1. 材料屈服的微觀原因可能是什麼
原因如下。
屈服強度及其影響因素
1. 屈服標准
工程上常用的屈服標准有三種:
(1)比例極限 應力-應變曲線上符合線性關系的高應力,上常採用σp表示,超過σp時即認為材料開始屈服。
(2)彈性極限 試樣載入後再卸載,以不出現殘留的長久變形為標准,材料能夠完全彈性恢復的高應力。上通常以σel表示。應力超過σel時即認為材料開始屈服。
(3)屈服強度 以規定發生一定的殘留變形為標准,如通常以0.2%殘留變形的應力作為屈服強度,符號為σ0.2或σys
2. 影響屈服強度的因素
影響屈服強度的內在因素有:結合鍵、組織、結構、原子本性。如將金屬的屈服強度與陶瓷、高分子材料比較可看出結合鍵的影響是根本性的。從組織結構的影響來看,可以有四種強化機制影響金屬材料的屈服強度,這就是:(1)固溶強化;(2)形變強化;(3)沉澱強化和彌散強化;(4)晶界和亞晶強化。沉澱強化和細晶強化是工業合金中提高材料屈服強度的常用的手段。在這幾種強化機制中,前三種機制在提高材料強度的同時,也降低了塑性,只有細化晶粒和亞晶,既能提高強度又能增加塑性。
影響屈服強度的外在因素有:溫度、應變速率、應力狀態。隨著溫度的降低與應變速率的增高,材料的屈服強度升高,尤其是體心立方金屬對溫度和應變速率特別敏感,這導致了鋼的低溫脆化。應力狀態的影響也很重要。雖然屈服強度是反映材料的內在性能的一個本質指標,但應力狀態不同,屈服強度值也不同。我們通常所說的材料的屈服強度一般是指在單向拉伸時的屈服強度。
3.屈服強度的工程意義
傳統的強度設計方法,對塑性材料,以屈服強度為標准,規定許用應力[σ]=σys/n,安全系數n一般取2或更大,對脆性材料,以抗拉強度為標准,規定許用應力[σ]=σb/n,安全系數n一般取6。
需要注意的是,按照傳統的強度設計方法,必然會導致片面追求材料的高屈服強度,但是隨著材料屈服強度的提高,材料的抗脆斷強度在降低,材料的脆斷危險性增加了。
屈服強度不僅有直接的使用意義,在工程上也是材料的某些力學行為和工藝性能的大致度量。例如材料屈服強度增高,對應力腐蝕和氫脆就敏感;材料屈服強度低,冷加工成型性能和焊接性能就好等等。因此,屈服強度是材料性能中不可缺少的重要指標。材料開始屈服以後,繼續變形將產生加工硬化.
加工硬化指數n的實際意義
加工硬化指數n反應了材料開始屈服以後,繼續變形時材料的應變硬化情況,它決定了材料開始發生頸縮時的大應力。n還決定了材料能夠產生的大均勻應變數(見1.3.3內容),這一數值在冷加工成型工藝中是很重要的。
對於工作中的零件,也要求材料有一定的加工硬化能力,否則,在偶然過載的情況下,會產生過量的塑性變形,甚至有局部的不均勻變形或斷裂,因此材料的加工硬化能力是零件安全使用的可靠保證。
G形變硬化是提高材料強度的重要手段。不銹鋼有很大的加工硬化指數n=0.5,因而也有很高的均勻變形量。不銹鋼的屈服強度不高,但如用冷變形可以成倍地提高。高碳鋼絲經過鉛浴等溫處理後拉拔,可以達到2000MPa以上。但是,傳統的形變強化方法只能使強度提高,而塑性損失了很多。現在研製的一些新材料中,注意到當改變了顯微組織和組織的分布時,變形中既能提高強度又能提高塑性.
抗拉強度在材料不產生頸縮時抗拉強度代表斷裂抗力。脆性材料用於產品設計時,其許用應力是以抗拉強度為依據的。抗拉強度對一般的塑性材料有什麼意義呢?雖然抗拉強度只代表產生大均勻塑性變形抗力,但它表示了材料在靜拉伸條件下的極限承載能力。對應於抗拉強度σb的外載荷,是試樣所能承受的大載荷,盡管此後頸縮在不斷發展,實際應力在不斷增加,但外載荷卻是在很快下降的。
材料在靜拉伸時單位體積材料從變形到斷裂所消耗的功叫做靜力韌度。嚴格的說,它應該是真應力-應變曲線下所包圍的面積也就是工程上為了簡化方便,近似地採取:對塑性材料靜力韌度是一個強度與塑性的綜合指標。單純的高強度材料象彈簧鋼,其靜力韌度不高,而只具有很好塑性的低碳鋼也沒有高的靜力韌度,只有經淬火高溫回火的中碳(合金)結構鋼才具有高的靜力韌度硬度並不是金屬獨立的基本性能,它是指金屬在表面上的不大體積內抵抗變形或者破裂的能力'
2. 洛氏硬度試驗的優缺點
洛氏硬度試驗避免了布氏硬度試驗所存在的缺點。它的優點是:
1)因有硬質、軟質兩種壓頭,故適於各種不同硬質材料的檢驗,不存在壓頭變形問題;
2)壓痕小,不傷工件表面;
3)操作迅速,立即得出數據,生產效率高,適用於大量生產中的成品檢驗。
缺點是:用不同硬度級測得的硬度值無法統一起來,無法進行比較。
2. 簡單舉例說一下各種元素加入鋼材分別有什麼效果
1、碳(C):鋼中含碳量增加,屈服點和抗拉強度升高,但塑性和沖擊性降低,當碳量0.23%超過時,鋼的焊接性能變壞,因此用於焊接的低合金結構鋼,含碳量一般不超過0.20%。碳量高還會降低鋼的耐大氣腐蝕能力,在露天料場的高碳鋼就易銹蝕;此外,碳能增加鋼的冷脆性和時效敏感性。
2、硅(Si):在煉鋼過程中加硅作為還原劑和脫氧劑,所以鎮靜鋼含有0.15-0.30%的硅。如果鋼中含硅量超過0.50-0.60%,硅就算合金元素。硅能顯著提高鋼的彈性極限,屈服點和抗拉強度,故廣泛用於作彈簧鋼。在調質結構鋼中加入1.0-1.2%的硅,強度可提高15-20%。硅和鉬、鎢、鉻等結合,有提高抗腐蝕性和抗氧化的作用,可製造耐熱鋼。含硅1-4%的低碳鋼,具有極高的導磁率,用於電器工業做矽鋼片。硅量增加,會降低鋼的焊接性能。
3、錳(Mn):在煉鋼過程中,錳是良好的脫氧劑和脫硫劑,一般鋼中含錳0.30-0.50%。在碳素鋼中加入0.70%以上時就算「錳鋼」,較一般鋼量的鋼不但有足夠的韌性,且有較高的強度和硬度,提高鋼的淬性,改善鋼的熱加工性能,如16Mn鋼比A3屈服點高40%。含錳11-14%的鋼有極高的耐磨性,用於挖土機鏟斗,球磨機襯板等。錳量增高,減弱鋼的抗腐蝕能力,降低焊接性能。
4、磷(P):在一般情況下,磷是鋼中有害元素,增加鋼的冷脆性,使焊接性能變壞,降低塑性,使冷彎性能變壞。因此通常要求鋼中含磷量小於0.045%,優質鋼要求更低些。
5、硫(S):硫在通常情況下也是有害元素。使鋼產生熱脆性,降低鋼的延展性和韌性,在鍛造和軋制時造成裂紋。硫對焊接性能也不利,降低耐腐蝕性。所以通常要求硫含量小於0.055%,優質鋼要求小於0.040%。在鋼中加入0.08-0.20%的硫,可以改善切削加工性,通常稱易切削鋼。
6、鉻(Cr):在結構鋼和工具鋼中,鉻能顯著提高強度、硬度和耐磨性,但同時降低塑性和韌性。鉻又能提高鋼的抗氧化性和耐腐蝕性,因而是不銹鋼,耐熱鋼的重要合金元素。
7、鎳(Ni):鎳能提高鋼的強度,而又保持良好的塑性和韌性。鎳對酸鹼有較高的耐腐蝕能力,在高溫下有防銹和耐熱能力。但由於鎳是較稀缺的資源,故應盡量採用其他合金元素代用鎳鉻鋼。
8、 鉬(Mo):鉬能使鋼的晶粒細化,提高淬透性和熱強性能,在高溫時保持足夠的強度和抗蠕變能力(長期在高溫下受到應力,發生變形,稱蠕變)。結構鋼中加入鉬,能提高機械性能。 還可以抑制合金鋼由於火而引起的脆性。在工具鋼中可提高紅性。
9、鈦(Ti):鈦是鋼中強脫氧劑。它能使鋼的內部組織緻密,細化晶粒力;降低時效敏感性和冷脆性。改善焊接性能。在鉻18鎳9奧氏體不銹鋼中加入適當的鈦,可避免晶間腐蝕。
10、釩(V):釩是鋼的優良脫氧劑。鋼中加0.5%的釩可細化組織晶粒,提高強度和韌性。釩與碳形成的碳化物,在高溫高壓下可提高抗氫腐蝕能力。
11、鎢(W):鎢熔點高,比重大,是貴生的合金元素。鎢與碳形成碳化鎢有很高的硬度和耐磨性。在工具鋼加鎢,可顯著提高紅硬性和熱強性,作切削工具及鍛模具用。
12、鈮(Nb):鈮能細化晶粒和降低鋼的過熱敏感性及回火脆性,提高強度,但塑性和韌性有所下降。在普通低合金鋼中加鈮,可提高抗大氣腐蝕及高溫下抗氫、氮、氨腐蝕能力。鈮可改善焊接性能。在奧氏體不銹鋼中加鈮,可防止晶間腐蝕現象。
13、鈷(Co):鈷是稀有的貴重金屬,多用於特殊鋼和合金中,如熱強鋼和磁性材料。
14、銅(Cu):武鋼用大冶礦石所煉的鋼,往往含有銅。銅能提高強度和韌性,特別是大氣腐蝕性能。缺點是在熱加工時容易產生熱脆,銅含量超過0.5%塑性顯著降低。當銅含量小於0.50%對焊接性無影響。
15、鋁(Al):鋁是鋼中常用的脫氧劑。鋼中加入少量的鋁,可細化晶粒,提高沖擊韌性,如作深沖薄板的08Al鋼。鋁還具有抗氧化性和抗腐蝕性能,鋁與鉻、硅合用,可顯著提高鋼的高溫不起皮性能和耐高溫腐蝕的能力。鋁的缺點是影響鋼的熱加工性能、焊接性能和切削加工性能。
16、硼(B):鋼中加入微量的硼就可改善鋼的緻密性和熱軋性能,提高強度。
17、氮(N):氮能提高鋼的強度,低溫韌性和焊接性,增加時效敏感性。
18、稀土(Xt):稀土元素是指元素周期表中原子序數為57-71的15個鑭系元素。這些元素都是金屬,但他們的氧化物很像「土」,所以習慣上稱稀土。鋼中加入稀土,可以改變鋼中夾雜物的組成、形態、分布和性質,從而改善了鋼的各種性能,如韌性、焊接性,冷加工性能。在犁鏵鋼中加入稀土,可提高耐磨性。
3. 馬氏體不銹鋼的特點
馬氏體不銹鋼能在退火、和硬化與回火的狀態下焊接,無論鋼材的原先狀態如何,經過焊接後都會在鄰近焊道處產生一硬化的馬氏體區,熱影響區的硬度主要是取決於母材金屬的碳含量,當硬度增加時,則韌性減少,且此區域變成較易產生龜裂、預熱和控制層間溫度,是避免龜裂的最有效方法,為得最佳的性質,需焊後熱處理。
馬氏體不銹鋼是一類可以通過熱處理(淬火、回火)對其性能進行調整的不銹鋼,通俗地講,是一類可硬化的不銹鋼。這種特性決定了這類鋼必須具備兩個基本條件:一是在平衡相圖中必須有奧氏體相區存在,在該區域溫度范圍內進行長時間加熱,使碳化物固溶到鋼中之後,進行淬火形成馬氏體,也就是化學成分必須控制在γ或γ+α相區,二是要使合金形成耐腐蝕和氧化的鈍化膜,鉻含量必須在10.5%以上。按合金元素的差別,可分為馬氏體鉻不銹鋼和馬氏體鉻鎳不銹鋼。
馬氏體鉻不銹鋼的主要合金元素是鐵、鉻和碳。圖1-4是Fe-Cr系相圖富鐵部分,如Cr大於13%時,不存在γ相,此類合金為單相鐵素體合金,在任何熱處理制度下也不能產生馬氏體,為此必須在內Fe-Cr二元合金中加入奧氏體形成元素,以擴大來說,C、N是有效元素,C、N元素添加使得合金允許更高的鉻含量。在馬氏體鉻不銹鋼中,除鉻外,C是另一個最重要的必備元素,事實上,馬氏體鉻不銹耐熱鋼是一類鐵、鉻、碳三元合金。當然,還有其他元素,利用這些元素,可根據Schaeffler圖確定大致的組織。
馬氏體不銹鋼主要為鉻含量在12%-18%范圍內的低碳或高碳鋼。各國廣泛應用的馬氏體不銹鋼鋼種有如下3類:
1、低碳及中碳13%Cr鋼。
2、高碳的18%Cr鋼。
3、低碳含鎳(約2%)的17%Cr鋼。
馬氏體不銹鋼具備高強度和耐蝕性,可以用來製造機器零件如蒸汽渦輪的葉片(1Cr13)、蒸汽裝備的軸和拉桿(2Cr13),以及在腐蝕介質中工作的零件如活門、螺栓等(4Cr13)。碳含量較高的鋼號(4Cr13、9Cr18)則適用於製造醫療器械、餐刀、測量用具、彈簧等。
與鐵素體不銹鋼相似,在馬氏體不銹鋼中也可以加入其它合金元素來改進其他性能:1、加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2、加入約1%Mo及0.1%V,可以增加9Cr18鋼的耐磨性及耐蝕性;3.加入約1Mo-1W-0.2V,可以提高1Cr13及2Cr13鋼的熱強性。
馬氏體不銹鋼與調制鋼一樣,可以使用淬火、回火及退火處理。其力學性質與調制鋼也相似:當硬度升高時,抗拉強度及屈服強度升高,而伸長率、截面收縮率及沖擊功則隨著降低。
馬氏體不銹鋼的耐蝕性主要取決於鉻含量,而鋼中的碳由於與鉻形成穩定的碳化鉻,又間接的影響了鋼的耐蝕性。因此在13%Cr鋼中,碳含量越低,則耐蝕性越高。而在1Cr13、2Cr13、3Cr13及4Cr13四種鋼中,其耐蝕性與強度的順序恰好相反。
在加工產品的時候,為了提高馬氏體不銹鋼產品的強度和硬度,會增加碳含量,從而導致產品的塑性和耐蝕性下降。所以通常馬氏體不銹鋼加工出來的產品的耐蝕性較差。
4. 馬氏體不銹鋼是什麼材料
通過熱處理可以調整其力學性能的不銹鋼,通俗地說,是一類可硬化的不銹鋼。典型牌號為Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。淬火後硬度較高,不同回火溫度具有不同強韌性組合,主要用於蒸汽輪機葉片、餐具、外科手術器械。根據化學成分的差異,馬氏體不銹鋼可分為馬氏體鉻鋼和馬氏體鉻鎳鋼兩類。根據組織和強化機理的不同,還可分為馬氏體不銹鋼、馬氏體和半奧氏體(或半馬氏體)沉澱硬化不銹鋼以及馬氏體時效不銹鋼等。
標準的馬氏體不銹鋼是:403、410、414、416、416(Se)、420、430、431、440A、440B和440C型,有磁性;這些鋼材的耐腐蝕性來自「鉻」,其范圍是從11.5至18%,鉻含量愈高的鋼材需碳含量愈高,以確保在熱處理期間馬氏體的形成,上述三種440型不銹鋼很少被考慮做為需要焊接的應用,且440型成份的熔填金屬不易取得。
標准馬氏體鋼材的改良,含有類如鎳、鉬、釩等的添加元素,主要是用於將標准鋼材受限的容許工作溫度提升至高於1100K,當添加這些元素時,碳含量也增加,隨著碳含量的增加,在焊接物的硬化熱影響區中避免龜裂的問題變成更嚴重。
性能
編輯
馬氏體不銹鋼能在退火、和硬化與回火的狀態下焊接,無論鋼材的原先狀態如何,經過焊接後都會在鄰近焊道處產生一硬化的馬氏體區,熱影響區的硬度主要是取決於母材金屬的碳含量,當硬度增加時,則韌性減少,且此區域變成較易產生龜裂、預熱和控制層間溫度,是避免龜裂的最有效方法,為得最佳的性質,需焊後熱處理。
馬氏體不銹鋼是一類可以通過熱處理(淬火、回火)對其性能進行調整的不銹鋼,通俗地講,是一類可硬化的不銹鋼。這種特性決定了這類鋼必須具備兩個基本條件:一是在平衡相圖中必須有奧氏體相區存在,在該區域溫度范圍內進行長時間加熱,使碳化物固溶到鋼中之後,進行淬火形成馬氏體,也就是化學成分必須控制在γ或γ+α相區,二是要使合金形成耐腐蝕和氧化的鈍化膜,鉻含量必須在10.5%以上。按合金元素的差別,可分為馬氏體鉻不銹鋼和馬氏體鉻鎳不銹鋼。
馬氏體鉻不銹鋼的主要合金元素是鐵、鉻和碳。圖1-4是Fe-Cr系相圖富鐵部分,如Cr大於13%時,不存在γ相,此類合金為單相鐵素體合金,在任何熱處理制度下也不能產生馬氏體,為此必須在內Fe-Cr二元合金中加入奧氏體形成元素,以擴大來說,C、N是有效元素,C、N元素添加使得合金允許更高的鉻含量。在馬氏體鉻不銹鋼中,除鉻外,C是另一個最重要的必備元素,事實上,馬氏體鉻不銹耐熱鋼是一類鐵、鉻、碳三元合金。當然,還有其他元素,利用這些元素,可根據Schaeffler圖確定大致的組織。
馬氏體不銹鋼主要為鉻含量在12%-18%范圍內的低碳或高碳鋼。各國廣泛應用的馬氏體不銹鋼鋼種有如下3類:
1.低碳及中碳13%Cr鋼
2.高碳的18%Cr鋼
3.低碳含鎳(約2%)的17%Cr鋼
馬氏體不銹鋼具備高強度和耐蝕性,可以用來製造機器零件如蒸汽渦輪的葉片(1Cr13)、蒸汽裝備的軸和拉桿(2Cr13),以及在腐蝕介質中工作的零件如活門、螺栓等(4Cr13)。碳含量較高的鋼號(4Cr13、9Cr18)則適用於製造醫療器械、餐刀、測量用具、彈簧等。
與鐵素體不銹鋼相似,在馬氏體不銹鋼中也可以加入其它合金元素來改進其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2.加入約1%Mo及0.1% V,可以增加9Cr18鋼的耐磨性及耐蝕性;3.加入約1Mo-1W-0.2V,可以提高1Cr13及2Cr13鋼的熱強性。
馬氏體不銹鋼與調制鋼一樣,可以使用淬火、回火及退火處理。其力學性質與調制鋼也相似:當硬度升高時,抗拉強度及屈服強度升高,而伸長率、截面收縮率及沖擊功則隨著降低。
馬氏體不銹鋼的耐蝕性主要取決於鉻含量,而鋼中的碳由於與鉻形成穩定的碳化鉻,又間接的影響了鋼的耐蝕性。因此在13%Cr鋼中,碳含量越低,則耐蝕性越高。而在1Cr13、2Cr13、3Cr13及4Cr13四種鋼中,其耐蝕性與強度的順序恰好相反。
5. 904不銹鋼可以固溶處理么 如何固溶
904L不銹鋼管固溶處理後進行的中間處理,一般又稱調整處理,目的是獲得一定數量的馬氏體,從而使鋼強化,常用以下三種方法:
(1)中間時效法(簡稱T處理法)固溶處理後再加熱至(760±15)℃,保溫90min,因有Cr23C6碳化物從奧氏體中析出,降低了奧氏體904L不銹鋼管中的碳及合金元素含量,使Ms點升高到70℃,隨後冷卻到室溫便得到馬氏體+α鐵素體+殘余奧氏體組織,殘余奧氏體在隨後510℃時效才分解完。
(2)高溫調整及深冷處理法(R處理法)固溶後,行先加熱到950℃保溫90min。由於升高了Ms點,冷卻到室溫,可得到少量馬氏體;之後再經-70℃冷處理,保溫8h,就可獲得一定數量的馬氏體。
(3)冷變形法(C處理法)固溶處理後,在室溫下冷變形,冷變形時904L無縫管形成馬氏體的數量與變形量及904L不銹鋼管的成分有關。一般變形量在15%~20%就能獲得必要數量的馬氏體,過大的變形量會使馬氏體發生加工硬化,使塑性顯著下降。
產品名稱:904L/UNS N08904國際通稱: SUS890L、F904L、W.-Nr. 1.4539、NAS 255、00Cr20Ni25Mo4.5Cu 執行標准:ASTM A240/ASME SA-240、ASTM A276、ASTM A182/ASME SA-182、ASTM A312/ASMES A312ASTM B625/ASME B625、ASTM B673/ASME B673主要成分:碳(C)≤0.02,錳(Mn)≤2.00,鎳(Ni)23.0~28.0,硅(Si)≤1.0磷(P)≤0.045,硫(S)≤0.035,鉻(Cr)19.0~23.0,銅(Cu)1.0~2.0,鉬(Mo)4.0~5.0物理性能:904L密度:8.24g/cm3, 熔點:1300-1390 ℃,磁性:無熱處理:1100-1150℃之間保溫1-2小時,快速空冷或水冷。機械性能:抗拉強度:σb≥490Mpa,屈服強度σb≥215Mpa:延伸率:δ≥35%,硬度:70-90(HRB)耐腐蝕性及主要使用環境:904L是為腐蝕條件苛刻的環境所設計的一種含碳量很低、高合金化的奧氏體不銹鋼,比316L和317L具有更好耐腐蝕性性,同時兼顧了價格與性能,性價比較高。因添加1.5%的銅,對於硫酸和磷酸等還原性酸而言,具有優秀的耐腐蝕性。對氯離子引起的應力腐蝕、點蝕和縫隙腐蝕也具有優良的耐腐蝕性能,有著良好的耐晶間腐蝕能力。在0-98%的濃度范圍內純硫酸中,904L的使用溫度可高達40攝氏度。在0-85%濃度范圍內的純磷酸中,其抗腐蝕性能是非常好的。在濕法工藝生產的工業磷酸中,雜質對抗腐蝕性能有很強的影響。在所有各種磷酸中,904L抗腐蝕性優於普通的不銹鋼。在強氧化性的硝酸中,904L與不含鉬的高合金化的鋼種相比,抗腐蝕性能較低。在鹽酸中,904L的使用僅限於較低的濃度1-2%。在這個濃度范圍。904L的抗腐蝕性能好於常規不銹鋼。904L鋼具有很高的抗點腐蝕能力。在氯化物溶液中其抗縫隙腐蝕能。力也是很好的。904L的高鎳含量,降低了在麻坑和縫隙處的腐蝕速度。普通的奧氏體不銹鋼在溫度高於60攝氏度時,在一個富氯化物的環境中對應力腐蝕可能是敏感的,通過提高不銹鋼的鎳含量,可以降低這種敏化性。由於高的鎳含量,904L在氯化物溶液,濃縮的氫氧化物溶液和富硫化氫的環境中,具有很高的抗應力腐蝕破裂能力。配套焊接材料及焊接工藝:904L的焊接選用ER385焊絲和E385焊條,焊材尺寸有Φ1.6、2.4、2.5、3.2、4.0,產地為:奧地利G&G、瑞典AVESTA和義大利TFA,焊接工藝及指導書歡迎來電索取。庫存情況:904L不銹鋼板庫存現貨尺寸有0.6mm-45mm, 904L不銹鋼棒材庫存現貨尺寸有Φ12mm-Φ250mm, 904L不銹鋼管材管件及其他可根據客戶要求定做。材料產地主要有日本冶金和瑞典OUTOKUMPU。提供原廠材質證明書、報關單及原產地證明文件。應用領域有:石油、石化設備,如石化設備中的反應器等,硫酸的儲存與運輸設備,如熱交換器等,發電廠煙氣脫硫裝置,主要使用部位有:吸收塔的塔體、煙道、檔門板、內件、噴淋系統等,有機酸處理系統中的洗滌器和風扇,海水處理裝置,海水熱交換器,造紙工業設備,硫酸、硝酸設備,制酸、制葯工業及其他化工設備、壓力容器,食品設備,制葯廠:離心機,反應器等,植物食品:醬油罐,料酒,鹽罐,設備和敷料,對稀硫酸強腐蝕介質904L是匹配的鋼種。
6. 用什麼辦法可使不銹鋼的硬度變軟
國家標准《GBT 20878-2007不銹鋼和耐熱鋼牌號及化學成分》中,規定了143種不銹鋼和耐熱鋼,其中:奧氏體型66種,奧氏體-鐵素體型11種,鐵素體型18種,馬氏體型38種,沉澱硬化型10種。
幾乎所有不銹鋼都能通過加熱後緩慢冷卻(退火)來實現硬度變軟。
如果是通過滲碳或滲氮實現硬化的不銹鋼,通過加熱,使碳、氮元素實現在金屬內部固溶,即可實現軟化,這種方式叫「固溶退火」,固溶退火一般溫度越高固溶效果越好,但出於經濟效益考慮,一般在1000-1200℃之間。但如果滲碳或滲氮量過多,退火的效果可能不會太好。
奧氏體不銹鋼可能有加工硬化,通過加熱至其重結晶溫度以上,使內部組織重新奧氏體化,即可實現軟化,這種方式叫「重結晶退火」,重結晶退火溫度800-900℃即可。
沉澱硬化型不銹鋼通過沉澱硬化過程(時效)析出不同類型和數量的碳化物、氮化物、碳氮化物和金屬間化合物,以提高其強度硬度,因此通過高溫使析出的化合物重新固溶即可實現軟化,也屬於「固溶退火」。
馬氏體型不銹鋼通常耐腐蝕性差一些,其可以通過淬火工藝硬化,重結晶退火即可使其軟化。
鐵素體型不銹鋼在低溫和高溫下都保持鐵素體,沒有相變,因此不能通過熱處理硬化,為消除其加工製作過程中的內應力,一般在700-800℃退火後使用。