『壹』 各種化學成分在鋼里分別有什麼用
1、碳(C):碳影響屈服點和抗拉強度
2、硅(Si):影響抗腐蝕性和抗氧化
3、錳(Mn):影響鋼的淬性,改善鋼的熱加工性能,如16Mn鋼比A3屈服點高40%。含錳11-14%的鋼有極高的耐磨性,用於挖土機鏟斗,球磨機襯板等。錳量增高,減弱鋼的抗腐蝕能力,降低焊接性能。
4、磷(P):使焊接性能變壞,降低塑性,使冷彎性能變壞。
5、硫(S):使鋼產生熱脆性,降低鋼的延展性和韌性。
6、鉻(Cr):鉻能顯著提高強度、硬度和耐磨性,但同時降低塑性和韌性。
7、鎳(Ni):鎳能提高鋼的強度,而又保持良好的塑性和韌性。
8、鉬(Mo):鉬能使鋼的晶粒細化,提高淬透性和熱強性能。
9、鈦(Ti):鈦是鋼中強脫氧劑。它能使鋼的內部組織緻密,細化晶粒力。
10、釩(V):釩是鋼的優良脫氧劑。
11、鎢(W):可顯著提高紅硬性和熱強性,作切削工具及鍛模具用。
12、鈮(Nb):鈮能細化晶粒和降低鋼的過熱敏感性及回火脆性,提高強度
13、銅(Cu):銅能提高強度和韌性。
14、鋁(Al):提高沖擊韌性,鋁還具有抗氧化性和抗腐蝕性能,鋁與鉻、硅合用,可顯著提高鋼的高溫不起皮性能和耐高溫腐蝕的能力。鋁的缺點是影響鋼的熱加工性能、焊接性能和切削加工性能。
15、硼(B):鋼中加入微量的硼就可改善鋼的緻密性和熱軋性能,提高強度。
16、氮(N):氮能提高鋼的強度,低溫韌性和焊接性,增加時效敏感性。
『貳』 合金元素在鋼中都有哪些作用
合金元素在鋼中的作用
Mn
1、在低含量范圍內,對鋼具有很大的強化作用,提高強度、硬度和耐磨性
2、降低鋼的臨界冷卻速度,提高鋼的淬透性
3、稍稍改善鋼的低溫韌性
4、在高含量范圍內,作為主要的奧氏體化元素
Si
1、強化鐵素體,提高鋼的強度和硬度
2、降低鋼的臨界冷卻速度,提高鋼的淬透性
3、提高鋼的氧化性腐蝕介質中的耐蝕性,提高鋼的耐熱性
4、磁鋼中的主要合金元素(含量在0.40%范圍內時,改善熱裂傾向,含量高時,易形成柱狀晶,增加熱裂傾向。)
Cr
1、在低合金範圍內,對鋼具有很大的強化作用,提高強度、硬度和耐磨性
2、降低鋼的臨界冷卻速度,提高鋼的淬透性
3、提高鋼的耐熱性
4、在高合金範圍內,使鋼具有對強氧化性酸類等腐蝕介質的耐腐蝕能力
Mo
1、
強化鐵素體,提高鋼的強度和硬度
2、
降低鋼的臨界冷卻速度,提高鋼的淬透性
3、
提高鋼的耐熱性和高溫強度
Ni
1、
提高鋼的強度,而不降低其塑性,改善鋼的低溫韌性
2、
降低鋼的臨界冷卻速度,提高鋼的淬透性
3、
擴大奧氏體區,是奧氏體化的有效元素
4、
本身具有一定耐蝕性,對一些還原性酸類有良好的耐蝕能力
Al
1、
煉鋼中起良好的脫氧作用
2、
細化鋼的晶粒,提高鋼的強度
3、提高鋼的抗氧化性能,提高不銹鋼對強氧化性酸類的耐蝕能力
RE
1、煉鋼中起脫硫、去氣、凈化鋼液作用
2、細化鋼的晶粒,改善鑄態組織
S:
1、
硫在鋼中以FeS-Fe共晶體存在於鋼的晶粒周界,降低鋼的力學性能,優制鋼含硫量一般應限制在0.04%以下。
2、
在機械製造中,有時為了改善某些鋼的切削加工性能,人為將含硫量提高,以形成硫化物,起中斷基體連續性的作用。
3、
硫含量的提高,增加鑄件熱裂傾向。
H:
煉鋼過程中鋼液從爐氣中吸收氫
鋼液中氫的溶解度隨溫度升高而提高,在緩慢凝固條件下,氫以針孔形態析出。快速凝固時,析出氫在鐵的晶格內造成高應力狀態,導致脆性。
N:
煉鋼過程中鋼液從爐氣中吸收氮
1、
鋼液中溶解的氮在凝固過程中因溶解度降低而析出,並與鋼中的Si、Al、Zr等元素化合,生成SiN、AlN
、ZrN等氮化物。少量氮化物能細化鋼的晶粒。氮休物多時,會使鋼的塑性和韌性降低。
2、
氮屬於擴大奧氏體區元素,在鋼中可部分代替鎳的作用,是鉻錳氮不銹鋼中的合金元素,,在超低碳不銹鋼中,可代替碳的作用,提高鋼的強度。
O:
1、
鋼液中溶解的FeO
在凝固前溫度降低過程中與鋼液中的碳起反應,生成一氧化碳氣泡,在鑄件中造成氣孔。
2、
鋼液凝固過程中,FeO因溶解度下降而析出在鋼的晶粒周界處,降低鋼的性能。
『叄』 請問鋼材中的C、S、Si、Mn、P元素對鋼材都有什麼影響,他們的作用分別是什麼
鋼材的質量及性能是根據需要而確定的,不同的需要,要有不同的元素含量.
(1)碳;含碳量越高,剛的硬度就越高,但是它的可塑性和韌性就越差.
(2)硫;是鋼中的有害雜物,含硫較高的鋼在高溫進行壓力加工時,容易脆裂,通常叫作熱脆性.
(3)磷;能使鋼的可塑性及韌性明顯下降,特別的在低溫下更為嚴重,這種現象叫作冷脆性.在優質鋼中,硫和磷要嚴格控制.但從另方面看,在低碳鋼中含有較高的硫和磷,能使其切削易斷,對改善鋼的可切削性是有利的.
(4)錳;能提高鋼的強度,能消弱和消除硫的不良影響,並能提高鋼的淬透性,含錳量很高的高合金鋼(高錳鋼)具有良好的耐磨性和其它的物理性能.
(5)硅;它可以提高鋼的硬度,但是可塑性和韌性下降,電工用的鋼中含有一定量的硅,能改善軟磁性能.
(6)鎢;能提高鋼的紅硬性和熱強性,並能提高鋼的耐磨性.
(7)鉻;能提高鋼的淬透性和耐磨性,能改善鋼的抗腐蝕能力和抗氧化作用.
(8)釩;能細化鋼的晶粒組織,提高鋼的強度,韌性和耐磨性.當它在高溫熔入奧氏體時,可增加鋼的淬透性;反之,當它在碳化物形態存在時,就會降低它的淬透性.
(9)鉬;可明顯的提高鋼的淬透性和熱強性,防止回火脆性,提高剩磁和嬌頑力.
(10)鈦;能細化鋼的晶粒組織,從而提高鋼的強度和韌性.在不銹鋼中,鈦能消除或減輕鋼的晶間腐蝕現象.
(11)鎳;能提高鋼的強度和韌性,提高淬透性.含量高時,可顯著改變鋼和合金的一些物理性能,提高鋼的抗腐蝕能力.
(12)硼;當鋼中含有微量的(
0.001
-
0.005
%)硼時,鋼的淬透性可以成倍的提高.
(13)鋁;能細化鋼的晶粒組織,阻抑低碳鋼的時效.提高鋼在低溫下的韌性,還能提高鋼的抗氧化性,提高鋼的耐磨性和疲勞強度等.
(14)銅;它的突出作用是改善普通低合金鋼的抗大氣腐蝕性能,特別是和磷配合使用時更為明顯。
『肆』 鋼材里的元素nb代表什麼,其到什麼效果
鋼中,Nb、Ti等可以形成C/N化合物,凈化鋼中間隙原子(C和N),提高深沖性能。
在低合金中,Nb、Ti等用於提高再結晶溫度(細化晶粒)、沉澱強化等作用。
『伍』 Nb在焊條中高低對焊接有什麼影響
鈮(NB):鈮能細化晶粒和降低鋼的過熱敏感性及回火脆性,提高強度,但塑性和韌性有所下降。在普通低合金鋼中加鈮,可提高抗大氣腐蝕及高溫下抗氫、氮、氨腐蝕能力。鈮可改善焊接性能。在奧氏體不銹鋼中加鈮,可防止晶間腐蝕現象。
『陸』 合金鋼各元素作用
合金元素在結構鋼中的作用:
①增大鋼的淬透性。淬透性是指鋼淬火時,從表層起淬成馬氏體層的深度,是取得良好綜合性能的主要參數。除Co外,幾乎所有合金元素如Mn、Mo、Cr、Ni、Si和C、N、B等都能提高鋼的淬透性,其中Mn、Mo、Cr、B的作用最強,其次是Ni、Si、Cu。而強碳化物形成元素如V、Ti、Nb等,只有溶於奧氏體中時才能增大鋼的淬透性。
②影響鋼的回火過程。由於合金元素在回火時能阻礙鋼中各種原子的擴散,因而在同樣溫度下和碳素鋼相比,一般均起到延遲馬氏體的分解和碳化物的聚集長大作用,從而提高鋼的回火穩定性,即提高鋼的抗回火軟化能力,V、W、Ti、Cr、Mo、Si的作用比較顯著,Al、Mn、Ni的作用不明顯。含有較高含量的碳化物形成元素如V、W、Mo等的鋼,在500~600℃回火時,析出細小彌散的特殊碳化物質點如V4C3、Mo2C、W2C等,代替部分較粗大的合金滲碳體,使鋼的強度不再下降反而升高,即出現二次硬化(見回火)。Mo對鋼的回火脆性有阻止或減弱的作用。
③影響鋼的強化和韌化。Ni以固溶強化方式強化鐵素體;Mo、V、Nb等碳化物形成元素,既以彌散硬化方式又以固溶強化方式提高鋼的屈服強度;碳的強化作用最顯著。此外,加入這些合金元素,一般都細化奧氏體晶粒,增加晶界的強化作用。影響鋼的韌性因素比較復雜,Ni改善鋼的韌性;Mn易使奧氏體晶粒粗化,對回火脆性敏感;降低P、S含量,提高鋼的純凈度,對改善鋼的韌性有重要作用(見金屬的強化)。
『柒』 鈮的作用與用途是什麼
鈮一般被用於製作合金,最重要的應用在特殊鋼材,例如天然氣運輸管道材料。雖然這些合金的含鈮量不會超過0.1%,但加入少量的鈮即可達到強化鋼材的作用。含鈮的高溫合金具有高溫穩定性,對製造噴射引擎和火箭引擎非常有用。
鈮是第II類超導體的合金成分。這些超導體也含有鈦和錫,被廣泛應用在核磁共振成像掃描儀作超導磁鐵。 鈮的毒性低,亦很容易用陽極氧化處理進行上色,所以被用於錢幣和首飾。鈮的其他應用范疇還包括焊接、核工業、電子和光學等。
1、高溫合金
世界上很大一部份鈮以純金屬態或以高純度鈮鐵和鈮鎳合金的形態,用於生產鎳、鉻和鐵基高溫合金。這些合金可用於噴射引擎、燃氣渦輪發動機、火箭組件、渦輪增壓器和耐熱燃燒器材。鈮在高溫合金的晶粒結構中會形成γ相態。
這類合金一般含有最高6.5%的鈮。Inconel718合金是其中一種含鈮鎳基合金,各元素含量分別為:鎳50%、鉻18.6%、鐵18.5%、鈮5%、鉬3.1%、鈦0.9%以及鋁0.4%。應用包括作為高端機體材料,如曾用於雙子座計劃。
2、鈮基合金
C-103是一種鈮合金,它含有89%的鈮、10%的鉿和1%的鈦,可用於液態火箭推進器噴管,例如阿波羅登月艙的主引擎。阿波羅服務艙則使用另一種鈮合金。由於鈮在400°C以上會開始氧化,所以為了防止它變得易碎,須在其表面塗上保護塗層。
3、醫療應用
鈮在外科醫療上也佔有重要地位,它不僅可以用來製造醫療器械,而且是很好的「生物適應性材料」,因為它有極好的抗蝕性,不會與人體里的各種液體物質發生作用,並且幾乎完全不損傷生物的機體組織,對於任何殺菌方法都能適應,所以可以同有機組織長期結合而無害地留在人體里。
4、鋼鐵生產
鈮是微合金鋼生產過程中一種優秀的添加元素。在鋼中加入鈮,會使鋼結構中形成碳化鈮和氮化鈮。
這些物質可使鋼晶粒更為細致,減緩再結晶過程,以及增強鋼的淀積硬化。如此形成的鋼材具有較高的硬度、強度、可模鍛性和可焊性。微合金不銹鋼的鈮含量在0.1%以下。高強度低合金鋼的生產中需加入鈮,這類鋼材被用於汽車的結構零件中。含鈮合金還被用在運輸管道上。
5、電瓷
鈮酸鋰是一種電鐵性物質,在手提電話和光調變器中以及表面聲波設備的製造上有廣泛的應用。它的晶體結構屬於ABO3型,與鉭酸鋰和鈦酸鋇相同。鈮可以代替鉭電容器中的鉭,降低成本,但鉭電容器仍較為優勝。
存量
根據估算,鈮在地球地殼中的豐度為百萬分之20,在所有元素中排列第33位。部分科學家認為,鈮在整個地球中的含量更高,但因密度高而主要聚集在地核中。
鈮在自然界中不以純態出現,而是和其他元素結合形成礦物。這些礦物一般也含有鉭元素,例如鈳鐵礦(即鈮鐵礦,(Fe,Mn)(Nb,Ta)2O6)和鈳鉭鐵礦((Fe,Mn)(Ta,Nb)2O6)。
這些大型鈮礦藏出現在碳酸鹽岩(一種碳酸鹽、硅酸鹽火成岩)附近,亦是燒綠石的組成成分。
巴西和加拿大擁有最大的燒綠石礦藏。兩國在1950年代發現這些礦藏,至今仍是鈮精礦的最大產國。世界最大礦藏位於巴西米納斯吉拉斯州阿拉沙的一處碳酸鹽侵入岩地帶,屬於CBMM(巴西礦物冶金公司);另一礦藏位於戈亞斯,屬於英美資源,同樣是碳酸鹽侵入岩。
以上兩個礦場的產量佔世界總產量的75%。第三大礦場位於加拿大魁北克省薩格奈附近,產量佔世界7%。
以上內容參考:網路-鈮
『捌』 合金元素對鋼的組織和性能有哪些影響
1.溶解於鐵起固溶強化作用
幾乎所有合金元素均能不同程度地溶於鐵素體、奧氏體中形成固溶體,使鋼的強度、硬度提高,但塑性韌性有所下降。使鋼具有強韌性的良好配合
2.形成碳化物,起第二相強化、硬化作用
按照與碳之間的相互作用不同,常用的合金元素分為非碳化物形成元素和碳化物形成元素兩大類。碳化物形成元素包括Ti、Nb、V、W、Mo、Cr、Mn等,它們在鋼中能與碳結合形成碳化物,如TiC、VC、WC等,這些碳化物一般都具有高的硬度、高的熔點和穩定性,如果它們顆粒細小並在鋼中均勻分布時,則顯著提高鋼的強度、硬度和耐磨性。
3.使結構鋼中珠光體增加,起強化的作用
合金元素的加入,使Fe-Fe3C相圖中的共析點左移,因而,與相同含碳量的碳鋼相比,亞共析成分的結構鋼(一般結構鋼為亞共析鋼)含碳量更接近於共析成分,組織中珠光體的數量,使合金鋼的強度提高。
『玖』 化學元素對於鋼材的、、、
(1)硫和磷是生鐵中帶來而煉鋼時又未能除盡的有害元素 。。。。。。。 氫在鋼中含量甚微但對鋼的危害極大 。。。。。。。。。。 氮固溶於鐵素體中產生「應變時效」是有害的。但是當鋼中含有Al,V,Ti,,Nb..等元素時它們可與N形成細小彌撒氮化物,能細化晶粒提高鋼的強度並降低應變時效作用。。 (2) 硫 不容於鐵,而與鐵形成熔點為1190℃的FeS..FeS常與γ-Fe形成低 熔點(980℃)的共晶體,分布在奧氏體晶界上,當鋼材在1000-1200℃鍛造或軋制時,共晶體會熔化,使鋼材變脆,沿奧氏體晶界開裂。這種現象稱為熱脆。。。。。。。。。。。。。。。。。。。。。 (3)磷在鋼中全部固溶於鐵素體中,雖然有較強的固溶強化作用,但它劇烈地降低鋼的塑性和韌性,特別是低溫韌性,使鋼在低溫下變脆,這種現象稱為冷脆。。。。。。。。。 (4)鋼中微量的氫(0.5-3ml/100g)可引起「氫脆」甚至在鋼材中產生大量微裂紋,使鋼的塑性,韌性顯著下降,導致零件在使用中突然斷裂。。
『拾』 鈮對金屬性能的影響
在鋼的各種微合金化元素中,廢鈮是最有效的微合金化元素,鈮的作用如此之大,以至於鐵原子中含有豐富的鈮原子,就能達到改善鋼性能的目的。實際上鋼中加入0.001%—0.1%的鈮,就足以改變鋼的力學性能。例如:當加入0.1%的合金化元素時,提高鋼的屈服強度依次為:鈮118MPa;釩71.5MPa;鉬40MPa;錳17.6MPa;鈦為零。實際上鋼中只需加入0.03%—0.05%Nb,鋼的屈服強度便可提高30%以上。而鋼的成本每噸僅增1美元。例如:普通中碳鋼的屈服強度一般為250MPa,加入微量鈮可使強度提高到350—800MPa。
鈮作為微合金化元素加入鋼中並不改變鐵的結構,而是與鋼中的碳#氮#硫結合,改變鋼的顯微結構。鈮對鋼的強化作用主要是的是細晶強化和彌散強化,鈮能和鋼中的碳氮生成穩定的碳化物和碳氮化物。而且還可以使碳化物分散並形成具有細晶化的鋼。
鈮還可以通過誘導析出和控製冷卻速度,實現析出物彌散分布。在較寬的范圍內調整鋼的韌性水平。因此,加入鈮不僅可以提高鋼的強度,還可以提高鋼的韌性、抗高溫氧化性和耐蝕性!降低鋼脆性轉變溫度,獲得好的焊接性能和成型性能