⑴ 什麼是高碳鋼啊
「不銹鋼」鋼材:
首先請記住,沒有真正不銹的鋼材,如果不保養,所有的鋼材都會生銹。但是下面這些鋼材由於含有高於13%的鉻,所以具有比上面提到的鋼材高得多的抗銹能力。我要指出的是並沒有一致的標准來規定鋼材需要含多少鉻才能被認為是不銹鋼。在刀具界,實際上規定為13%,但ASM金屬手冊說「大於10%」,而另一些書記錄又不同。另外,其它合金元素的含量對含鉻量要求的影響很大,如果使用的合金得當,即使含鉻量較低也能達到「不銹鋼」品質。
420J: 比440系列低的碳含量(<0.5%),非常柔軟,不能打磨,經熱處理後硬度只有HRc52-55, 耐損性等各方面的性能並不太出眾。因較容易切割及打磨, 故適宜用作大量生產廠制刀具,也被用於生產低成本刀具,420J鋼因碳含量低而耐腐蝕能力極強, 故也是生產潛水刀具的理想鋼材。但其過於柔軟,不能用於日常實用刀具。
425M: 420系列鋼材的改良品種, 定名為425M, 將含碳量提高至約0.55%, 並加進1%的鉬, 經熱處理後可達理想硬度(HRc58), 卻保留了420系鋼材之優良加工性, 故極宜應用於廠制刀具。美國BUCK及GERBER兩大刀廠已於90年代選用425M作為其刀身材料。
440 A, 440 B, 440C: 含碳量和硬度由A-B-C逐次增加(A-0.75%,B-0.9%,C-1.2%)。這三種鋼材的抗銹能力都不錯,440A最好,而440C相比最低。SOG SEAL 2000用的是440A,Randall用440B來生產他們的不銹鋼刀具。普遍感覺440A對於日常使用來說剛剛好,尤其是經過優質熱處理的440A(SOG的440A熱處理很受好評,不知道他們請誰來做這個),440B更加結實,而440C是最優秀的。440C用的非常普遍,是目前用在高檔批量刀具市場上的優質不銹鋼,其強度及鋒利性甚於ATS-34,含鉻量高達16-18%,可能是第二最常用的不銹鋼(僅次於ATS-34),也是最早被刀匠接受的不銹鋼,而且一直很受歡迎,尤其是在零下處理流程被開發出來後,這種處理加強了鋼材的堅韌度。在打磨時,它的缺點是粘性比較大,而且升溫很快,但它比任何碳鋼都更容易打磨,用手鋸切料也容易得多。440C的退火溫度很低,硬度通常達到HRc56-58,耐蝕性和韌性都很強,現更廣泛應用於手制刀及優質廠制刀具。保養得好的話,這種材料的刀刃是非常出色和耐用的。
AUS-6, AUS-8, AUS-10 (AKA 6A, 8A, 10A): 日本不銹鋼材,大略與440A(AUS-6, 含碳0.65%)、440B(AUS-8, 含碳0.75%)、440C(AUS-10, 含碳1.1% )相似。AUS-6被用來製造Al Mar的刀具;Cold Steel使用AUS-8,從而使這種鋼材變得很普遍,AUS-8是一種高碳低鉻不銹鋼,經過長時間證明具有非常優秀的折中特點,既堅硬又堅韌,既不易生銹又能保持鋒利長久,刀鋒耐損性及韌性皆達優異水平, 多被應用於日本制優質刀具。Cold Steel的熱處理方法使AUS-8的打磨度不如ATS-34,但也使它更柔軟,或許也更堅韌。AUS-10 的含碳量近似於440C,但是含鉻量降低,因此抗銹能力也相應下降,不過也增強了堅韌性。這三種鋼材都加入了釩(這是440系列沒有的),因此增加了抗磨損能力。
154-CM: 美國產的優質不銹鋼材,目前最熱的高端不銹鋼之一。含碳量約1.05%, 經熱處理後硬度可達HRc60-61。154-CM是最初的美洲版本,鉻含量達15%, 鉬含量達4%,故定名為154CM。耐腐蝕性、刀鋒耐損性及韌性都很強, 但售價較高。由近代手制刀之一代宗師R.W.Loverless率先所採用。它的加工和打磨雖沒440C容易,但是154CM的成品無論硬度和堅韌度都比440C有明顯優勢。154CM 的命名並不符合命名規則,只是製造商的產品名。
ATS-34: 日本「日立金屬工業」針對美製154CM 而開發的優質不銹鋼, 用料和成份與154CM相近, 而各方面之性能都達到了154CM的標准, 但價格則較低。ATS-34是一種被手工刀和高端量產刀用得最廣泛的昂貴不銹鋼,現已成為手制及優質廠制刀具應用的主流。ATS-34也屬於高碳鋼,其硬度可作到HRc59-61,打磨度非常好,即使硬度如此高仍然具有足夠的堅韌度,抗銹能力不如440系列,是目前最好的刀刃鋼材之一。
ATS-55: 日本「日立金屬工業」繼ATS-34後開發的優質鋼材,和ATS-34很相似,但去掉鉬,加入了其它一些元素。目前對這種鋼材所知不多,但它看起來具有似乎是保留了ATS-34的優秀打磨度並增加了堅韌性。鉬是高速鋼生產中一種昂貴而有用的元素,而刀鋒並不需要用到高速鋼,所以去掉鉬可以大幅度降低鋼材成本,且仍然保持了ATS-34的特性。整體而言, ATS-55性能稍遜於ATS-34, 但比G-2優秀。Spyderco選用這種鋼材。
三美III(San Mai III): Cold Stell公司出品的一種非常昂貴,品質極佳的日本薄片層壓鋼材。以堅硬的高碳不銹鋼夾在中間作為刀刃的核心,上下各加一層韌性和彈性都很好的不銹鋼來輔助和增強,最後的成品具有兩種材料鋼的特性,這種碾壓出來的鋼材比特韌的AUS 8A堅固25%。三美III的特徵是刀鋒處的線渦紋路,遍及整個刀刃的邊緣,是由於打磨時各鋼層顯露出來而形成的。每把刀的線紋長度各有不同,因為每一片三美III都是獨一無二的。象AUS 8A不銹鋼一樣,三美III由現代精確傳送熔爐熱處理和零下低溫淬水流程,改進鋼材的微觀結構,去掉雜質。最後的成品刀刃比一般不銹鋼刀刃具有更好的彈性和保持性。
BG-42: 極優質不銹鋼, 含碳量1.15%, 含釩量則高達1.2%,故鋼材組織微粒細密, 經熱處理後硬度可達HRc60-61, 加工性優, 耐腐蝕性極強, 韌性亦佳。BG-42最初被應用於航天工業, 作為製造滑輪及機軸等的材料, 因此價格頗高。Bob Loveless 最近宣稱他從ATS-34轉向這種鋼材,這是個徵兆,BG-42在某種程度上與ATS-34近似,而有兩個最大的不同之處: BG-42有兩倍於ATS-34的錳含量,和1.2%的釩含量 (ATS-34不含釩), 所以可知它比ATS-34的打磨度更好。Chris Reeves 在生產Sebenzas時也從ATS-34轉向了BG-42。
Cowry X(RT-6): 日本「大同特殊鋼 (株)」於1993年開發的超級粉末系列合金鋼材, 為近代日本冶金技術的新突破, 現已被日本刀匠們應用於大型砍伐刀具, 鋼材含碳量高達3%, 經熱處理後硬度可達HRc67。
Cowry Y(CP-4): 日本「大同特殊鋼 (株)」於1993年開發的優質粉末系列合金鋼材, 含碳量達1.2%, 更罕有地混入金屬元素「鈳」達0.2%, 經熱處理後硬度可達HRc63, 卻仍保有極佳的延展性。
CPM440V: CPM(Crucible Particle Metallurgy)粉末系鋼材,美國Crucible原料公司開發的新一代刃具鋼, 廠方曾聲稱CPM440V為超級鋼材(Super custom knife steel of the 90's),比目前市場上的所有不銹鋼都經久耐用,但是它過於堅硬而難於打磨(因此它具有空前的刀鋒保持性),但反過來,也就不需要經常打磨。雖然CPM440V之含碳量比傳統的440C多出近一倍, 經熱處理後得出之硬度卻只為HRc57-58, 皆因受其它所含原素之影響(5%之釩, 17%之鉻)。其真正傑出之處在於保留刀鋒之耐損性及延展性這兩方面, CPM440V售價很高, 故多應用於手制(刀匠手作)刀具。
CPM420V: 美國Crucible原料公司於1996年再次研製出較CPM440V更高一級的CPM鋼材, 它比CPM440V多出近一倍的釩及鉬含量, 故能保有更優越的刀鋒耐損性及耐蝕性(比CPM440V優秀25-50%),或許比440V的堅韌度也更高。經熱處理後的硬度則與CPM440V相等。CPM420V售價昂貴。
GIN-1(AKA G-2): 日本「日立金屬工業」研發的優質鋼材,性能與8A相近, 但硬度則比8A稍軟(HRc57-58), 價格較低。一種很好的不銹鋼,含碳量略低,含鉻量略高,而鉬含量比ATS-34低,是一種低成本的鋼材,經常被 Spyderco選用。
ZDP-189 : 日本「日立金屬工業」於1996年開發的新型粉末鋼材, 其研發目標與「大同特殊鋼 (株) 」的Cowry X鋼材一脈相承, 是具有優良加工性能的超硬合金鋼, ZDP-189含碳量達3%, 含鉻量亦高達20%, 經熱處理後硬度可達HRc67, 加工性能極優, 金屬組織微粒比ATS-34及440-C更均勻細密, 耐蝕性及韌性均良好, 故「日立」對外宣稱ZDP-189為「跨向21世紀的次世代刃具鋼」。
⑵ 什麼是高端金屬結構材料
金屬新材料按功能和應用領域可劃分為高性能金屬結構材料和金屬功能材料。
高性能金屬結構材料指與傳統結構材料相比具備更高的耐高溫性、抗腐蝕性、高延展性等特性的新型金屬材料,主要包括鈦、鎂、鋯及其合金、鉭鈮、硬質材料等,以及高端特殊鋼、鋁新型材等。
金屬功能材料指具有輔助實現光、電、磁或其他特殊功能的材料,包括磁性材料、金屬能源材料、催化凈化材料、信息材料、超導材料、功能陶瓷材料等。
在眾多品種中,我們建議重點關注稀土永磁材料。與其他材料相比,稀土具有優異的光、電、磁、催化等
物理特性,在新興領域的應用急速增長,其中永磁材料是稀土應用領域最重要的組成部分,2009年永磁材料占稀土新材料消費總量的57%。在國家新興產業政策的推動下,新能源汽車、風力發電、節能家電等領域將拉動稀土永磁材料釹鐵硼磁體的需求出現爆發式增長。建議重點關注釹鐵硼行業龍頭中科三環、寧波韻升,以及稀土資源類企業包鋼稀土、廈門鎢業等。鋼鐵材料、稀有金屬新材料、高溫合金、高性能合金是屬於金屬類工程結構材料。
①、鋼鐵材料和稀有金屬新材料
鋼鐵材料提高鋼材的質量、性能,延長使用周期,在鋼鐵材料生產中,應用信息技術改造傳統的生產工藝
,提高生產過程的自動化和智能化程度,實現組織細化和精確控制,提高鋼材潔凈度和高均勻度,出現低溫軋制、臨界點溫度軋制、鐵素體軋制等新工藝。
稀有金屬新材料指高強、高韌、高損傷容限鈦合金,以及熱強鈦合金、鋯合金、難熔金屬合金、鉭鎢合金、高精度鈹材等。
②、高溫合金和高性能合金
高溫結構材料主要種類包括:高溫合金、粉末合金、高溫結構金屬間化合物,以及高熔點金屬間化合物等
⑶ 鋼鐵高端產品主要有哪些
汽車面板、家電面板、食品包裝用板、高強度管線鋼、四級以上螺紋鋼、子午線輪胎用高強度用線材、高強拉索用鋼、高級別不銹鋼、高強結構鋼和軸承鋼、軍工用鋼、水下施工用板樁等。
⑷ 中國高端鋼鐵一年生產多少噸
高端鋼材的劃分標准在不同的企業,不同的行業,不同的場合不一樣,回所以中國可以生產多少高答端鋼材有不同的統計數據。在中小型民營企業里,把高速線材都叫做高端鋼材。在一般國企和大型民營企業里,把板帶材和管材叫做高端產品。在寶鋼集團武鋼集團把汽車面板,造船甲板,核能用鋼,海上耐侯鋼等叫做高端鋼材。在新日鐵住金,浦項鋼鐵等把寬幅面耐深沖,高強度結構,精密儀器儀表,大型航天設備,超高層建築等用鋼劃分為高端鋼材。所以說,按著國際上一般標准,我國的高端鋼材產量只有500萬噸左右,而總量日益增加,每年要進口3000萬噸左右。
⑸ 做刀什麼鋼材最好都有些什麼頂級鋼材
一把刀的好壞不只是跟本身材料有關系,還和設計、熱處理有很大關系,但是取決於的還是鋼,如果沒有好的鋼材,不管是設計、還是熱處理都是白搭,所以一把好的刀,三個方面也要做的到位,才能成就一把好刀。
刀刃鋼材是決定你刀子能力表現的一個最重要因素。不同的刀刃鋼材呈現不同的性能特徵,好的刀具在硬度 韌性,防銹性,耐磨性,可打磨性,易加工性等性能都是比較突出的。
戶外刀具,刀具的鋼材對刀具的性能有非常直接影響,當然同樣鋼材的刀具,不同品牌在鋒利度等性能上也有很大的差距。但是,無論如何,刀具的鋼材決定了刀具的直接性能。下面我們一起來講講市面上比較好的刀具的鋼材料。 常見的市面上的不銹鋼材有: 440A-440B-440C、420C-420HC、154CM、ATS-34 ATS-55、N690CO等,
1. 440A-440B-440C
440系列為含碳量和硬度由A-B-C逐次增加(A-0.6-0.75%,B-0.75-0.95%,C-0.951.2%)。 440C 是一種比較優秀的高端不銹鋼,硬度通常達到56-58 Rc。這三種鋼材的抗銹能力都不錯,440A最好,而440C相比最低。SOG SEAL 2000用的是440A,Randall 用440B 來生產他們的不銹鋼刀具。
440C 用的非常普遍,大多數美國刀具以及部分歐洲刀具大多採用440C。如果你的刀標有「440」,那麼它很可能比440A便宜;如果廠商用更貴的440C,他們會很願意宣傳這一點。普遍感覺440A對於日常使用來說剛剛好,尤其是經過優質熱處理的440A。440B更加結實,而440C是優秀的。從品質來說,440C會低於N690CO,因為N690CO比440C有更高的鈷含量。
所以在歐洲,440C作為中高端刀具使用,N690CO作為高端刀具使用。在美國很多品牌,包括戈博,巴克把440C作為其高端的刀具使用。在歐洲比如全球排名第一的FOX,其高端的軍用系列刀具基本都採用N690CO,而起民用部分的中高端刀具,採用440C,在售價上N690CO的刀具售價大約是440C的一倍。
2. 420C-420HC
420C從系列上就看出是比440C低一檔的刀具,其碳含量很低,鋼材很軟,達不到高碳鋼的標准。近年來,巴克講420C加入更多的碳的元素,其碳含量可以達到0.75%左右,取名420HC高碳鋼。
從性能上說,420HC與國內標號4CR13相當,其硬度比440C略差,但在其他性能上都會遠低於440C,但是其最大的優點是價格便宜。目前巴克幾乎全系列都採用420HC,以降低其生產成本。但是巴克刀的品質優於其採用420HC,與其原有採用440C的刀具有一定的差距。購買巴克刀時,盡量選擇老款的使用440C材質的刀具。
3、154CM
154-CM是美國目前使用的高端鋼,但很長時間達不到高端制刀業期望的生產標准,所以未被廣泛使用。站在刀具使用者的立場,154CM不愧為一個糟糕的選擇,一個超級耐磨但超級磨不利的玩意兒。而且讓人極其難受的是,在這種鋼材的刀刃薄處受到擠壓時,比如用154CM刀子去砍樹劈柴,其刃口 總是趨向於碎裂。
這種鋼的切割性能頂多隻能算二流水準,其刃口具有某種「變滑(而不是微齒)」的特徵,讓你在切割時非得使力壓著切不可 ,其性能接近下面的ATS-34,但是略差一些。美國品牌比如巴克,蜘蛛的高端刀具使用。在性能上與歐洲的高端鋼N690CO,和日本的高端鋼ATS-34有一定的差距。
4、ATS-34 ATS-55
ATS目前日本最熱的高端不銹鋼。154-CM是最初的美洲版本,ATS-34 是一種日本日立的產品,它和154-CM非常、非常相似,是高端高質不銹鋼。 在性能上屬於非常優秀的鋼材,其性能接近歐洲高端鋼,N690CO. 通常硬度約為 58-60 Rc,打磨度非常好,即使硬度如此高仍然具有足夠的堅韌度。
抗銹能力不如前面提到的400系列。很多定製手工刀匠使用ATS-34,Spyderco 和 Benchmade 部分刀都選用它。 ATS-55和ATS-34很相似,但去掉鉬,加入了其他一些元素。目前對這種鋼材所知不多,但它看起來具有似乎是保留了ATS-34的優秀打磨度並增加了堅韌性。鉬是高速鋼生產中一種昂貴而有用的元素,而刀鋒並不需要用到高速鋼,所以去掉鉬可以大幅度降低鋼材成本,且仍然保持了ATS-34的特性。 Spyderco 選用這種鋼材。
5、 N690CO
歐洲頂級的頂級高端不銹鋼,歐洲幾乎大的品牌都使用N690CO作為高端鋼材。
N690高鈷不銹鋼,有時也被稱為N690或N690Co,是奧地利伯勒爾(Bohler)鋼鐵公司研發的一種富鈷不銹鋼材質。
N690與如ATS-34和VG-10等其他鈷鋼擁有一些相似的性能,N690鋼因FOX和極端武力(EXTREMA RATIO)經常使用而迅速在高端刀具中得到普及。對於率先在刀具製作中使用N690鋼的極FOX刀具公司,N690更是受到了極大的好評。
它被認為是一種可以性能超過ATS-34,VG-10,154CM的特種高端鋼材。N690目前主要被應用在歐洲的刀具製造業中。 N690中添加的鈷元素提高了鋼材的耐磨損性和刃部保持性,此外還確保了鋼材中含有均勻的晶粒結構,令鋼材的性能更趨穩定。 總而言之,N690是一種摻有鈷、鉬和釩的馬氏體鉻鋼。
當用來製作工具和部件時,這種鋼可以硬化到一個非常高的硬度水平。根據表面拋光需要鋼材擁有良好的耐蝕性可知,這種材質可以被細研磨或拋光。這鋼在冶煉過程中採用了電渣重熔(Electroslag remelting procere,ESR)的加工方式,所以鋼材的純凈度與組織結構都獲得了極大的提升。
⑹ 高端模具鋼材的質量要求是些什麼
(1)硬度
模具在工作時受力狀態是復雜的,冷作模具的硬度一般選擇在58HRC以上,而熱作模具尤其是要求高的抗熱疲勞性能的模具,通常硬度在45HRC左右。對於普通使用的塑料模具,一般硬度要求在35HRC左右。
(2)強度與韌性
零件在成形使模具承受著巨大的的沖擊、扭曲等負荷,尤其是現代高速沖壓、高速精密鍛造和液態成形等技術以及一次成形技術的發展,模具承受著更大的負 荷,往往由於鋼材的強度和韌度不夠,造成型腔邊緣或局部塌陷、崩刃或斷裂而早期失效,因此模具熱處理後應具有較高的硬度和韌度。
(3)耐磨性
零件成形時材料與模具型腔表面發生相對運動,使型腔表面產生了磨損,從而使得模具的尺寸精度、形狀和表面的粗糙度發生變化而失效。磨損是一種復雜的過 程,影響因素很多,除取決於作用於模具的外界條件外,還在很大程度上取決於採用鋼材的化學成分不均勻性、組織狀態、力學性能等。
(4)疲勞性能
模具工作時承受著機械沖擊和熱沖擊的交變應力,熱作模具在工作的過程中,熱交變應力更明顯地導致模具熱裂。受應力和溫度梯度的影響而引起裂紋,往往是 在型腔表面形成淺而細的裂紋,它的迅速傳播和擴展導致模具失效。另外,鋼的化學成分及組織的不均勻,鋼中存在的冶金缺陷如非金屬夾雜物,氣孔、顯微裂紋等 均可導致鋼的疲勞強度降低,因為在交變應力的作用下,首先在這些薄弱地區產生疲勞裂紋並發展為疲勞破壞。
(5)粘著性
工模具零件的表面由於兩金屬原子相互摭用或單相擴散的作用,往往會有一些被加工金屬粘附著,尤其是一些切削、剪切工具和沖壓工具的表面會產生粘附或結 疤現象,這會影響刃口的鋒利程度和局部組織、化學成分的改變,使刃口部分崩裂或粘附金屬的脫落劃傷模具,使工件表面粗糙。因此良好的抗粘著性也是很重要的。
(6)拋光和蝕刻性能
隨著模具,特別是塑料模具的廣泛使用,低的表面粗糙度值影響到模具的壽命和生產效率及產品的質量。
⑺ 國內現在稀缺的高端鋼材品種是什麼
1、國內現在稀缺的高端鋼材品種是記憶金屬。
2、記憶金屬具有復原性。金版屬具有記憶,是一個偶然的發現:權60年代初,美國海軍的一個研究小組從倉庫領來一些鎳鈦合金絲做實驗,他們發現這些合金絲彎彎曲曲,使用起來很不方便,於是就把這些合金絲一根根拉直。在試驗過程中,奇怪的現象發生了,他們發現,當溫度升到一定的數值時,這些已經拉直的鎳鈦合金絲突然又恢復到原來的彎曲狀態,他們是善於觀察的有心人,又反復做了多次試驗,結果證實了這些細絲確實具有記憶。
⑻ 誰能為我介紹一下高端模具鋼材對質量有什麼具體要求
模具在現代製造業中佔有日益重要的地們,特別是汽車和電器製造業中70%以上的零件採用模具製造加工。但目前我國高質量的模具大量依賴進口,分析其主要原因,不在於我們的優質鋼煉鋼水平,而是沒有認識到整個模具鋼質量的提高是一個系統控制過程。除冶金質量外,製造過程中的鍛壓加工、預備熱處理、機械加工和最終熱處理都將影響模具的內部組織和應力狀態,從而決定模具的最終使用性能。據羅百輝介紹,在模具的製造過程中,模具的使用壽命和製成的精度、質量、表面性能,除與模具的設計、製造精度以及機床和操作等條件有關外,與模具材料及其熱處理工藝也有密切關系。據有關的統計表明,模具的早期失效因材料選擇不當和內部缺陷引起的約佔10%左右,由熱處理不當引起的約佔50%左右,因此正確選擇具有優良質量的模具鋼材並進行正確的熱處理,具有十分重要意義。模具鋼的特性主要包括使用性能、工藝性能和冶金質量等三個方面。
1、模具鋼在工作性能方面的要求
①硬度
模具在工作時受力狀態是復雜的,如熱作模具通常在交換的溫度場下承受交變應力作用,因此它應具有良好的抗軟化或塑性變形狀態的能力,在長期工作環境下仍能保持模具的形狀和尺寸精度。硬度是模具鋼的生要性能之一。對冷作模具的硬度一般選擇在58HRC以上,而熱作模具尤其是要求高的抗熱疲勞性能的模具,通常硬度在45HRC左右。對普通使用的塑料模具,一般硬度要求在35HRC左右。
②強度與韌性
零件在成形使模具承受著巨大的的沖擊、扭曲等負荷,尤其是現代高速沖壓、高速精密鍛造和液態成形等技術以及一次成形技術的發展,模具承受著更大的負荷,往往由於鋼材的強度和韌度不夠,造成型腔邊緣或局部塌陷、崩刃或斷裂而早期失效,因此模具熱處理後應具有較高的硬度和韌度。
③耐磨性
零件成形時材料與模具型腔表面發生相對運動,使型腔表面產生了磨損,從而使得模具的尺寸精度、形狀和表面的粗糙度發生變化而失效。磨損是一種復雜的過程,影響因素很多,除取決於作用於模具的外界條件外,還在很大程度上取決於採用鋼材的化學成分不均勻性、組織狀態、力學性能等。
④疲勞性能
模具工作時承受著機械沖擊和熱沖擊的交變應力,熱作模具在工作的過程中,熱交變應力更明顯地導致模具熱裂。受應力和溫度梯度的影響而引起裂紋,往往是在型腔表面形成淺而細的裂紋,它的迅速傳播和擴展導致模具失效。另外,鋼的化學成分及組織的不均勻,鋼中存在的冶金缺陷如非金屬夾雜物,氣孔、顯微裂紋等均可導致鋼的疲勞強度降低,因為在交變應力的作用下,首先在這些薄弱地區產生疲勞裂紋並發展為疲勞破壞。
⑤粘著性
工模具零件的表面由於兩金屬原子相互摭用或單相擴散的作用,往往會有一些被加工金屬粘附著,尤其是一些切削、剪切工具和沖壓工具的表面會產生粘附或結疤現象,這會影響刃口的鋒利程度和局部組織、化學成分的改變,使刃口部分崩裂或粘附金屬的脫落劃傷模具,使工件表面粗糙。因此良好的抗粘著性也是很重要的。
⑥拋光和蝕刻性能
隨著模具,特別是塑料模具的廣泛使用,低的表面粗糙度值(有時甚至是鏡面的程度)已經十分性必要,低的表面粗糙度值影響到模具的壽命和生產效率及製品的質量。高的表面質量可以減輕腐蝕(特別是局部點狀腐蝕);減小開裂的危險,拋光鋼材的化學成分、組織結構、硬度及碳化物分布必須均勻。大碳化物尤其是他們偏析並成帶狀時,對表面拋光性極為有害。特別重要的是,鋼中不能含有沒有發生變形的大的氧化物夾雜或偏析,因而必須嚴格控制冶煉和脫氧工藝。真空電弧重熔、電渣重熔效果良好,這種工藝目前已成為高級塑料模具鋼的主要生產方式。即使是簡單的真空脫氣也有助於消除大的氧化物夾雜,這些冶煉工藝不僅能降低氧化物的含量,而且能使氧化物更細小、均勻,同時控制冶煉和脫氧過程,還可以改變夾雜物類型,使之軟化並具有較好的塑韌性而提高拋光性能。
鋼材中任何未閉合的空洞都會影響其拋光性能,因而熱加工中壓合疏鬆等冶金缺陷並保持組織的緻密是十分必要的,這可以通過現代化的成形加工技術來實現。例如反復鐓拔技術、旋轉鍛造技術、高溫等靜壓制等可細化原始鑄態組織,樹枝晶內空隙。電渣重熔、真空電弧重熔精煉工藝,對鋼材均勻性也十分有利。由熱處理或表面硬化而引起的缺陷,應盡量避免導致硬度不均勻的脫碳。這些措施加上合理的成分設計及控制,就能生產出鏡面加工性優異的鋼。
此外,還應根據模具的工作條件和環境的差異,考慮所用模具鋼應具有良好的熱導性、抗腐蝕性、抗氧化性和導磁性等。
2、模具鋼在工藝性能方面的要求
①可加工性
鋼材的可加工性主要包括被切削加工性和冷熱塑性變形兩種,它取決於鋼的化學成分、熱處理後的組織和冶金生產的內部質量,近些年來,為了改善鋼的可加工性,在一些鋼中加入易切削元素或改變鋼中的夾雜物的分布狀態,從而提高模具鋼的表面質量和減少模具的磨損。在熱加工時,對一些高碳高合金的模具鋼,特別是改善碳化物的形態和分布、晶粒大小和奧氏體合金化程度十分重要。
除了應具有良好的可加工性外,還要有良好的電加工性以及壓印翻模加工性等。
②淬透性和淬硬性
模具對這兩種性能的要求根據工作條件不同是各有側重的,對於要求整個截面的硬度均勻性高的模具如錘鍛模用鋼,則其具有高的淬透性更顯重要,而對只要求有高硬度的小型模具,如沖裁落料模具鋼,則更偏重於高淬硬性。
③熱處理變形性
模具零件在熱處理時,要求變形小,各個方向要有相近的變化,且組織穩定。淬火變形小,除與淬火溫度]時間和冷卻介質等因素有關外,它主要取決於鋼的成分均勻、冶金質量和組織穩定性。
④脫碳敏感性
模具鋼在鍛造、退火或淬火時,在無保護氣氛下加熱,其表面會產生氧化脫碳等缺陷,從而使模具在耐用度下降。脫碳除了與熱處理工藝、設備有關外,就材料本身而言,主要取決於鋼的化學成分、特別是碳含量,在含有較高的硅、鉬等元素時,也會加劇脫碳。
此外,應根據模具的使用條件,應考慮模具的鏡面拋光性、磨削性和電化學性等性能。
3、模具鋼在冶金質量方面的要求
高的冶金質量才能發揮鋼的基體本特性,模具鋼的內部冶金質量與它的基本性能有同等的重要意義,在研究性能的同時,必須研究冶金質量影響因素。一般較常遇到模具鋼的內外質量問題有以下幾個方面:
①化學成分的均勻性
模具鋼通常是含有多元素的合金鋼,鋼在錠模具中從液態凝固時,由於選分結晶的緣故,鋼液中各種元素在凝固的結構中分布不均勻而形成偏析,這種化學成分的偏析將造成組織和性能的差異,它是影響鋼材質量的重要因素之一。降低鋼的偏析度,可以有效地提高鋼的性能。近些年來,國內外很多冶金廠都在致力研究生產成分均勻、組織細化的鋼材。
②有害元素的含量
硫和磷在鋼凝固過程中形成磷化物和硫化物而在晶界沉澱,因而產生晶間脆性,使鋼的塑性降低,過高的S、P含量,會使鋼錠在軋制時易產生裂紋,而且會大大降低鋼的力學性能。日本的松田幸紀等研究了S、P含量對含W(Cr)5%熱作模具鋼(H13)的韌性和熱疲勞性能影響結果表明,如將W(S、P)的含量從0.025%和0.010%降到W(P)0.005%和W(S)0.001%時,其熱疲勞裂紋的長度和數量將減少一半。日立金屬公司將SKD61鋼中的W(P)含量從0.03%降到0.001%時,可使鋼45HRC時的沖擊韌度由39.2J/cm2提高到127.5 J/cm2。此外,降低鋼中的S、P含量還可以有效地提高鋼的等向性。
③鋼中的非金屬夾雜物
質量良好的鋼材不僅化學成分要符合技術標準的規定,並且鋼中的非金屬夾雜物的含量要盡可能地少,因為非金屬夾雜物在鋼中所佔的體積雖然很小,但對鋼材的性能影響卻很大。減少鋼中的非金屬夾雜物是煉鋼的主要任務之一。通常所指的鋼中的非金屬夾雜物,主要是指鐵及其他合金元素與氧、硫、氮等作用所形成的化合物,如FeO、MnO、Al2O3、SiO2、FeS、MnS、AlN、VN等,以及在煉鋼和澆注時帶入的耐火材料,後者的成分也主要是Si、Al、Fe、Cr、Ca、Mg等的氧化物。鋼中的非金屬夾雜物就其來源,可以分為內在夾雜物和外來夾雜物,仙在的夾雜物是鋼在液態及凝固過程中形成的化合物。
鋼中的非金屬夾雜物在基本種意義上呆以看成是一定尺寸的裂紋,它破壞了金屬的連續性,引起應力集中,在外界應力的作用下,裂紋延伸很容易發展擴大而導致性能降低。塑性夾雜物的存在,隨著鍛軋過程延展變形,致使鋼材產生各向異性。同時夾雜物拋光過程中的剝落,提高了模具的表面粗糙度。因此,對於大型和重要的模具來說,提高鋼的純凈度是十分重要的。
4、白點
白點是熱軋鋼坯和大型鍛件中比較常見的缺陷,是鋼的內部破裂的一種。白點的存在對鋼的性能有極為不利的影響,這種影響主要表現在使鋼的力學性能降低,熱處理時使鍛件淬火開裂,或使用時發展成更為嚴重的破壞事故,所以在任何情況下,都不能使用有白點的鍛件。不同的鋼對白點的敏感程度是不同的,一般認為容易發生白點的鋼有鉻鋼、鉻鉬鋼、錳鋼、錳鉬鋼、鉻鎳鉬鋼、鉻鎢鋼等。其中以含W(C)大於0.30%、W(Cr)大於1%、W(Ni)大地2.5%的馬氏體鉻鎳鋼及鉻鎳鉬鋼等對白點的敏感性最大。白點的形成原因是鋼中的氫的脫溶析出聚集,在鋼的縱斷面上形成的銀亮白色粗晶狀的圓形或橢圓形的斑點。它往往使鍛件和坯材的內部產生裂紋。模具鋼5CrNiMo、5CrMnMo等最容易發生白點,若增加碳化物元素Cr、Mo和V後可以降低白點的敏感性。這類鋼在生產中一定要注意脫氣和加強大鍛件的鍛後緩冷或去氫退火。
5、氧含量
對模具鋼一般都未規定鋼中的允許的氣體含量。隨著氧含量的增加,氧化物的顆粒和數量都隨之增加,鋼的疲勞性能降低,熱裂紋也容易產生。有人曾對4Cr5MoSiV1鋼進行過試驗,氧含量最好不超過1.5*10-5,哪日本山陽特殊鋼公司規定高純凈度鋼氧含量不大於1.0*10-5。因此,近年來,為了提高模具的製造質量。國內外的模具鋼逐漸在向低氧含量的方向發展。
6、碳化物的不均勻度
碳化物是絕大多數模具鋼的必需組分,除可溶於奧氏體的碳化物外,還會有部分不能溶於奧氏體的殘留碳化物。碳化物的尺寸、形態、分布對模具鋼的使用性能等有十分重要的影響。關於碳化物的尺寸、形狀和分布是與鋼的冶煉方法、鋼錠的凝固條件以及熱加工變形條件等有關。過共析鋼的碳化物可能在晶界形成風狀碳化物或是在加工變形中碳化物被拉長而形成帶狀碳化物或者二者兼有,萊氏體模具鋼中,存在一次碳化物和二次碳化物,在熱變形的過程中,網狀的共晶碳化物大多可以破碎,碳化物先沿變形方向延伸,產生帶狀,隨著變形程度的增加,碳化物變得均勻、細小。碳化物的不均勻性對淬火變形、開裂、鋼材的力學性能的影響較大。
7、偏析
偏析即鋼的成分與組織不均勻性的表現,這是在模具鋼的低倍組織的檢驗中常存在的一種缺陷。是鋼錠在凝固過程中形成的,與鋼的化學成分和澆注溫度等有關。一般分為樹枝狀的偏析、方形偏析、點狀偏析等。由於樹枝狀的偏析的存在,使負然各個不同的方向的力學性能表現出明顯的差異。方形偏析是由於鑄錠結晶時,在柱狀晶的末端與錠心等軸晶區間,聚集了較多的雜質和孔隙而形成的。嚴重的方形偏析,對鋼材的質量的影響是顯著的,特別是切削加工量很大的零件或心部受力的模具零件。偏析除了影響模具鋼力學性能的等向性外,對模具的拋光性能也有一定的影響。因此,國外相關的標准中有嚴格的規定。
8、疏鬆
疏鬆是鋼的不緻密性的表現。疏鬆多數出現在鋼錠的上部及中部,在這些地方因為集中了較多的雜質和氣體造成的。由於疏鬆缺陷的存在,降低了鋼的強度和韌性,也嚴重地影響了加工後的表面的粗糙度,在一般的模具鋼中的影響不是特別大,但如冷軋輥、大型的模塊、沖頭和塑料成形模具零件等都有較嚴格的要求。如深型腔的鍛模和沖頭要求疏鬆不超過1級或2級,用於表盤或透光件等的塑料模具用鋼,要求疏鬆不超過1級。