① 金屬斷裂的影響因素是什麼
金屬在外載入荷的作用下,當應力達到材料的斷裂強度時,發生斷裂。斷裂是裂紋發生和發展的過程。
1. 斷裂的類型
根據斷裂前金屬材料產生塑性變形量的大小,可分為韌性斷裂和脆性斷裂。韌性斷裂:斷裂前產生較大的塑性變形,斷口呈暗灰色的纖維狀。脆性斷裂:斷裂前沒有明顯的塑性變形,斷口平齊,呈光亮的結晶狀。韌性斷裂與脆性斷裂過程的顯著區別是裂紋擴散的情況不同。
韌性斷裂和脆性斷裂只是相對的概念,在實際載荷下,不同的材料都有可能發生脆性斷裂;同一種材料又由於溫度、應力、環境等條件的不同,會出現不同的斷裂。
2. 斷裂的方式
根據斷裂面的取向可分為正斷和切斷。正斷:斷口的宏觀斷裂面與最大正應力方向垂直,一般為脆斷,也可能韌斷。切斷:斷口的宏觀斷裂面與最大正應力方向呈45°,為韌斷。
3. 斷裂的形式
裂紋擴散的途徑可分為穿晶斷裂和晶間斷裂。穿晶斷裂:裂紋穿過晶粒內部,韌斷也可為脆斷。晶間斷裂:裂紋穿越晶粒本身,脆斷。
4. 斷口分析
斷口分析是金屬材料斷裂失效分析的重要方法。記錄了斷裂產生原因,擴散的途徑,擴散過程及影響裂紋擴散的各內外因素。所以通過斷口分析可以找出斷裂的原因及其影響因素,為改進構件設計、提高材料性能、改善製作工藝提供依據。斷口分析可分為宏觀斷口分析和微觀斷口分析。
(1)宏觀斷口分析
斷口三要素:纖維區,放射區,剪切唇。纖維區:呈暗灰色,無金屬光澤,表面粗糙,呈纖維狀,位於斷口中心,是裂紋源。放射區:宏觀特徵是表面呈結晶狀,有金屬光澤,並具有放射狀紋路,紋路的放射方向與裂紋擴散方向平行,而且這些紋路逆指向裂源。剪切唇:宏觀特徵是表面光滑,斷面與外力呈45°,位於試樣斷口的邊緣部位。
(2)微觀斷口分析(需要深入研究)
5. 脆性破壞事故分析
脆性斷裂有以下特徵:
(1)脆斷都是屬於低應力破壞,其破壞應力往往遠低於材料的屈服極限。(2)一般都發生在較低的溫度,通常發生脆斷時的材料的溫度均在室溫以下20℃。(3)脆斷發生前,無預兆,開裂速度快,為音速的1/3。(4)發生脆斷的裂紋源是構件中的應力集中處。
防止脆斷的措施:
(1)選用低溫沖擊韌性好的鋼材。(2)盡量避免構件中應力集中。(3)注意使用溫度。
6. 韌-脆性轉變溫度
為了確定材料的脆性轉變溫度,進行了大量的試驗研究工作。如果把一組有缺口的金屬材料試樣,在整個溫度區間中的各個溫度下進行沖擊試驗。
低碳鋼典型的韌-脆性轉變溫度。隨著溫度的降低,材料的沖擊值下降,同時在斷裂面上的結晶狀斷面部分增加,亦即材料的韌性降低,脆性增加。
有幾種方法:(1)沖擊值降低至正常沖擊值的50~60%。(2)沖擊值降至某一特定的、所允許的最低沖擊值時的溫度。
(3)以產生最大與最小沖擊值平均時的相應溫度。(4)斷口中結晶狀斷面占面積50%時的溫度。
對於厚度在40mm以下的船用軟鋼板,夏比V型缺口沖擊能量為25.51J/cm2時的溫度作為該材料的脆性轉變溫度。
7. 無塑性溫度
韌-脆性轉變溫度是針對低碳鋼和低碳錳鋼,其它鋼材,無法進行大量試驗。依靠其它試驗方法,定出該材料的「無塑性溫度」NDT
(1)爆炸鼓脹試驗 正方的試樣板上堆上一小段脆性焊道,在焊道上鋸一缺口。在試樣上方爆炸,根據試樣破壞情況判斷是否塑性破壞。平裂,凹裂,鼓脹撕
(2)落錘試驗
8. 金屬材料產生脆性斷裂的條件
(1)溫度 任何一種斷裂都具有兩個強度指標,屈服強度和表徵裂紋失穩擴散的臨界斷裂強度。溫度高,原子運動熱能大,位錯源釋放出位錯,移動吸收能量;溫度低反之。
(2)缺陷 材料韌性 裂紋尖端應力大,韌性好發生屈服,產生塑性變形,限制裂紋進一步擴散。裂紋長度 裂紋越長,越容易發生脆性斷裂。缺陷尖銳程度 越尖銳,越容易發生脆性斷裂。
(3)厚度 鋼板越厚,沖擊韌性越低,韌-脆性轉變溫度越高。原因:(1)越厚,在厚度方向的收縮變形所受到的約束作用越大,使約束應力增加,在鋼板厚度范圍內形成平面應變狀態。(2)冶金效應,厚板中晶粒較粗大,內部產生的偏析較多。
(4)載入速度 低強度鋼,速度越快,韌-脆性轉變溫度降低。
② 材料力學拉伸試驗中低碳鋼與鑄鐵的斷口特徵
在拉伸與壓縮實驗中,低碳剛及鑄鐵的斷口特徵:
低碳鋼斷口有內明顯的塑性破壞產生的光亮容傾斜面,傾斜面傾角與試樣軸線近似成(稱杯狀斷口),這部分材料的斷裂是由於切應力造成的,中心部分為粗糙平面,塑性越大對應杯狀斷口越大,中心粗糙平面的面積越小。而鑄鐵沒有任何的傾斜側面,斷口平齊,並垂直於拉應力,屬典型的脆性斷口。
根據材料力學知識:鑄鐵屬典型的脆性材料,其抗拉性能較差,破壞符合最大拉應力理論。鑄鐵受扭時橫截面邊緣處剪應力最大,取單元體進行應力分析可得到主應力方向與斷裂面方向垂直且與圓軸表面相切,由於圓軸表面是曲面,各點主應力的主平面沿方向連起來就形成一個螺旋線,從外向內應力狀態相似,故形成螺旋面而不是平面。
③ 低碳鋼7個碳為什麼出裂縫
然後晶核吸附周圍液體的原子進行長大,由於晶體是沿著與導熱方向相反的方向成長,同時它也向著兩側方向成長,但由於受到相鄰的正在生長的晶體所阻擋,因此晶體形成柱狀形態的晶體稱為柱狀晶。
此外,在一定條件下,熔池中的液體金屬在凝固時也會產生自發晶核,如果散熱是沿各個方向進行,則晶體就沿各個方向均勻地長成晶粒狀晶體,這種晶體稱為等軸晶。焊縫中通常見到的柱狀晶,在一定條件下,焊縫中心也會出現等軸晶。
二、焊縫的二次結晶組織有何特徵?
答:焊縫金屬的組織,在一次結晶之後金屬繼續冷卻到相變溫度以下,又發生金相組織的變化,如低碳鋼焊接時,一次結晶的晶粒都是奧氏體晶粒,當冷卻到低於相變溫度時,奧氏體分解為鐵素體和珠光體,所以二次結晶後的組織大部分是鐵素體加少量珠光體。
但由於焊縫的冷卻速度較快,所得珠光體含量一般比平衡組織中的含量大,冷卻速度越快,珠光體含量越高,而鐵素體量越少,硬度和強度也都有所提高,而塑性和韌性則有所降低。經二次結晶後,得到室溫下的實際組織。不同鋼材在不同焊接工藝條件下所得到的焊縫組織是不同的。
三、以低碳鋼為例說明焊縫金屬二次結晶後得到什麼組織?
答:以低塑鋼為例,一次結晶的組織為奧氏體,焊縫金屬固態相變過程稱為焊縫金屬的二次結晶。二次結晶的顯微組織為鐵素體和珠光體。
在低碳鋼的平衡組織中,焊縫金屬含碳量很低,其組織為粗大的柱狀鐵素體加少量珠光體。由於焊縫冷卻速度大,鐵素體不能按鐵碳相圖全部析出,結果珠光體的含量一般都較平緩組織中的含量大。冷卻速度大還會使晶粒細化,金屬的硬度和強度也有所提高。由於鐵素體的減少和珠光體的增加也會使硬度增加,而塑性下降。
因此,焊縫最後得到的組織是由金屬的成分和冷卻條件來決定的。由於焊接過程的特點,焊縫金屬組織較細,所以焊縫金屬比鑄造狀態組織性能要好。
四、試述異種金屬焊接的特點有哪些?
答:1)異種金屬焊接的特點,主要在於熔敷金屬和焊縫的合金成分明顯的差異,隨著焊縫的形狀、母材厚度、焊條葯皮或焊劑,保護氣體種類的不同,焊接熔池的行為也不一致,
因此,母材的融化量也也不一樣,熔敷金屬與母材融化區域的化學成分的濃度相互稀釋的作用也將發生變化,由此可見,異種金屬焊接接頭各隨區域化學成分的不均勻程度不僅取決於焊件和填充材料各自的原始成分同時也焊接工藝不同而變化。
④ 比較低碳鋼拉伸,鑄鐵拉伸的斷口形狀,簡單分析其破壞的力學原因
低碳鋼(最典型的即是目前鋼結構工程中常用的Q235鋼)拉伸時出現明顯屈服和頸專縮現象,斷口周屬圍產生約45°滑移線;鑄鐵拉伸時不屈服也無頸縮現象,斷口整齊。
原因:低碳鋼拉伸破壞由最大切應力造成;鑄鐵拉伸破壞由最大拉應力造成。
解釋:低碳鋼抗剪強度低於抗拉強度,根據第三強度理論,單向應力狀態下與第一主應力成45°的斜截面上產生最大切應力,且數值上τ=σ₁/2,故低碳鋼拉伸時沿45°斜面剪切破壞;鑄鐵抗拉強度則很小,根據第一強度理論,直接沿橫截面被拉斷。