❶ 簡述使用超聲波探傷判斷金屬內部裂紋的方法
鋼結構在現代工業中佔有重要地位,更是海洋石油行業重要的基礎設施,在國民經濟和社會發展中起到十分重要的作用。鋼結構在建造焊接過程中受到各種因素的影響,難免產生各種缺陷,甚至是裂紋等危害性較大的缺陷,若在建造過程中不及時發現並將其移除,將可能發生重大突發事件,甚至危及生命安全。因此,無損檢測在建造環節中尤為重要,目前常用的無損檢測方法有:射線檢測、超聲波檢測、磁粉檢測、滲透檢測等,而超聲波檢測由於其效率高、靈敏度高、無輻射無污染等優點,在海洋鋼結構的建造中得到廣泛的應用。
1 超聲波檢測基礎
超聲檢測是指超聲波與工件相互作用,就反射、透射和散射波進行研究,對工件進行宏觀缺陷檢測、幾何特性測量、組織結構和力學性能變化的檢測和表徵,並進而對其特定應用性進行評價的技術。
1.1 超聲波檢測原理
利用超聲波對材料中的宏觀缺陷進行探測,依據的是超聲波在材料中傳播時的一些特性,如:聲波在通過材料時能量會有損失,在遇到兩種介質的分界時,會發生反射等等,其工作原理是:
1)用某種方式向被檢試件中引入或激勵超聲波;
2)超聲波在試件中傳播並與其中的物體相互作用,其傳播的方向或特徵會被改變;
3)改變後的超聲波又通過檢測設備被檢測到,並可對其處理和分析;
4)根據接收的超聲波的特徵評估試件本身及其內部存在的缺陷特徵。
通常用以發現缺陷並對缺陷進行評估的基本信息為:
1)來自材料內部各種不連續的反射信號的存在及其幅值;
2)入射信號與接收信號之間的傳播時間;
3)聲波通過材料以後能量的衰減。
圖1 超聲檢測示意圖
1.2 超聲波檢測的優點和局限性
1.2.1 優點
與其他無損檢測方法相比,超聲檢測方法的主要優點有:
(1)適用於金屬、非金屬、復合材料等多種材料的無損評價。
(2)穿透能力強,可對較大厚度范圍的試件內部缺陷進行檢測,可進行整個試件體積的掃查。
(3)靈敏度高,可檢測到材料內部很小的缺陷。
(4)可較准確的測出缺陷的深度位置,這在很多情況下世十分必要的。
(5)設備輕便,對人體和環境無害,可作現場檢測。
1.2.2 局限性
(1)由於縱波脈沖反射法存在盲區,和缺陷取向對檢測靈敏度的影響,對位於表面和近表面的某些缺陷常常難以檢測。
(2)試件形狀的復雜性,如不規則形狀,小曲率半徑等,對超聲波檢測的課實施性有較大影響。
(3)材料的某些內部結構,如晶粒度,非均勻性等,會使靈敏度和信噪比變差。
2 橫向裂紋檢驗
橫向裂紋不僅給生產帶來困難,而且可能帶來災難性的事故。裂紋焊接中最危險的缺陷之一,他嚴重削弱了工件的承載能力和腐蝕能力,即使不太嚴重的裂紋,由於使用過程中造成應力集中,成為各種斷裂的斷裂源。正因為裂紋有如此大的危害性,像JB/T 4730, GB 11345,AWS D1.1, API RP 2X等國內外各大標准中都有「裂紋不可接受」等類似描述。而超聲波檢測對缺陷性質判定沒有射線檢測直觀,如果檢測方法不當等原因造成橫向裂紋的漏檢或誤判,其都有不良結果:若把其他缺陷判為橫向裂紋造成不必要的返修,進而影響材料韌性等性能;把裂紋判為點狀缺陷放過,則工程就存在較大的安全隱患。所以正確選擇探測方法和對回波特性分析,對橫向裂紋的超聲波檢測尤為重要。
2.1 探頭角度的選擇
縱波直探頭:橫向裂紋屬面狀缺陷,一般和探測面垂直,而0°直探頭適用於發現與探測面平行的缺陷,所以直探頭不能有效的探測出橫向裂紋。
橫波斜探頭:對同一缺陷,70°和60°探頭聲程較大,聲波能量由於被吸收和散射造成衰減嚴重,尤其只在檢測母材厚度較大的焊縫時,回波高度較低,對發現缺陷波和波形分析不利,進而影響是否為橫向裂紋的判定。而45°探頭具有聲束集中、聲程短衰減小,聲壓往復透射率高的特點,所以選用45°探頭具有良好的效果。圖2是70°,60°和45°探頭在相同的基準靈敏度的前提下,對同一橫向裂紋的回波比較:
(a)70°探頭回波 (b)60°探頭回波
(c)45°探頭回波
圖2 70°,60°和45°探頭對同一橫向裂紋的回波
2.2 橫向裂紋的掃查
圖3 焊縫UT掃查方式平面圖
常見的焊接缺陷(如夾渣、未熔合、未焊透等)大多與焊縫軸線平行或接近平行,或以點狀形式存在,針對這種情況,綜合使用圖3中的方式A、方式B和方式C即可,但該三種掃查方式對橫向裂紋等與焊縫軸線垂直(與聲束方向平行)的橫向缺陷無回波顯示,即無法被檢出。為能有效探出焊縫橫向裂紋應盡可能使聲束盡可能平行於焊縫。可用如下幾種掃查方式探測橫向裂紋:
2.2.1 騎縫掃查
如果焊縫較平滑或焊縫加強高已經打磨處理,探頭「騎」在焊縫上探測是檢查橫向裂紋的極為有效的方法,可採用在焊縫上直接掃查的方式,如圖3方式D所示。
2.2.2 斜平行掃查
若焊縫表面較為粗糙且不宜進行打磨處理,為探測出焊縫中的橫向裂紋,可用探頭與焊縫軸線成一個小角度或以平行於焊縫軸線方向移動掃查,如圖3方式E所示。 2.2.3 用雙探頭橫跨焊縫掃查法
將兩個斜探頭放在焊縫兩側,組成一發一收裝置,此時若焊縫中有橫向裂紋,發射的超聲波經反射後會被接收探頭接收從而檢出缺陷,如圖4所示。
圖4 雙探頭橫跨焊縫掃查法
該三種方法各有特點,斜平行掃查操作簡單、效率高、焊縫無需處理、耦合較好,但由於聲束方向與裂紋不能完全垂直而造成靈敏度不高;雙探頭橫跨焊縫掃查法操作精度要求高困難大、效率不高;騎縫掃查對焊縫表面要求較高,對埋弧焊或其他焊接方法但焊縫表面進過處理的焊縫,表面相對較平滑,能夠有效的耦合,該方法較為直接,且效率高,靈敏度高,所以在很多情況下「騎縫掃查」是首選。
2.3 掃查靈敏度
按照各項目業主所規定的標准調節。
3 橫向裂紋的判別
根據形狀,我們把缺陷分為點狀缺陷、線狀缺陷和面狀缺陷(裂紋、未熔合)。顯然,反射體形狀不同,超聲波反射特性必然存在一定的差異,反過來,通過分析反射波、缺陷位置、焊接工藝等信息,就可以推測缺陷的性質。
橫向裂紋具有較強的方向性,當聲束與裂紋垂直時,回波高度較大,波峰尖銳,探頭轉動時,聲束與裂紋角度變化,聲束能量被大量反射至其他位置而無法被探頭接收,回波高度急劇下降,這一特性是判定橫向裂紋的主要依據。
檢測過程中橫向裂紋的判別可以按以下步驟:
1)在掃查靈敏度下將探頭放在的焊縫縫上掃查(參考2.2節掃查方式);
2)發現橫向顯示後,找到最高波,確定是否為缺陷回波;
3)定缺陷回波後,定出缺陷的具體位置,並在焊縫上做出標記;
4)探頭圍繞缺陷位置做環繞掃查(如圖5所示);
圖5 環繞掃查示意圖 圖6 動態波形圖1
環繞掃查時回波高度基本相同,變化幅值不大,其動態波形如圖6所示,則可以判定其為點狀缺陷;若環繞掃查時其動態波形如圖7或圖8所示,結合靜態波形,可判斷為橫向裂紋,在條件允許的情況下可用同樣的方法到焊縫背面掃查確認。
圖7 動態波形圖2 圖8 動態波形圖3
5)若條件允許可打磨到裂紋深度,藉助磁粉檢驗(MT)進一步驗證。
圖9 橫向裂紋MT驗證
4 結論
超聲波探傷是檢出焊縫橫向裂紋的有效手段,尤其是厚壁焊縫,射線檢測靈敏度下降,難以發現其中的橫向裂紋。用超聲波檢測方法,選擇正確的參數、合適的掃查方式,掌握橫向裂紋的靜態和動態波形特點,能夠有效的判別橫向裂紋,這已舉措已經在海洋石油工程的各個項目中得到應用,並多次准確成功檢測出橫向裂紋,保證了多項工程質量。
❷ 不銹鋼裂紋檢測用什麼方法
X射線探傷,磁粉探傷,著色探傷。超聲波探傷發現不了細微裂紋。一般用著色探傷,比較經濟實惠,操作也比較方便。
❸ 目前金屬表面檢測的主要方法有哪些
主流金屬製品表面缺陷在線檢測方法。
一、漏磁檢測
漏磁檢測技術廣泛應用於鋼鐵產品的無損檢測。其檢測原理是,利用磁源對被測材料局部磁化,如材料表面存在裂紋或坑點等缺陷,則局部區域的磁導率降低、磁阻增加,磁化場將部分從此區域外泄,從而形成可檢驗的漏磁信號。在材料內部的磁力線遇到由缺陷產生的鐵磁體間斷時,磁力線將會發生聚焦或畸變,這一畸變擴散到材料本身之外,即形成可檢測的磁場信號。採用磁敏元件檢測漏磁場便可得到有關缺陷信息。因此,漏磁檢測以磁敏電子裝置與磁化設備組成檢測感測器,將漏磁場轉變為電信號提供給二次儀表。
漏磁檢測技術的整個過程為:激磁-缺陷產生漏磁場-感測器獲取信號-信號處理-分析判斷。在磁性無損檢測中,磁化時實現檢測的第一步,它決定著被測量對象(如裂紋)能不能產出足夠的可測量和可分辨的磁場信號,同時也影響著檢測信號的性能,故要求增強被測磁化缺陷的漏磁信號。被測構件的磁化由磁化器來實現,主要包括磁場源和磁迴路等部分。因此,針對被測構件特點和測量目的,選擇合適的磁源和設計磁迴路是磁化器優化的關鍵。
漏磁檢測金屬表面缺陷的物理基礎使帶有缺陷的鐵磁件在磁場中被磁化後,在缺陷處會產生漏磁場,通過檢測漏磁場來辯識有無缺陷。因此,研究缺陷漏磁場的特點,確定缺陷的特徵,就成為漏磁檢測理論和技術的關鍵。要測量漏磁場,測量裝置須具有較高的靈敏度,特別是能測空間點磁場,還應有較大的測量范圍和頻帶;測量裝置須具有二維及三維的精確步進或調整能力,以確定感測器的空間位置;同時,應用先進的信號處理技術去除雜訊,確定實際的漏磁場量。Foerster,Athertion 已成功應用霍爾器件檢測缺陷,霍爾器件可在z—Y二維空間步進的最小間隔分別為2μm和0.1μm。
漏磁檢測不僅能檢測表面缺陷,且能檢測內部微小缺陷;可檢測到5X10mm。的微小缺陷;造價較低廉。其缺點是,只能用於金屬材料的檢測,無法識別缺陷種類。目前,漏磁檢測在低溫金屬材料缺陷檢測方面已進入實用階段。如日本川崎公司千葉廠於1993年開發出在線非金屬夾雜物檢測裝置;日本NKK公司福岡廠於同年研製出一種超高靈敏度的磁敏感測器,用於檢測鋼板表面缺陷。
二、紅外線檢測與技術
紅外線檢測是通過高頻感應線圈使連鑄板坯表面產生感應電流,在高頻感應的集膚效應作用下,其穿透深度小於1 mm,且在表面缺陷區域的感應電流會導致單位長度的表面上消耗更多電能,引起連鑄板坯局部表面的溫度上升。該升溫取決於缺陷的平均深度、線圈工作頻率、特定輸入電能,以及被檢鋼坯電性能、熱性能、感應線圈寬度和鋼運動速度等因素。當其它各種因素在一定范圍內保持恆定時,就可通過檢測局部溫升值來計算缺陷深度,而局部溫升值可通過紅外線檢測技術加以檢定。利用該技術,挪威Elkem公司於1990年研製出Ther—mOMatic連鑄鋼坯自動檢測系統,日本茨城大學工學部的岡本芳三等在檢測板坯試件表面裂紋和微小針孔的實驗研究中也利用此法得到較滿意的結果。
三、超聲波探傷技術
超聲波檢測是利用聲脈在缺陷處發生特性變化的原理來檢測。接觸法是探頭與工件表面之間經一層薄的起傳遞超聲波能量作用的耦合劑直接接觸。為避免空氣層產生強烈反射,在探測時須將接觸層間的空氣排除干凈,使聲波入射工件,操作方便,但其對被測工件的表面光潔度要求較高。液浸法是將探頭與工件全部浸入於液體或探頭與工件之間,局部以充液體進行探傷的方法。脈沖反射法是當脈沖超聲波入射至被測工件後,聲波在工件內的反射狀況就會顯示在熒光屏上,根據反射波的時間及形狀來判斷工件內部缺陷及材料性質的方法。目前,超聲波探傷技術已成功應用於金屬管道內部的缺陷檢測。
四、光學檢測法
機器視覺是以圖像處理理論為核心,屬於人工智慧范疇的一個領域,它是以數字圖像處理、模式識別、計算機技術為基礎的信息處理科學的重要分支,廣泛應用於各種無損檢測技術中。基於機器視覺的連鑄板坯表面缺陷檢測方法的基本原理是:一定的光源照在待測金屬表面上,利用高速CCD攝像機獲得連鑄板坯表面圖像,通過圖像處理提取圖像特徵向量,通過分類器對表面缺陷進行檢測與分類。20世紀70年代中期,El本Jil崎公司就開始研製鍍錫板在線機器視覺檢測裝置 。1988年,美國Sick光電子公司也成功地研製出平行激光掃描檢測裝置,用以在線檢測金屬表面缺陷。基於機器視覺的表面在線檢測與分類器設計的研究工作目前在國內尚處於起步階段。1990年,華中理工大學採用激光掃描方法測量冷軋鋼板寬度和檢測孔洞缺陷,並開發了相應的信號處理電路;1995年又研製出冷軋連鑄板坯表面軋洞、重皮和邊裂等缺陷檢測和最小帶寬測量的實驗系統。1996年,寶鋼與原航天部二院聯合研製出冷軋連鑄板坯表面缺陷的在線檢測系統,並進行了大量的在線試驗研究。近年來,北京科技大學、華中科技大學等也研製出較為實用化的在線檢測系統。
從檢測技術的觀點來看,基於機器視覺的鋼表面缺陷檢測系統面臨困境:①要求檢測到的缺陷的幾何尺寸越來越小,有的甚至小於0.1 mm;② 檢測對象可能處於運動狀態,導致採集的圖像抖動較大;③現場環境較惡劣,往往受煙塵、油污、溫度高等因素的影響,引起缺陷圖像信噪比下降;④表面缺陷的多樣性(如冷軋連鑄板坯表面可達100多種),不同缺陷之間的光學特性、電磁特性不同;有的缺陷之間的差異不明顯。因此,基於機器視覺的連鑄板坯表面缺陷分類器要求具有收斂速度快、魯棒性好、自學習功能等特點。
❹ 有什麼油可以檢測鋼材表面有沒有裂縫
油罐作為存儲易燃易爆油品的金屬容器,在製造過程中和製作完成後,雙層油罐的質量檢測是必不可少的步驟。
1、油罐罐壁試驗:對新建或者修好的油罐進行充水試驗,檢測油罐罐壁是否嚴密,並對油罐壁板和焊縫進行外觀檢查。
2、罐體壁厚檢測:材料入場,必須進行驗收入庫,地面油罐主要採用超聲波進行檢測,效率較高。
3、煤油嚴密性檢查焊縫:煤油滲透力極強,在罐壁上的焊縫塗上煤油進行嚴密性檢查。除去臟物,塗上白粉乳液,乾燥後在另一側焊縫上噴塗煤油,如煤油噴塗12時後(氣溫低情況下可延長時間),塗白色焊縫的表面無斑點,則焊縫符合要求。
4、罐底檢測:漏磁掃描技術檢測油罐底板的腐蝕狀況(如腐蝕深度與面積,裂紋的長度等)。此儀器的檢測原理是:漏磁掃描儀檢測油罐罐底,當油罐底板有缺陷時,磁場分布則會發生變化,感測器就可以檢測到。缺點是會遺漏掉一些區域,不能全面對罐底進行檢測。檢測時油罐底無雜物、乾燥。另外也可將氦氣注入油罐底板,檢測罐底泄漏點。
5、油罐底板焊縫檢測:真空試漏法嚴密性檢測底板時,在焊縫塗肥皂水,蓋真空盒進行觀察。
6、測量油罐罐底壓力、計算罐內介質重量進行油罐泄漏檢測。如質量持續減少,則說明發生泄漏。
7、通過檢測油罐內油品體積的變化實現檢漏,此法對於微小滲漏不易發現。
8、往水裡加染料,水壓試驗檢測泄漏點。另外還可以聽取罐壁上的聲音或對罐壁安裝聲波感測器、在罐區設置觀察井監測、使用量油尺進行油罐液位檢測檢漏。
9、油罐在進行收發作業時,根據實際進出量的差值進行檢漏。
❺ 如何通過分析頻譜圖來檢測材料內部裂紋
常用的無損檢測方法有以下幾種:磁粉探傷、滲透探傷、超聲波探傷、射線檢測等。裂紋易於產生的應力集中部位,如葉片進水邊正面(壓力分布面)靠近上冠處、葉片出水邊正面的中部、葉片出水邊背面靠近上冠處、葉片與下環連接區等部位,由於透照布置比較困難,不能用射線透照法進行無損探傷。根據水輪機轉輪葉片表面比較粗糙、結構復雜和厚度變化大的特點,一般應採用滲透、磁粉、超聲波的方法進行無損檢測。 3.1 超聲波檢測 超聲波探傷方法對裂紋、未熔合等面積型缺陷的檢出率較高,適宜檢驗較大厚度的工件,但是對於鑄鋼、奧氏體不銹鋼材,由於粗大晶粒的晶界會反射聲波,在屏幕上出現大量的「草狀波」,容易與缺陷波混淆,影響檢測可靠性,限制了超聲波探傷方法在鑄鋼制水輪機轉輪葉片上無損檢測的應用。探測頻率越高,雜波就越顯著,為了減小晶界反射波的影響,我們採用了低頻探頭(2MHz)對鑄鋼轉輪進行超聲波探傷,發現反射信號以後再用高頻探頭(4MHz)進行定量,實踐證明這是可行的。 3.2 滲透探傷 滲透探傷方法簡單易行,顯示直觀,適合於大型和不規則工件的檢查和現場檢修檢查。但是,滲透探傷方法是利用滲透能力強的彩色滲透液滲入到裂紋等缺陷的縫隙中,再利用吸附能力強的白色顯像劑,將滲透液吸出來以顯示缺陷的,因此,只能檢查表面開口的缺陷。 3.3 磁粉探傷 磁粉探傷方法是利用工件磁化後,在材料中的不連續部位(包括缺陷造成的不連續性和結構、形狀、材質等原因造成的不連續性),磁力線會發生畸變,部分磁力線有可能逸出材料表面形成漏磁場,這時在工件上撒上磁粉,漏磁場就會吸附磁粉,形成與缺陷形狀相近的磁粉堆積,從而顯示缺陷。因此,磁粉探傷適用於鐵磁材料探傷,可以檢出表面和近表面缺陷,但是有些部位由於難以磁化而無法探傷。 第五種射線探傷法(RT),能比較直觀地對缺陷定性和定量,底片可長期保存。此方法已廣泛應用於鍋爐壓力容器壓力管道的檢驗。但對於微裂紋檢測,卻受到微裂紋本身取向及其寬度和深度的影響,加之透照、暗室處理等諸多環節因素,其過程處理稍有不當,結果將事倍功半,檢測靈敏度降低,甚至無法檢出。 3裂紋檢測的主要方法 3.1磁粉法 此法是利用高磁導率的磁粉細粒,在進入由於裂紋而引起的漏磁場時,就會被吸住留下,從而形成磁痕。由於漏磁場比裂紋寬,故積聚的磁粉用肉眼容易看出。其應用非常簡單,直接檢測表面裂紋,特點是顯示直觀、操作簡單,它是最常用的方法之一。但磁粉檢測也存在如下問題:無法檢測應力集中,而應力集中往往會引起疲勞裂紋。檢測時必須對被檢工件磁化,而形狀復雜的承載部件磁化時有一定的難度。為了清晰的顯示磁痕,檢測前,必須對被檢件表面進行表面處理,即清理檢測區域影響磁痕顯示的油漆和膩子等,這不僅大大的增加了檢測成本、檢測時間,而且打磨過程本身會使被檢工件形成新的缺陷。檢測時速度慢,無法對整個承載部件全面檢查,只能在目測的基礎上重點檢測一些部位,使得檢測存在一定的隱患。檢測結果受人為因素影響,降低了檢測的准確度及可靠性。檢測後為了不影響構件的性能,往往要求對檢測件進行退磁,這也增加了檢測成本。目前主要應用於汽車零部件等的探傷。 3.2滲透法 滲透法是利用毛細現象來進行探傷的方法。對於表面光滑而清潔的零部件,用一種有色或帶有熒光的、滲透性很強的液體,塗覆於待探零部件的表面。若表面有肉眼不能直接觀察的微裂紋,由於該液體的滲透性很強,它將沿著裂紋滲透到其根部。然後將表面的滲透液洗去,再塗上對比度較大的顯示液。放置片刻後,由於裂紋很窄,毛細現象作用顯著,原滲透到裂紋內的滲透液將上升到表面並擴散,在襯底上顯出較粗的線條,從而顯示出裂紋露於表面的形狀,因此,常稱為著色探傷。若滲透液採用的是帶熒光的液體,由毛細現象上升到表面的液體,則會在紫外燈照射下發出熒光,從而更能顯示出裂紋露於表面的形狀,故常常又將此時的滲透探傷直接稱為熒光探傷。此探傷方法也可用於金屬和非金屬表面探傷。其使用的探傷液劑有較大氣味,常有一定毒性。滲透法對表面開口裂紋檢測靈敏度很高,但對表面有塗層的工件不佳; 3.3超聲法 超聲波檢測採用高頻率、高定向聲波來測量材料的厚度、發現隱藏的內部裂紋,分析諸如金屬、塑料、復合材料、陶瓷、橡膠以及玻璃等材料的特性。超聲波儀器使用人耳聽力極限之外的頻率,向被檢測材料內發射短脈沖聲能,而後儀器監測和分析經過反射或透射的聲波信號來獲取檢測結果。 超聲導波方法可細分為接觸式檢測方法、非接觸式檢測方法,其作用機理為當超聲入射至被測工件時,產生反射波,根據反射波的時間及形狀來判斷工件的裂紋。這種檢測方法有時會產生盲區,發生阻塞現象,不能發現近距離裂紋。它常用於管道內壁的裂紋檢測,能較為精確的判斷出裂紋位置、周向開口裂紋長度、管壁減薄程度及裂紋截面積。 表面波對於表面上的復層油污不光潔等反應敏感,並被大量衰減。利用表面波測定裂紋深度有2種方法: (1)表面波入射到上表面開口裂紋時,會產生一個反射回波,其波高與裂紋深度有關,當裂紋深度較小時,波高隨裂紋深度增加而升高,這種方法只適用於測試深度較小的表面裂紋。當裂紋深度超過2倍波長時,測試誤差較大。 (2)利用表面波在裂紋開口處和尖端處產生的2個反射回波及回波前沿所對應的一起水平刻度差值來確定裂紋深度,此法適用於深度較大的裂紋。裂紋深度太小,裂紋表面過於粗糙會導致測試誤差增加。如果裂紋中充滿了油和水,誤差會更大。 相控陣檢測是一種特殊的超聲檢測技術。它使用復雜的多晶片陣列探頭及功能強大的軟體來操控高頻聲束,使其通過被檢測材料,並顯示保真(或幾何校正)的回波圖像。所生成的材料內部結構的圖像類似於醫用超聲波圖像。對諸如關鍵金屬結構、管道焊接、航空航天復合材料等的檢測,相控陣技術所提供的附加信息是非常有價值的。 目前激光超聲技術、超聲紅外熱成像技術等的發展為超聲技術在裂紋檢測方面的應用提供了有益的啟示。 3.4漏磁法 所謂漏磁檢測是指,鐵磁材料被磁化達到磁飽和後,其表面和近表面缺陷與空氣邊界出現磁導率躍變,裂紋及附近的磁阻會增加,裂紋附近的磁場會因此發生畸變而形成漏磁通,通過檢測漏磁場即可確定鐵磁性金屬結構上的應力和變形集中區,進而發現缺陷的非破壞檢測技術。從整個檢測過程來說,漏磁檢測可以分為以下幾個部份: 測試系統是基於金屬磁記憶效應原理檢測鐵磁管件裂紋,診斷評估其應力狀態和集中區域,為及時處理或更換管件提供科學依據。鐵磁體在形變和微弱地球磁場的作用下產生磁記憶現象的內部原因取決於鐵磁晶體的微觀結構特點,是由於磁彈性作用的結果。 漏磁場檢測方法是由感測器獲取信號,計算機判斷有無缺陷,可以從根本上解決人為因素的影響,具有較高的檢測可靠性,也易於實現自動化,檢測效率很高。在一定條件下,漏磁通信號的峰值和表面裂紋的深度有很好的線性關系。因此這種方法不僅可以檢測裂紋的方位,還可對裂紋的危險程度作進一步判斷,這是實現非破壞評價的基礎。但這種檢測方法也有一定的局限性。和磁粉檢測一樣它只適合於鐵磁材料的表面檢測,而且檢測靈敏度較低,檢測得到的信號相對簡單,只能給出裂紋的初步量化,不適合檢測形狀復雜的試件 實際工業生產中,漏磁檢驗方法被大量應用於鋼鈹、鋼棒、鋼管的自動化檢測。特別值得指出的是,漏磁場檢測是地埋輸油管線等最主要的檢測方法,採用漏磁技術的「管道豬」可在地下管道中爬行300km。在管道的檢查中,在厚度高達30mm的壁厚范圍內,可同時檢測內外壁缺陷。該技術也應用於火炮、飛機、導彈、彈葯、鐵道機車、石油等應用領域。 3.5紅外線法 紅外檢測常用於高溫或低溫承壓設備內部保溫層狀態的檢測與評價,而熱彈性紅外檢測技術適用於各種特種設備高應力集中和疲勞損傷部位的檢測;許多高溫特種設備內部有一層珍珠岩保溫材料,若其出現裂紋或部分脫落,殼體會出現超溫運行,引起材料的熱損傷,採用常規紅外熱成像技術即可發現該局部超溫現象。特種設備上的高應力集中部位在大量疲勞載荷的作用下,出現的早期疲勞損傷會顯示在熱斑跡圖像上。紅外無損檢測技術是一種非接觸式的檢測技術,遠距離空間解析度高、安全可靠對人體無害、靈敏度高、檢測范圍廣、速度快,對被測物體沒有任何影響。 3.6渦流法 渦流法檢測是利用電磁感應原理實現的。電渦流感測器的線圈作為振盪電路中諧振迴路的一個電感元件,加電工作時在線圈裡會產生高頻振盪電流。而感測器接近試件表面時,線圈周圍的高頻磁場在金屬表面和內層感應出高頻電流,即渦流。而渦流產生的損耗及反磁通又通過耦合反射到感測器的線圈中去,當感測器在試件表面移動時遇到裂紋處或裂紋深度寬度有變化時,渦流磁場對線圈的反射作用不同,線圈等效阻抗電感量也不同,進而影響迴路的諧振頻率和幅頻特性,分析處理這種變化就可判斷試件有無裂紋或裂紋深淺寬窄。 渦流技術對表面開口裂紋很靈敏,可以在不去除表面塗層的情況下方便可靠地檢測出金屬材料的表面和近表面裂紋。其特點是檢測速度快、裂紋靈敏度高、適用方便,缺點是不能准確區分裂紋性質、受干擾因素多、不確定性大。它可分為單頻和多頻渦流檢測技術,單頻渦流檢測只能顯示渦流信號的幅值變化,不能抑制,不能區別提離、抖動等干擾信號,定性、定量均有一定困難。多頻渦流檢測技術的發展對上述問題做了較好的解決,多頻渦流檢測就是用幾種不同頻率同時激勵探頭,具有阻抗平面圖形相位顯示和紋幅值顯示功能。根據不同頻率激勵信號所取得的測量結果,通過實時矢量相加減和處理,抑制不需要的干擾信號,具有去偽存真的功能,阻抗分析能在檢測中分離出探頭擺動信號和提離信號等的干擾。常規渦流方法只適用於檢測表面光滑母材上的裂紋,對焊縫上的裂紋檢測會因焊縫在高溫熔合時產生的鐵磁性變化和表面高低不平而出現雜亂無序的磁干擾而無法實施。只有基於復平面分析的金屬材料焊縫電磁渦流檢測技術,採用特殊的點式探頭(電流擾動磁敏探頭)檢測焊縫的表面裂紋才可以允許焊縫表面較為粗糙或帶有一定厚度的防腐層。 脈沖渦流檢測方法是一種新近發展的技術。按照傅立葉變換,一個脈沖信號可以展開為無限多個諧波分量之和,因而,具有較寬的頻譜。當用脈沖電流作激勵信號進行渦流檢測試驗時,蘊含著豐富的被測信息。而且,激勵的脈沖特性使渦流在金屬中存在一個很高的峰值,易於觀察和測量;能夠進行傳統渦流檢測所不能進行的瞬態分析。 目前工程上能檢測出在0.3~0.4mm 塗層下最小裂紋深度為0.5~2mm 的裂紋。