Ⅰ 低碳鋼受拉過程中出現屈服階段和強化階段的原因 低碳鋼受拉過程中出現屈服階段和 低碳鋼受拉
出現屈服的原因:位錯脫釘,引起強度不增加但變形量增加,甚至強度降低變形量仍增加;強化階段主要是隨變形增加位錯增殖,位錯相互纏繞引起位錯運動難度增加,要變形須增加外力.
Ⅱ 低碳鋼 屈服機理
屈服是來金屬材料固有的屬自性。低碳鋼韌性和塑性好,屈服現象猶為突出。屈服是斷裂的前兆因為還有疲勞現象的存在,多以工程應用中考慮的零件所受最大應力要比屈服下極限低很多。
低碳鋼(low carbon steel)為碳含量低於0.25%的碳素鋼,因其強度低、硬度低而軟,故又稱軟鋼。它包括大部分普通碳素結構鋼和一部分優質碳素結構鋼,大多不經熱處理用於工程結構件,有的經滲碳和其他熱處理用於要求耐磨的機械零件。
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。這種鋼還具有良好的焊接性。含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造,焊接和切削, 常用於製造鏈條, 鉚釘, 螺栓, 軸等。
Ⅲ 試簡述低碳鋼試件從開始拉伸到斷裂經歷哪幾個階段各階段的變形現象及特點是什麼
低碳鋼是工程上最廣泛使用的材料,同時,低碳鋼試樣在拉伸試驗中所表現出的變形與抗力間的關系也比較典型。低碳鋼的整個試驗過程中工作段的伸長量與荷載的關系由拉伸圖表示。
大致可分為四個階段:
1、彈性階段oa:這一階段試樣的變形完全是彈性的,全部寫出荷載後,試樣將恢復其原長。此階段內可以測定材料的彈性模量E。
2、屈服階段bc:試樣的伸長量急劇地增加,而萬能試驗機上的荷載讀數卻在很小范圍內波動。如果略去這種荷載讀數的微小波動不計,這一階段在拉伸圖上可用水平線段來表示。若試樣經過拋光,則在試樣表面將看到大約與軸線成45°方向的條紋,稱為滑移線。
3、強化階段ce 試樣經過屈服階段後,若要使其繼續伸長,由於材料在塑性變形過程中不斷強化,故試樣中抗力不斷增長。
4、頸縮階段和斷裂ef:試樣伸長到一定程度後,荷載讀數反而逐漸降低。此時可以看到試樣某一段內橫截面面積顯著地收縮,出現「頸縮」的現象,一直到試樣被拉斷。
(3)為什麼低碳鋼容易屈服現象和應變時效擴展閱讀:
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。這種鋼還具有良好的焊接性。含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造,焊接和切削, 常用於製造鏈條, 鉚釘, 螺栓, 軸等。
低碳鋼有較大的時效傾向,既有淬火時效傾向,還有形變時效傾向。當鋼從高溫較快冷卻時,鐵素體中碳、氮處於過飽和狀態,它在常溫也能緩慢地形成鐵的碳氮物,因而鋼的強度和硬度提高,而塑性和韌性降低,這種現象稱為淬火時效。
低碳鋼即使不淬火而空冷也會產生時效。低碳鋼經形變產生大量位錯,鐵素體中的碳、氮原子與位錯發生彈性交互作用,碳、氮原子聚集在位錯線周圍。這種碳、氮原子與位錯線的結合體稱歲柯氏氣團(柯垂耳氣團)。
低碳鋼為韌性材料。其拉伸時的應力-應變曲線主要分四個階段:彈性階段、屈服階段、強化階段、局部變形階段,在局部變形階段有明顯的屈服和頸縮現象。開始時為彈性階段,完全遵守胡克定律沿直線上升,比例極限以後變形加快,但無明顯屈服階段。
Ⅳ 低碳鋼拉伸時的屈服階段是怎麼回事
1.許用來應力是根據塑性材料的強度理論源得出的。強度理論是判斷材料在復雜應力狀態下是否破壞的理論。材料在外力作用下有兩種不同的破壞形式:一是在不發生顯著塑性變形時的突然斷裂,稱為脆性破壞;二是因發生顯著塑性變形而不能繼續承載的破壞,稱為塑性破壞,即為屈服破壞,對於低碳鋼為塑性材料破壞形式為屈服,所以要用屈服極限為標准並給於一定的安全系數來確定許用應力。屈服極限雖與彈性極限相近但並非相同。
2.試驗中,應力的讀取是通過試驗機的載荷讀數間接獲得的,即載荷F比上截面積A0,在屈服階段,試件長度增加,截面積無顯著變化(變形忽略仍認為為原始面積A0),而載荷F在小范圍內上下抖動(F並非定值是微小波動)。
Ⅳ 低碳鋼和鑄鐵在壓縮時的破壞原因
低碳鋼是塑性材料,壓縮時的彈性模量,比例極限,屈服極限和拉伸時大致相同,屈服極限後試件越壓越扁,抗壓能力不斷提高,直至被壓成餅狀。
低碳鋼壓縮曲線也有明顯的屈服點,但由於試樣很短屈服階段與拉伸相比短的多,進入強化階段後塑性變形越來越大,因三向應力狀態限制了端面附近的變形,因此試樣的變形呈鼓形。
鑄鐵是脆性材料,被壓縮時,試樣受壓時將沿與軸線成50度~55度傾角的斜截面發生錯動而破壞。這個破壞是由剪力引起的。
鑄鐵受壓時不存在拉應力的影響,隨著載荷的增長,45°截面的最大剪應力能夠不斷增長,因而產生明顯的塑性變形,使壓縮曲線與拉伸曲線相比明顯變彎。
(5)為什麼低碳鋼容易屈服現象和應變時效擴展閱讀:
低碳鋼退火組織為鐵素體和少量珠光體,其強度和硬度較低,塑性和韌性較好。因此,其冷成形性良好,可採用卷邊、折彎、沖壓等方法進行冷成形。這種鋼還具有良好的焊接性。
低碳鋼有較大的時效傾向,既有淬火時效傾向,還有形變時效傾向。當鋼從高溫較快冷卻時,鐵素體中碳、氮處於過飽和狀態,它在常溫也能緩慢地形成鐵的碳氮物,因而鋼的強度和硬度提高,而塑性和韌性降低。
低碳鋼由於強度較低,使用受到限制。適當增加碳鋼中錳含量,並加入微量釩、鈦、鈮等合金元素,可大大提高鋼的強度。若降低鋼中碳含量並加入少量鋁、少量硼和碳化物形成元素,則可得到超低碳貝氏體組夠其強度很高,並保持較好的塑性和韌性。
Ⅵ 低碳鋼應變時效
應變力作用下,材料的組織性能隨時間發生變化。當退火狀態的低碳鋼試樣拉伸到超過屈服點發生少量塑性變形後卸載,然後立即重新載入拉伸,則可見其拉伸曲線不再出現屈服點,此時試樣不會發生屈服現象。如果將預變形試樣在常溫下放置幾天或經200℃左右短時加熱後再行拉伸,則屈服現象又復出現,且屈服應力進一步提高。此現象通常稱為應變時效。
Ⅶ 比較低碳鋼和鑄鐵在受扭轉和拉伸時其變形情況有何異同之處
低碳鋼和鑄鐵在拉伸時皆受拉力,而由於低碳鋼韌性好,所以出現屈服版現象,使其變權形,在扭轉時,低碳鋼受橫截面切應力,抗剪能力差,鑄鐵受扭轉時大約45度截面破壞,由拉力造成,抗拉強度差。
扭轉重在對試樣進行扭轉測試,而拉伸是對試樣進行拉伸測試,扭轉和拉伸是彎曲不同方向測試,測試的數據也是不一樣的。
低碳鋼又稱軟鋼,含碳量從0.10%至0.30%低碳鋼易於接受各種加工如鍛造,,焊接和切削, 常用於製造鏈條, 鉚釘, 螺栓, 軸等。含碳量在2%以上的鐵碳合金。工業用鑄鐵一般含碳量為2%~4%。碳在鑄鐵中多以石墨形態存在,有時也以滲碳體形態存在。
(7)為什麼低碳鋼容易屈服現象和應變時效擴展閱讀:
低碳鋼試樣在拉伸試驗中所表現出的變形與抗力間的關系也比較典型。低碳鋼的整個試驗過程中工作段的伸長量與荷載的關系由拉伸圖表示。做實驗時,可利用萬能材料試驗機的自動繪圖裝置繪出低碳鋼試樣的拉伸圖即下圖中拉力F與伸長量△L的關系曲線。需要說明的是途中起始階段呈曲線是由於試樣頭部在試驗機夾具內有輕微滑動及試驗機各部分存在間隙造成的。