向硅鋼:沿軋制方向和垂直軋制方向 具有大致相同的磁性能的硅鋼。
(62)電工用純鐵:用於製造電磁元件,碳和其他雜質元素含量都很低,具有磁感強度和磁導率高、矯頑力低等特性的非合金化的鐵某軟磁材料。
以下為按冶煉方法和脫氧程度分類的鋼:
(63)轉爐鋼:用轉爐冶煉的鋼。按爐襯耐火樹料性質分為械性轉爐鋼和酸性轉爐鋼。按氣體(氧氣)吹人爐內的方式分為頂吹轉爐鋼、底吹轉爐鋼、側吹轉爐鋼和頂底復合吹轉爐鋼等。
(64)電爐鋼:利用電加熱的方法在電爐中冶煉的鋼。按加熱方式和爐沏的不同,電爐鋼分為電弧爐鋼、真空電弧爐鋼(真空自耗鋼)、感應爐鋼、真空感應爐鋼、電渣鋼和電子束爐鋼等。
(65)電弧爐鋼:在電弧爐中利用電極電弧高溫冶煉的鋼。
(66)真空電弧爐鋼:用真空自耗工藝冶煉的鋼。在真空下,利用電弧供熱,將預制的成分符合要求的自耗電極重熔進行精煉。這種鋼純凈度高,成分均勻,偏析少。
(67)感應爐鋼:利用感應電熱效應在感應爐中冶煉的鋼。在非真空感應爐中冶煉的鋼叫做非真空感應爐鋼;在空感應爐中冶煉的鋼叫做真空感應爐鋼。
(68)電渣鋼:把轉爐、電爐或感應爐冶煉的鋼鑄造或鍛壓成電極,通過電渣爐中的熔揸電阻熱進行二次重熔的精煉工藝煉出的鋼。
(69)爐外精煉鋼:將電爐或轉爐初煉過的鋼液放到鋼 包或其他專用容器中,採用脫氣、脫氧、脫硫、脫碳、去除夾雜物和成分微調等精煉工藝冶煉的鋼。
(70)鎮靜鋼:澆注前鋼液進行充分脫氧,澆注和凝固過程中鋼液平靜無 沸騰的鋼。鎮靜鋼組織緻密,偏析小,成分均勻。
(71)半鎮靜鋼:脫氧程度介於鎮靜鋼與沸騰鋼之間的半脫氧的鋼。 澆注時有微弱沸騰現象,鋼的收得率比鎮靜鋼高,偏析比沸騰鋼小。
(72)沸騰鋼:未經脫氧或進行輕度脫氧的鋼。鋼液在澆注時和沒有凝固前,在錠模中發生碳氧反應,排出一氧化碳,產生強烈的沸騰現象。這類鋼沒有集中縮孔,鋼的收得率高,但成分偏析大,質量不均勻。
以下為按金相組織分類的鋼:
(73)奧氏體型鋼:固溶退火後在常溫下其組織為奧氏體的鋼。
(74)奧氏體-鐵素體型鋼:固溶退火後在常溫下為奧氏體與鐵 素體雙相組織的鋼。
(75)鐵素體型鋼:在所有溫度下均為穩定的鐵素體組織的鋼。
(76)馬氏體型鋼:在高溫奧氏體化後冷卻到常溫能形成馬氏體組織 的鋼。
(77)沉澱硬化型鋼:通過添加少量的鋁、鈦、銅等元素,經熱處理後這些元素的化合物在鋼的基體上沉澱析出而使基體硬化的鋼。
(78)珠光體型鋼:高溫奧氏體(經退火)緩慢冷卻到Ai (共析轉變線)以下溫度得到珠光體組織的鋼。
(79)貝氏體型鋼:高溫奧氏體以一定的冷卻速度過冷到Ms點(奧氏體 開始轉變為馬氏體的溫度)以上一定溫度,然後等溫一定時間得到貝氏體組織的鋼。
(80)萊氏體型鋼:具有萊氏體組織的鋼。高溫下萊氏體是奧氏體和 滲碳體的共晶體,常溫下萊氏體是珠光體和滲碳體的混合物。
(81)共析鋼:碳含量為共析成分(一般碳含量為0. 80%)的珠光體組織的鋼。
(82)亞共析鋼:碳含量低於共析鋼成分(一般碳含量為 0.02%〜0.80%)的鐵素體和珠光體鋼。
(83)過共析鋼:碳含量高於共析成分(一般碳含量為0.8%〜2.0%)的珠光體和滲碳體組織的鋼。