導航:首頁 > 方管焊管 > 焊縫中的氫氧氮是什麼元素

焊縫中的氫氧氮是什麼元素

發布時間:2023-08-21 22:15:05

Ⅰ MIG / MAG 焊接時,使用氣體的目的是什麼

MIG為半自動熔化極惰性氣體保護焊的英文簡稱;
MAG為半自動熔化極活性氣體保護焊的英文簡稱;
一般來說,焊接時有三種氣體或元素對焊縫質量影響較大:氮、氫、氧,如果這三種氣體混入焊接熔池與高溫金屬接觸後,容易形成如氮氣孔、氫氣孔及氧氣孔,另外氧還存在燒損金屬元素產生氧化物質的問題,而氫滲入金屬後,會造成焊縫含氫量增加導致的韌性下降,焊縫變的脆而易斷裂,所以在正常焊接時是應該防止這些雜質氣體進入焊接區域與熔化了的金屬中的,所以如果需要焊接出高質量的焊縫時,首先要利用保護氣體隔離空氣,保護熔池;
另外,在使用純氬進行焊接時,由於電弧容易旋轉同時金屬浸潤性不好,所以在焊接一些對氧元素不敏感的黑色金屬時,往往採用含有氧氣或二氧化碳的混合氣體來作為保護氣,改善電弧特性,增加液體金屬的浸潤性,同時為了減少含氧氣體對焊縫金屬的影響,MAG焊材中常常增加硅、錳等元素的含量,使這些親氧的元素與氧元素進行化合,基本可以消除氧元素的影響;
所以為了達到以上的兩個大的目的,保護熔池不被有害氣體侵入,同時改善焊接電弧的性能,常常採取的保護氣體有:氬氣、二氧化碳氣、氦氣、氧氣,或者以上幾種氣體的混合氣體;當然,由於較強的氧化性,所以氧氣一般不單獨作為保護氣體。

Ⅱ 熔焊的氣體

1、焊接過程中,焊接區內充滿大量氣體。
用酸性焊條焊接時,主要氣體成分是CO、H2、H2O;用鹼性焊條焊接時,主要氣體成分是CO、CO2;埋弧焊時,主要氣體成分是CO、H2。
焊接區內的氣體主要來源於以下幾方面:一是為了保護焊接區域不受空氣的侵入,人為地在焊接區域添加一層保護氣體,如葯皮中的造氣劑(澱粉、木粉、大理石等)受熱分解產生的氣體、氣體保護焊所採用的保護氣體(CO2氣體、Ar氣)等;其次是用潮濕的焊條或焊劑焊接時,析出的氣體、保護不嚴而侵入的空氣、焊絲和母材表面上的雜質(油污、鐵銹、油漆等)受熱產生的氣體,以及金屬和熔渣高溫蒸發所產生的氣體等。
2、氮、氫、氧對焊縫金屬的作用和影響
⑴氮 氮主要來自焊接區域周圍的空氣。手弧焊時,堆焊金屬中約含有0.025%的氮。氮是提高焊縫金屬強度、降低塑性和韌性的元素,也是在焊縫中產生氣孔的主要原因之一。
⑵氫 氫主要來源於焊條葯皮、焊劑中的水分、葯皮中的有機物,焊件和焊絲表面上的污物(鐵銹、油污)和空氣中的水分等。各種焊接方法均使焊縫增氫,只是增氫的程度不同:手弧焊時用纖維素葯皮焊條焊得的焊縫含氫量比母材高出70倍;只有採用低氫型焊條施焊時,焊縫的含氫量才比較低;而用CO2氣體保護焊時,含氫量最低。
氫使焊縫金屬的塑性性嚴重下降,促使在焊接接頭中產生氣孔和延時裂紋,並且還會在拉伸試樣的斷面上形成白點。
⑶氧 氧主要來源於空氣、葯皮和焊劑中的氧化物、水分及焊接材料表面的氧化物。隨著焊縫中含氧量的增加,其強度、硬度和塑性會明顯下降,還能引起金屬的熱脆、冷脆和時效硬化,並且也是焊縫中形成氣孔(CO氣孔)的主要原因之一。
總之,進入焊縫金屬中的氮、氫、氧都是屬於有害的元素。
3、對焊接區域要進行保護方法對焊接區域進行保護的目的是防止空氣侵入熔滴和熔池,減少焊縫金屬中的氮、氧含量。保護的方式有下列三種:
⑴氣體保護 例如,氣體保護焊時採用保護氣體(CO2、H2、Ar)將焊接區域與空氣隔離起來。
⑵渣保護 在熔池金屬表面覆蓋一層熔渣使其與空氣分開隔離,如電渣焊、埋弧焊。
⑶氣—渣聯合保護 利用保護氣體和熔渣同時對熔化金屬進行保護,如手弧焊。
4、 減少焊縫金屬中的含氧量
對焊接區域進行保護、防止空氣與熔化金屬進行接觸是控制焊縫金屬中含氧量的重要措施,但是不能根本解決問題,因為氧還可以通過許多其它渠道進入焊縫中,要徹底堵塞這些渠道事實上是不可能的,因此只能採取措施,對已進入熔化金屬中的氧進行脫氧處理。
5、焊縫金屬常用的脫氧方法
利用熔渣或焊芯(絲)金屬與熔化金屬相互作用進行脫氧,是焊縫金屬常用的脫氧辦法。
⑴擴散脫氧 當溫度下降時,原先熔解於熔池中的FeO會不斷地向熔渣進行擴散,從而使焊縫中的含氧量下降,這種脫氧方法稱為擴散脫氧。
如果熔渣中有強酸性氧化物SiO2、TiO2等,它們會與FeO生成復合物,其反應式為
(SiO2+FeO)= FeO·SiO2
(TiO2+FeO)= FeO·TiO2
反應的結果使熔渣中的自由FeO減少,這就使熔池金屬中的[FeO]不斷地向渣中擴散,焊縫金屬中的含量因此得以減少。
酸性熔渣(如焊條J422、焊劑HJK431熔化所成的熔渣)中含有較多量的SiO2、TiO,所以其脫氧方法主要是擴散脫氧。但是在焊接條件下,由於熔池冷卻速度快,熔渣和液體金屬相互作用的時間短,擴散脫氧進行得很不充分,因此用酸性焊條(劑)焊成的焊縫,其含氧量還比較高,焊縫金屬的塑性和韌性也比較低。
6、用脫氧劑脫氧 在焊芯、葯皮或焊絲中加入某種元素,使它本身在焊接過程中被氧化,從而保證被焊金屬及其合金元素不被氧化或已被氧化的金屬還原出來,這種用來脫氧的元素稱為脫氧劑。常用的脫氧劑有碳、錳、硅、鈦和鋁。
鹼性焊條的脫氧劑以鐵合金的形式加入到葯皮中去,如錳鐵、硅鐵等。埋弧焊常採用合金焊絲,如H08MnA、H10MnSi等。
用脫氧劑脫氧的效果比擴散脫氧好得多,所以用鹼性焊條施焊的焊縫,其含氧量比用酸性焊條施焊時要低,塑性、韌性相應得到提高,因此鹼性焊條常用來焊合金鋼及重要的焊接結構。
7、 減少焊縫金屬中的含氫量方法
減少焊縫金屬中含氫量的常用措施有:
1) 烘乾焊條的焊劑;
2) 清除焊件和焊絲表面上的雜質並盡量使焊絲及焊件表面保持乾燥;
3) 在葯皮和焊劑中加入適量的氟石(CaF2)、硅砂(SiO2),兩者都具有較好的去氫效果;
4) 焊後立即對焊件加熱,進行後熱處理;
5) 採用低氫型焊條、超低氫型焊條和鹼性焊劑。
熔焊
8、焊縫金屬中硫的危害性
硫是焊縫中常存的有害元素之一。硫能促使焊縫金屬產生熱裂紋、降低沖擊韌度和需腐蝕性,並能促使產生偏析。厚板焊接時,硫還會引起層狀撕裂。
硫在液態金屬中以FeS的形式存在,熔渣中的Mn、MnO、CaO具有一定的脫硫作用;其反應式如下
[Mn]+[FeS] =[MnS]+[Fe]
[MnO]+[FeS]=[MnS]+[FeO]
[CaO]+[FeS] =[CaS]+[FeO]
生成的MnS、CaS都進入熔渣中,由於MnO、CaO均屬鹼性氧化物,在鹼性熔渣中含量較多,所以鹼性熔渣的脫硫能力比酸性熔渣強。
9 、焊縫金屬中磷的危害性。
磷也是焊縫中常存的有害元素之一。磷會增加鋼的冷脆性,大幅度地降低焊縫金屬的沖擊韌度,並使脆性轉變溫度升高。焊接奧氏體類鋼或焊縫中含碳量較高時,磷也會促使焊縫金屬產生熱裂紋。
磷在液態金屬中以Fe2P、P2O5形式存在。脫磷反應可分為兩步進行:第一步是將磷氧化成P2O5;第二步使之與渣中的鹼性氧化物CaO生成穩定的復合物進入熔渣。其反應式為
2[Fe2P]+5(FeO=P2O5+11[Fe]
P2O5+3(CaO)=(CaO)3·P2O5
P2O5+4(CaO)=(CaO)4·P2O5
由於鹼性熔渣中含有較多的CaO,所以脫磷效果比酸性熔渣要好。
但是實際上,不論是鹼性熔渣還是酸性熔渣,其最終的脫硫、脫磷效果仍不理想。所以控制焊縫中的硫、磷含量,只能採取限制原材料(母材、焊條、焊絲)中硫、磷含量的方法。
10 、焊縫金屬的合金化
合金化就是把所需要的合金元素,通過焊接材料過渡到焊縫金屬(或堆焊金屬)中去。
合金化的目的:1)補償焊接過程中由於氧化、蒸發等原因造成的合金元素的損失;2)改善焊縫金屬的組織和性能;3)獲得具有特殊性能的堆焊金屬。
常用的合金化方式有:應用合金焊絲;應用葯芯焊絲或葯芯焊條;應用合金葯皮或粘結焊劑;應用合金粉末;應用熔渣與金屬之間的置換反應。
11 、合金元素的過渡系數
合金元素在焊接過程中總有一部分因氧化、蒸發等原因損耗掉,不可能全部過渡到焊縫中去。合金元素的過渡系數是指焊接材料中的合金元素過渡到堆焊金屬中的數量與其原始含量的百分比,即
式中η——某合金元素的過渡系數(%);
CF——堆焊金屬中某合金元素的含量;
CT——焊條(焊絲、焊劑)中某合金元素的原始總含量。

Ⅲ 氫氣為什麼會在焊縫里聚集

氫氣 (H₂) 最早與16世紀初被人工合成,當時使用的方法是將金屬置於強酸中。1766–81年,亨利·卡文迪許發現氫氣是一種與以往所發現氣體不同的另一種氣體[2] ,在燃燒時產生水,這一性質也決定了拉丁語 「hydrogenium」 這個名字(「生成水的物質」之意)。常溫常壓下,氫氣是一種極易燃燒,無色透明、無臭無味的氣體。

1766年由卡文迪許(H.Cavendish)在英國發現。
在化學史上,人們把氫元素的發現與「發現和證明了水是氫和氧的化合物而非元素」這兩項重大成就,主要歸功於英國化學家和物理學家卡文迪許(Cavendish,H.1731-1810)。
在化學史上,有一個與這些論文稿有關的有趣的故事。卡文迪許1785年做過一個實驗,他將電火花通過尋常空氣和氧氣的混合體,想把其中的氮全部氧化掉,產生的二氧化氮用苛性鉀吸收。實驗做了三個星期,最後殘留下一小氣泡不能被氧化。他的實驗記錄保存在留下的文稿中,後面寫道:「空氣中的濁氣不是單一的物質(氮氣),還有一種不與脫燃素空氣(氧)化合的濁氣,總量不超過全部空氣的1/12.一百多年後,1892年,英國劍橋大學的物理學家瑞利(Ragleigh,L.1842-1919)測定氮的密度時,發現從空氣得來的氮比從氨氧化分解產生的氮每升重0.0064克,百思不得其解。化學家萊姆塞(Ramsay,W.1852-1916)認為來自空氣的氮氣裡面能含有一種較重的未知氣體。這時,化學教授杜瓦(Duvel,J.1842-1923)向他們提到劍橋大學的老前輩卡文迪許的上述實驗和小氣泡之謎。他們立即把卡文迪許的科學資料借來閱讀,瑞利重復了卡文迪許當年的實驗,很快得到了小氣泡。萊姆塞設計了一個新的實驗,除去空氣中的水蒸氣、二氧化碳、氧氣和氮氣後,也得到了這種氣體,密度比氮氣大,用分光鏡檢查後,肯定這是一種新的元素,取名氬。這樣,卡文迪許當年的工作在1894年元素氬的發現中起了重要作用。從這個故事可看出卡文迪許嚴謹的科研作風和他對化學的重大貢獻。1871年,劍橋大學建立了一座物理實驗室,以卡文迪許的名字命名,這就是著名的卡文迪許實驗室,它在幾十年內,一直是世界現代物理學的一個重要研究中心。
在18世紀末以前,曾經有不少人做過製取氫氣的實驗,所以實際上很難說是誰發現了氫,即使公認對氫的發現和研究有過很大貢獻的卡文迪許本人也認為氫的發現不只是他的功勞。早在16世紀,瑞士著名醫生帕拉塞斯就描述過鐵屑與酸接觸時有一種氣體產生;17世紀時,比利時著名的醫療化學派學者海爾蒙特(van Helmont,J.B.1579-1644)曾偶然接觸過這種氣體,但沒有把它離析、收集起來;波義耳雖偶然收集過這種氣體,但並未進行研究。他們只知道它可燃,此外就很少了解;1700年,法國葯劑師勒梅里(Lemery,N.1645-1715)在巴黎科學院的《報告》上也提到過它。
但是,最早把氫氣收集起來,並對它的性質仔細加以研究的是卡文迪許。
1766年卡文迪許向英國皇家學會提交了一篇研究報告《人造空氣實驗》,講了他用鐵、鋅等與稀硫酸、稀鹽酸作用製得「易燃空氣」(即氫氣),並用普利斯特里發明的排水集氣法把它收集起來,進行研究。他發現一定量的某種金屬分別與足量的各種酸作用,所產生的這種氣體的量是固定的,與酸的種類、濃度都無關。他還發現氫氣與空氣混合後點燃會發生爆炸;又發現氫氣與氧氣化合生成水,從而認識到這種氣體和其它已知的各種氣體都不同。但是,由於他是燃素說的虔誠信徒,按照他的理解:這種氣體燃燒起來這么猛烈,一定富含燃素;硫磺燃燒後成為硫酸,那麼硫酸中是沒有燃素的;而按照燃素說金屬也是含燃素的。所以他認為這種氣體是從金屬中分解出來的,而不是來自酸中。他設想金屬在酸中溶解時,「它們所含的燃素便釋放出來,形成了這種可燃空氣」。他甚至曾一度設想氫氣就是燃素,這種推測很快就得以當時的一些傑出化學家舍勒、基爾萬(Kirwan,R.1735-1812)等的贊同。由於把氫氣充到氣球中,氣球便會徐徐上升,這種現象當時曾被一些燃素學說的信奉者們用來作為他們「論證」燃素具有負重量的根據。但卡文迪許究竟是一位非凡的科學家,後來他弄清楚了氣球在空氣中所受浮力問題,通過精確研究,證明氫氣是有重量的,只是比空氣輕很多。他是這樣做實驗的:先把金屬和裝有酸的燒瓶稱重,然後將金屬投入酸中,用排水集氣法收集氫氣並測體積,再稱量反應後燒瓶及內裝物的總量。這樣他確定了氫氣的比重只是空氣的9%.但這些化學家仍不肯輕易放棄舊說,鑒於氫氣燃燒後會產生水,於是他們改說氫氣是燃素和水的化合物。
水的合成否定了水是元素的錯誤觀念,在古希臘:恩培多克勒提出,宇宙間只存在火、氣、水、土四種元素,它們組成萬物。從那時起直到18世紀70年代,人們一直認為水是一種元素。1781年,普利斯特里將氫氣和空氣放在閉口玻璃瓶中,用電火花引爆,發現瓶的內壁有露珠出現。同年卡文迪許也用不同比例的氫氣與空氣的混合物反復進行這項實驗,確認這種露滴是純凈的水,表明氫是水的一種成分。這時氧氣也已發現,卡文迪許又用純氧代替空氣進行試驗,不僅證明氫和氧化合成水,而且確認大約2份體積的氫與1份體積的氧恰好化合成水(發表於1784年)。這些實驗結果本已毫無異議地證明了水是氫和氧的化合物,而不是一種元素,但卡文迪許卻和普利斯特里一樣,仍堅持認為水是一種元素,氧是失去燃素的水,氫則是含有過多燃素的水。他用下式表示「易燃空氣」(氫)的燃燒:
(水+燃素)+ (水-燃素)→水
易燃空氣(氫) 失燃素空氣(氧)
1782年,拉瓦錫重復了他們的實驗,並用紅熱的槍筒分解了水蒸氣,明確提出正確的結論:水不是元素而是氫和氧的化合物,糾正了兩千多年來把水當做元素的錯誤概念。1787年,他把過去稱作「易燃空氣」的這種氣體命名為「Hydrogen」(氫),意思是「產生水的」,並確認它是一種元素。
物理性質折疊
M51內的氫氣
氫氣是無色並且密度比空氣小的氣體(在各種氣體中,氫氣的密度最小。標准狀況下,1升氫氣的質量是0.0899克,相同體積比空氣輕得多)。因為氫氣難溶於水,所以可以用排水集氣法收集氫氣。另外,在101千帕壓強下,溫度-252.87 ℃時,氫氣可轉變成無色的液體;-259.1 ℃時,變成雪狀固體。常溫下,氫氣的性質很穩定,不容易跟其它物質發生化學反應。但當條件改變時(如點燃、加熱、使用催化劑等),情況就不同了。如氫氣被鈀或鉑等金屬吸附後具有較強的活性(特別是被鈀吸附)。金屬鈀對氫氣的吸附作用最強。當空氣中的體積分數為4%-75%時,遇到火源,可引起爆炸。
氫氣是無色無味的氣體,標准狀況下密度是0.09克/升(最輕的氣體),難溶於水。在-252 ℃,變成無色液體,-259 ℃時變為雪花狀固體。

Ⅳ 氫,氧,氮在焊接冶金反應過程中有哪些危害

氫,氧復,氮在焊接冶制金反應過程中有哪些危害
焊接冶金過程與金屬冶金過程一樣,通過加熱使金屬溶化,在金屬熔化過程中,金屬-熔渣-氣體之間發生復雜的化學反應和物理變化。與金屬冶煉不同的是,金屬冶煉時,爐料幾乎同時熔煉,升溫速度慢,冶煉時間長,冷凝時也是整體冷卻並結晶;而焊接卻是在焊件上局部加熱,而且不斷移動熱源,熱源中心與周圍冷金屬之間溫差很大,冷卻速度很快。因此焊接冶金是一個不平衡的過程,它對焊縫的組織和性能都有很大的影響。 氫的來源:主要來源於焊條葯皮,焊劑中水分,葯皮中的有機物,焊件和焊絲表面上的污物(鐵銹,油污)空氣中的水分。 氧的來源:主要來源於電弧中的氧化性氣體,葯皮中的氧化物以及焊接材料表面的氧化物。 氮的來源:焊接區域周圍的空氣是氮的主要來源。 控制方法:1·採用鹼性焊條,鹼性焊條具有較強的脫硫,脫磷能力。2·嚴格按要求烘乾焊條,焊劑,清除焊縫兩側各20mm的鐵銹的污物,減少氧和氫的產生。 對焊縫的危害主要會產生氣孔,裂紋等危害

Ⅳ 氫氣 氧氣和氮氣.在迴流焊中的用途

各種氣體在迴流焊中的主要作用,是形成防氧化的保護氣氛,不使工件氧化、改善焊接品質。
氮氣是惰性氣體,保護性能好,最高可使氧氣含量低於200PPM,但費氣(流量大)。
氫氣或甲酸氣自身在高溫下不僅能通過化學反應消耗氧氣形成無氧焊接氣氛,且能通過還原反應使被氧化的金屬表面恢復,兼有清潔作用。可使氧氣含量低於50PPM。
通常空氣和氮氣環境的迴流焊,焊接後工件需要清洗以去除助焊劑、殘渣和氧化物,而氫氣迴流焊則不必;
焊接面氣泡/空洞率,空氣迴流焊達到15%~25%,氮氣迴流焊為5%~15%,氫氣可以到5%以下。可見氫氣迴流焊最好。
但使用氫氣,設備和操作的安全性必須做好!且技術成熟。
所以,空氣爐價格最便宜最普及,氮氣爐貴些。而氫氣爐很貴,做的廠家極少。

閱讀全文

與焊縫中的氫氧氮是什麼元素相關的資料

熱點內容
焊縫縱縫與環縫用什麼表示 瀏覽:966
寶業鋼鐵有限公司怎麼樣 瀏覽:686
鋼材25c什麼意思 瀏覽:940
取鋼板的與老闆協議怎麼寫 瀏覽:698
角焊縫k表示什麼 瀏覽:915
撫鋼廢舊鋼材多少錢一噸 瀏覽:882
商品房鋁合金門窗怎麼固定 瀏覽:572
碳鋼與201不銹鋼哪個環保 瀏覽:752
鋼筋算量如何修改單跨梁尺寸 瀏覽:807
鋼鐵是怎麼煉成的第四章的感悟 瀏覽:356
q345b的鋼板怎麼算重量 瀏覽:665
鋼鐵廠副廠長工資多少 瀏覽:568
人字梁用那種方管 瀏覽:738
大唐圍牆模具廠是什麼地方 瀏覽:29
碳鋼管和不銹鋼哪個結實 瀏覽:339
不銹鋼鍋用什麼刷好 瀏覽:744
一寸的無縫管直徑多少毫米 瀏覽:69
如何區分合金門 瀏覽:50
鋼筋符號怎麼念出來 瀏覽:456
不銹鋼拒馬護欄多少錢 瀏覽:322