㈠ 低碳鋼和鑄鐵的拉伸時的力學性能有什麼不同
一、力學性能不同
1、低碳鋼:拉伸時的應力-應變曲線主要分四個階段版:彈性階段、屈權服階段、強化階段、局部變形階段,在局部變形階段有明顯的屈服和頸縮現象。開始時為彈性階段,完全遵守胡克定律沿直線上升,比例極限以後變形加快,但無明顯屈服階段。
2、鑄鐵:對基體的割裂作用影響最小,因而具有很高的強度、良好的韌性、塑性和切削加工性。
二、構成不同
1、低碳鋼:為碳含量低於0.25%的碳素鋼,因其強度低、硬度低而軟,故又稱軟鋼。
2、鑄鐵:主要由鐵、碳和硅組成的合金的總稱。在這些合金中,含碳量超過在共晶溫度時能保留在奧氏體固溶體中的量。
三、用處不同
1、低碳鋼:包括大部分普通碳素結構鋼和一部分優質碳素結構鋼,大多不經熱處理用於工程結構件,有的經滲碳和其他熱處理用於要求耐磨的機械零件。
2、鑄鐵:於退火周期長,工藝復雜,成本高,只適 用於大批量生產薄壁零件。
㈡ 低碳鋼和鑄鐵的許用應力哪個大
低碳鋼
㈢ 低碳鋼和鑄鐵拉伸破壞的主要原因
鑄鐵的拉伸破壞發生在橫截面上,是由最大拉應力造成的。壓縮破壞發生專在約50-55度斜截面上,屬是由最大切應力造成的。扭轉破壞發生在45度螺旋面上,是由最大拉應力造成的。
低碳鋼拉伸破壞的主要原因是最大切應力引起塑性屈服。引起鑄鐵斷裂的主要原因是最大拉應力引起脆性斷裂,這說明低碳鋼的抗能力大於抗剪能力,而鑄鐵抗剪能力大於抗拉能力。
(3)低碳鋼和鑄鐵的危險應力是什麼擴展閱讀
鑄鐵的組織和機械性能:
灰鑄鐵的凝固形態隨著碳當量變化。在碳當量小於4.3%的亞共晶條件下,首先奧氏體樹枝晶析出(叫做初晶奧氏體),當殘留的鐵液變成共晶成分時,由石墨和奧氏體兩相層狀組織形成的共晶團形核、成長,凝固結束。
過共晶成分條件下,首先結晶出板狀石墨(叫做初生石墨),當殘留鐵液達到共晶成分時,共晶團形核、生長。灰鑄鐵由幾乎沒有強度的石墨和具有強度的鐵基體(鐵素體或者珠光體)組成,這二者的形狀和數量決定了機械性能。
㈣ 低碳鋼和鑄鐵在扭轉破壞時有什麼不同的現象
1,骨折的形狀不同:
當鑄鐵斷裂時,斷裂面呈45o螺旋形;當低碳鋼斷裂時,斷裂面為垂直內於垂容直方向的近似平面。
2,破解的過程是不同的:
當低碳鋼扭曲時,會發生屈服,加工硬化並最終斷裂。塑性變形量被破壞。鑄鐵扭曲時,幾乎不會發生塑性變形並直接破裂。
原因:鑄鐵在45o方向上的主應力破壞了,這是由斜截面上的拉應力引起的,這表明鑄鐵的抗拉強度很差。低碳鋼是由較高的剪切應力引起的,說明低碳鋼的剪切強度較差。
(4)低碳鋼和鑄鐵的危險應力是什麼擴展閱讀:
脆性和塑性材料的強度和可塑性可以通過反向測試確定,該測試通常用於需要頻繁燒結的材料(例如軸,彈簧等)上。
扭轉試驗在扭轉試驗機上進行,材料特性和應力條件可以反映在扭轉尖端的斷裂形狀中。
例如,剪切應力的結果顯示為裂縫的截面和垂直線,並且材料是塑性的。如果法向應力作用,則斷裂部分的壁厚約為45°,材料易碎。
㈤ 低碳鋼和鑄鐵在壓縮時的力學性能有什麼區別
1、材料性能不同:
低碳鋼是塑性材料,低碳鋼抗壓能力非常強,而鑄鐵是脆性材料,抗壓能力遠遠大於抗拉能力。
2、壓縮後結果不同:
低碳鋼抗壓能力非常強,且抗拉抗壓能力相當,所以最後會被壓扁但是不會斷裂,而鑄鐵的抗壓能力遠遠大於抗拉能力,最後會被內部的正應力給拉斷,斷口呈斜45度角。
3、壓縮時表現不同:
低炭鋼壓縮時的力學性能:彈性階段與拉伸時相同,楊氏模量、比例極限相同,屈服階段,拉伸和壓縮時的屈服極限相同,屈服階段後,試樣越壓越扁無頸縮現象,測不出強度極限。
鑄鐵拉伸壓縮時的力學性能:強度極限是唯一指標,斷口形狀為沿斜截面錯動而破壞,斷口與截面成角,抗壓強度極限為拉伸時的4~5倍,沿斜截面錯動而破壞,斷口與斜截面約略成角,只適合作受壓構件。
(5)低碳鋼和鑄鐵的危險應力是什麼擴展閱讀:
材料力學性能是指材料在常溫、靜載作用下的宏觀力學性能。是確定各種工程設計參數的主要依據。這些力學性能均需用標准試樣在材料試驗機上按照規定的試驗方法和程序測定,並可同時測定材料的應力-應變曲線。
材料力學性能是材料的宏觀性能。設計各種工程結構選用材料的主要依據。各種工程材料的力學性能是按照有關標准規定的方法和程序,用相應的試驗設備和儀器測定。
㈥ 低碳鋼和鑄鐵抗拉強度有什麼不同
低碳鋼碳含量百分比在0.5%以下,具有較低硬度,有良好韌性。確定他的延展性內和塑性,是塑性材料。抗拉能容力高。
而鑄鐵的碳含量大於2%,碳已飽和獨立存在鐵中,碳顆粒懸浮在鐵中,令鐵的結構鬆散,成了脆性材料,韌性差,抗拉能力低。
㈦ 低碳鋼以及鑄鐵的極限應力
鑄鐵為脆性材料,其壓縮圖在開始時接近於直線,與縱軸之夾角很小,以後曲回率逐漸答增大,最後至破壞,因此只確定其強度極限。
σbc=Fbc/S
鑄鐵試件受壓力作用而縮短,表明有很少的塑性變形的存在。當載荷達到最大值時,試件即破壞,並在其表面上出現了傾斜的裂縫(裂縫一般大致在與橫截面成45°的平面上發生)鑄鐵受壓後的破壞是突然發生的,這是脆性材料的特徵。
從試驗結果與以前的拉伸試驗結果作一比較,可以看出,鑄鐵承受壓縮的能力遠遠大於承受拉伸的能力。抗壓強度遠遠超過抗拉強度,這是脆性材料的一般屬性。
㈧ 為什麼低碳鋼選取屈服極限,鑄鐵選取強度極限作為危險應力
低碳鋼選擇屈服強度主要是防止變形,而鑄鐵的屈服強度幾乎為零,其抗拉強度也就等於屈服強度。
㈨ 低碳鋼和鑄鐵試件扭轉時沿著什麼方位破壞各是什麼應力引起的
低碳鋼的抗剪強度低於其抗拉強度,所以扭轉破壞發生在切應力最大橫截面上,破壞從外向內一次發生,為剪應力引起的。
而鑄鐵的抗拉強度低於其抗剪強度所以扭轉破壞發生在拉應力最大的截面上,破壞面與軸線夾角成四十五度,為拉應力引起的。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。這種鋼還具有良好的焊接性。含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造,焊接和切削。
低碳鋼一般軋成角鋼、槽鋼、工字鋼、鋼管、鋼帶或鋼板,用於製作各種建築構件、容器、箱體、爐體和農機具等。優質低碳鋼軋成薄板,製作汽車駕駛室、發動機罩等深沖製品;還軋成棒材,用於製作強度要求不高的機械零件。
低碳鋼在使用前一般不經熱處理,碳含量在0.15%以上的經滲碳或氰化處理,用於要求表層溫度高、耐磨性好的軸、軸套、鏈輪等零件。
低碳鋼由於強度較低,使用受到限制。適當增加碳鋼中錳含量,並加入微量釩、鈦、鈮等合金元素,可大大提高鋼的強度。若降低鋼中碳含量並加入少量鋁、少量硼和碳化物形成元素,則可得到超低碳貝氏體組夠其強度很高,並保持較好的塑性和韌性。
㈩ 低碳鋼和鑄鐵在壓縮時的力學性能有什麼區別
低碳鋼是抄塑性材料,而鑄鐵是脆性材料。相同規格的兩種材料受壓時,它們內部應力處處相同,但是低碳鋼抗壓能力非常強,且抗拉抗壓能力相當,所以最後會被壓扁(雖然失效但是不會斷裂)。而鑄鐵的抗壓能力遠遠大於抗拉能力,最後會被內部的正應力(參考應力狀態分析相關內容)給拉斷,斷口呈斜45度角。