⑴ 低碳鋼拉伸實驗的影響因素有哪些
1:取樣部位和方法
材料中因成分、組織、機構、缺陷加工變形等分布不均,使得同一批版甚至同一產品不同部權位出現差異,因此在切取楊培時,應嚴格按照GB/T-228附錄中的規定執行。
2:試驗設備
試驗設備直接影響結果數據的准確性和真實性,因此實驗時必須要保證試驗機在檢定的有效期內。如圖,為我院30T\60T\100T和200t四種實驗力的萬能試驗機,設備定期進行校驗和送檢。
3:試驗環境的影響
試驗環境主要包括環境溫度、夾持器具選擇的影響等。
4:試驗方法的選擇
試驗方法主要包括夾持方法、拉伸速率,拉伸橫截面積以及式樣尺寸的測量方法,在選擇測量式樣的尺寸時,宜選用外徑千分尺、
⑵ 比較低碳鋼的拉伸和扭轉實驗,從進入塑性變形階段到破壞的全過程有什麼明顯的差別
低碳鋼拉伸和扭轉時斷裂方式不一樣。拉伸的斷裂方式是拉斷,試件受正應力。
表現回為斷裂截面收縮、答斷裂後試件總長大於原試件長度。扭轉的斷裂方式是剪斷,試件受切應力。
表現為試樣表面的橫向與縱向出現滑移線,最後沿橫截面被剪斷,斷裂截面面積不變,試件總長不變。
低碳鋼扭轉時發生屈服,加工硬化,最後斷裂。塑性變形量較大。鑄鐵扭轉時幾乎不發生塑性變形,直接斷裂。低碳鋼斷口和式樣軸線垂直,是剪切力切斷。鑄鐵斷口和式樣軸線呈45度,是正應力拉斷。
(2)低碳鋼拉伸受什麼力破壞擴展閱讀:
低碳鋼試樣在拉伸試驗中所表現出的變形與抗力間的關系也比較典型。低碳鋼的整個試驗過程中工作段的伸長量與荷載的關系由拉伸圖表示。做實驗時,可利用萬能材料試驗機的自動繪圖裝置繪出低碳鋼試樣的拉伸圖即下圖中拉力F與伸長量△L的關系曲線。需要說明的是途中起始階段呈曲線是由於試樣頭部在試驗機夾具內有輕微滑動及試驗機各部分存在間隙造成的。
⑶ 分析低碳鋼、鑄鐵試件破壞的原因
低碳鋼受到扭轉時低碳鋼則可能發生變形,原因是低碳鋼內含有少量的碳,專其韌性比較好,低炭鋼拉屬伸實驗達到屈服強度之後有個頸縮階段,斷面會比原料料細,扭的時候會扭出螺旋截面來,而鑄鐵內含有大量的碳,
鑄鐵試件受扭轉時沿大約45度斜截面破壞,斷口粗糙,此破壞是由斜截面上的拉應力造成的,說明鑄鐵的抗拉強度較差。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。
低碳鋼一般軋成角鋼、槽鋼、工字鋼、鋼管、鋼帶或鋼板,用於製作各種建築構件、容器、箱體、爐體和農機具等。優質低碳鋼軋成薄板,製作汽車駕駛室、發動機罩等深沖製品;
還軋成棒材,用於製作強度要求不高的機械零件,低碳鋼在使用前一般不經熱處理,碳含量在0.15%以上的經滲碳或氰化處理,用於要求表層溫度高、耐磨性好的軸、軸套、鏈輪等零件。
低碳鋼由於強度較低,使用受到限制。適當增加碳鋼中錳含量,並加入微量釩、鈦、鈮等合金元素,可大大提高鋼的強度。若降低鋼中碳含量並加入少量鋁、少量硼和碳化物形成元素,則可得到超低碳貝氏體組夠其強度很高,並保持較好的塑性和韌性。
⑷ 比較低碳鋼拉伸,鑄鐵拉伸的斷口形狀,簡單分析其破壞的力學原因
低碳鋼(最典型的即是目前鋼結構工程中常用的Q235鋼)拉伸時出現明顯屈服和頸專縮現象,斷口周屬圍產生約45°滑移線;鑄鐵拉伸時不屈服也無頸縮現象,斷口整齊。
原因:低碳鋼拉伸破壞由最大切應力造成;鑄鐵拉伸破壞由最大拉應力造成。
解釋:低碳鋼抗剪強度低於抗拉強度,根據第三強度理論,單向應力狀態下與第一主應力成45°的斜截面上產生最大切應力,且數值上τ=σ₁/2,故低碳鋼拉伸時沿45°斜面剪切破壞;鑄鐵抗拉強度則很小,根據第一強度理論,直接沿橫截面被拉斷。
⑸ 以強度,塑性,斷面形狀與破壞原因幾方面分析低碳鋼和鑄鐵在拉伸試驗的力學性能
低碳鋼抗拉強度大來,塑自性材料,斷面有頸縮現象,原因是拉力太大,超過抗拉強度被破壞。
鑄鐵抗拉強度弱,典型的脆性材料,斷面與鑄鐵軸線大致成45度角(45~55°范圍內),原因是鑄鐵的抗剪切能力小於抗拉伸強度,最終被剪斷,沿45度方向正好是剪力最大的方向,超過抗剪切強度被切斷。
⑹ 低碳鋼拉伸和扭轉的斷口形狀是否一樣分析其破壞原因.
拉伸顫讓為平斷口,扭轉為45度的螺旋斷口.
拉伸時的破壞原因是拉應力
扭轉時,由於低碳鋼抗拉能力大於抗剪能力,所以剪應力先於拉應力達到最大值;故扮梁破壞原因是最大剪應力廳洞運.
⑺ 低碳鋼,鑄鐵 在拉伸,壓縮,扭轉時破壞分別是由什麼力引起的
分別為拉伸力、壓縮力和扭轉力。