⑴ 鋼材的主要力學性能指標有哪些各指標可以用來衡量鋼材哪方面的性能
鋼材的主要力學性能指標和衡量的性能如下:
1、韌性:金屬材料抵抗沖擊載荷而內不被破壞的能力。容
2、硬度:金屬材料表面抵抗比他更硬的物體壓入的能力。
3、塑性:金屬材料在載荷作用下產生永久變形而不破壞的能力。
4、強度:金屬材料在靜載荷作用下抵抗永久變形或斷裂的能力。
5、脆性:脆性是指材料在損壞之前沒有發生塑性變形的一種特性。
6、疲勞強度:材料零件和結構零件對疲勞破壞的抗力。
7、屈服點或屈服應力:屈服點或屈服應力是金屬的應力水平,用MPa度量。
按化學成分分類鋼鐵:
碳素鋼 按其含碳量的不同,可分為:
1、低碳鋼--含碳量wc≤0.25%。
2、中碳鋼--含碳量wc>0.25%≤0.60%。
3、高碳鋼--含碳量wc>0.60%高碳鋼一般在軍工業和工業醫療業比較多。
⑵ 鋼筋的力學性能是指哪些具體指標
鋼筋主要作用於建材,建築鋼材的力學性能有:抗拉性能、沖擊韌性、耐疲勞性x0dx0a---抗拉性能是建築鋼材最重要的力學性能。鋼材受拉時,在產生應力的同時,相應地產生應變。應力和應變的關系反映出鋼材的主要力學特徵。x0dx0a---鋼材的沖擊韌性是處在簡支梁狀態的金屬試樣在沖擊負荷作用下折斷時的沖擊吸收功。x0dx0a受交變荷載反復作用時,鋼材在應力低於其屈服強度的情況下突然發生脆性斷裂破壞的現象,稱為疲勞破壞。疲勞破壞是在低應力狀態下突然發生的,所以危害極大,往往造成災難性的事故。 x0dx0a--在一定條件下,鋼材疲勞破壞的應力值隨應力循環次數的增加而降低。鋼材在無窮次交變荷載作用下而不至引起斷裂的最大循環應力值,稱為疲勞強度極限,實際測量時常以2×106次應力循環為基準。一般來說,鋼材的抗拉強度高,其疲勞極限也較高。
⑶ 閽㈡潗鐨勫己搴︼紝紜搴︼紝鍒氬害鏄浠涔堟剰鎬濓紵
鍒氬害錛屽己搴﹀拰紜搴︽墍鎸囩殑鍔涘︽ц兘涓嶅悓銆
鍒氬害錛氭寚鏉愭枡鎴栫粨鏋勫湪鍙楀姏鏃舵姷鎶楀脊鎬у彉褰㈢殑鑳藉姏銆傛槸鏉愭枡鎴栫粨鏋勫脊鎬у彉褰㈤毦鏄撶▼搴︾殑琛ㄥ緛銆傛潗鏂欑殑鍒氬害閫氬父鐢ㄥ脊鎬фā閲廍鏉ヨ閲忋傚湪瀹忚傚脊鎬ц寖鍥村唴錛屽垰搴︽槸闆朵歡鑽瘋澆涓庝綅縐繪垚姝f瘮鐨勬瘮渚嬬郴鏁幫紝鍗沖紩璧峰崟浣嶄綅縐繪墍闇鐨勫姏銆
紜搴︼細鏉愭枡灞閮ㄦ姷鎶楃‖鐗╁帇鍏ュ叾琛ㄩ潰鐨勮兘鍔涚О涓虹‖搴︺傚滻浣撳瑰栫晫鐗╀綋鍏ヤ鏡鐨勫矓閮ㄦ姷鎶楄兘鍔涳紝鏄姣旇緝鍚勭嶆潗鏂欒蔣紜鐨勬寚鏍囥
寮哄害錛氳〃紺哄伐紼嬫潗鏂欐姷鎶楁柇瑁傚拰榪囧害鍙樺艦鐨勫姏瀛︽ц兘涔嬩竴銆傚父鐢ㄧ殑寮哄害鎬ц兘鎸囨爣鏈夋媺浼稿己搴﹀拰灞堟湇寮哄害錛堟垨灞堟湇鐐癸級銆傞摳閾併佹棤鏈烘潗鏂欐病鏈夊眻鏈嶇幇璞★紝鏁呭彧鐢ㄦ媺浼稿己搴︽潵琛¢噺鍏跺己搴︽ц兘銆傞珮鍒嗗瓙鏉愭枡涔熼噰鐢ㄦ媺浼稿己搴︺傛壙鍙楀集鏇茶澆鑽楓佸帇緙╄澆鑽鋒垨鎵杞杞借嵎鏃跺垯搴斾互鏉愭枡鐨勫集鏇插己搴︺佸帇緙╁己搴﹀強鍓鍒囧己搴︽潵琛ㄧず鏉愭枡鐨勫己搴︽ц兘銆
鍘嬪叆紜搴
鐢ㄤ竴瀹氱殑杞借嵎灝嗚勫畾鐨勫帇澶村帇鍏ヨ嫻嬫潗鏂欙紝鏍規嵁鏉愭枡琛ㄩ潰灞閮ㄥ戞у彉褰㈢殑紼嬪害姣旇緝琚嫻嬫潗鏂欑殑杞紜錛屾潗鏂欒秺紜錛屽戞у彉褰㈣秺灝忋傚帇鍏ョ‖搴﹀湪宸ョ▼鎶鏈涓鏈夊箍娉涚殑鐢ㄩ斻傚帇澶存湁澶氱嶏紝濡備竴瀹氱洿寰勭殑閽㈢悆銆侀噾鍒氱煶鍦嗛敟銆侀噾鍒氱煶鍥涙1閿ョ瓑銆
杞借嵎鑼冨洿涓哄嚑鍏嬪姏鑷沖嚑鍚ㄥ姏錛堝嵆鍑犲嶮姣鐗涢】鑷沖嚑涓囩墰欏匡級銆傚帇鍏ョ‖搴﹀硅澆鑽蜂綔鐢ㄤ簬琚嫻嬫潗鏂欒〃闈㈢殑鎸佺畫鏃墮棿涔熸湁瑙勫畾銆備富瑕佺殑鍘嬪叆紜搴︽湁甯冩皬紜搴︺佹礇姘忕‖搴︺佺淮姘忕‖搴﹀拰鏄懼井紜搴︾瓑銆
媧涙皬紜搴
榪欑嶇‖搴︽祴瀹氭硶鏄緹庡浗鐨凷錛嶱錛庢礇鍏嬮煢灝斾簬1919騫存彁鍑虹殑錛屽畠鍩烘湰涓婂厠鏈嶄簡甯冩皬嫻嬪畾娉曠殑涓婅堪涓嶈凍銆傛礇姘忕‖搴︽墍閲囩敤鐨勫帇澶存槸閿ヨ掍負120擄鐨勯噾鍒氱煶鍦嗛敟鎴栫洿寰勪負1/16鑻卞革紙1鑻卞哥瓑浜25.4姣綾籌級鐨勯挗鐞冿紝騫剁敤鍘嬬棔娣卞害浣滀負鏍囧畾紜搴﹀肩殑渚濇嵁銆
嫻嬮噺鏃訛紝鎬昏澆鑽峰垎鍒濊澆鑽峰拰涓昏澆鑽鳳紙鎬昏澆鑽峰噺鍘誨垵杞借嵎錛変袱嬈℃柦鍔狅紝鍒濊澆鑽蜂竴鑸閫夌敤10鍗冨厠鍔涳紝鍔犺嚦鎬昏澆鑽峰悗鍗稿幓涓昏澆鑽鳳紝騫朵互榪欐椂鐨勫帇鐥曟繁搴︽潵琛¢噺鏉愭枡鐨勭‖搴︺
鍙傝冭祫鏂欙細鐧懼害鐧劇戱細紜搴
鐧懼害鐧劇戱細寮哄害
鐧懼害鐧劇戱細鍒氬害
⑷ 請問一下鋼結構的力學性能是什麼
鋼材的力學性能是指標准條件下鋼材的屈服強度、抗拉強度、伸長率、冷彎性能和沖擊韌性等,也稱機械性能。
1. 屈服強度
鋼材單向拉伸應力—應變曲線中屈服平台對應的強度稱為屈服強度,也稱屈服點,是建築鋼材的一個重要力學特徵。屈服點是彈性變形的終點,而且在較大變形范圍內應力不會增加,形成理想的彈塑性模型。低碳鋼和低合金鋼都具有明顯的屈服平台,而熱處理鋼材和高碳鋼則沒有。
2. 抗拉強度
單向拉伸應力—應變曲線中最高點所對應的強度,稱為抗拉強度,它是鋼材所能承受的最大應力值。由於鋼材屈服後具有較大的殘余變形,已超出結構正常使用范疇,因此抗拉強度只能作為結構的安全儲備。
3. 伸長率
伸長率是試件斷裂時的永久變形與原標定長度的百分比。伸長率代表鋼材斷裂前具有的塑性變形能力,這種能力使得結構製造時,鋼材即使經受剪切、沖壓、彎曲及捶擊作用產生局部屈服而無明顯破壞。伸長率越大,鋼材的塑性和延性越好。
屈服強度、抗拉強度、伸長率是鋼材的三個重要力學性能指標。鋼結構中所有鋼材都應滿足規范對這三個指標的規定。
4. 冷彎性能
根據試樣厚度,在常溫條件下按照規定的彎心直徑將試樣彎曲180°,其表面無裂紋和分層即為冷彎合格。冷彎性能是一項綜合指標,冷彎合格一方面表示鋼材的塑性變形能力符合要求,另一方面也表示鋼材的冶金質量(顆粒結晶及非金屬夾雜等)符合要求。重要結構中需要鋼材有良好的冷、熱加工工藝性能時,應有冷彎試驗合格保證。
5. 沖擊韌性
沖擊韌性是鋼材抵抗沖擊荷載的能力,它用鋼材斷裂時所吸收的總能量來衡量。單向拉伸試驗所表現的鋼材性能都是靜力性能,韌性則是動力性能。韌性是鋼材強度、塑性的綜合指標,韌性越低則發生脆性破壞的可能性越大。韌性值受溫度影響很大,當溫度低於某一值時將急劇下降,因此應根據相應溫度提出要求。
⑸ 衡量鋼材力學性能的四大指標是什麼
衡量
鋼材
力學性能
的四大指標:
1.
強度:鋼材在外力作用下,抵抗過大(
塑性
)變形和斷裂的能力。
應力
所能達到的某些
最大值
,也是材料
本構關系
曲線
上的某些應力
特徵點
。
指標:屈服點fy(σs)
極限強度fu(σb)
彈性:鋼材在外力作用下產生變形,在
外力
取消後恢復原狀的性能。
指標:比例極限fp,
彈性極限
fe,
彈性模量
E
σ<fy理想的彈性體:變形小且可恢復,且有強度儲備
σ≥
fy理想的塑性體:變形大且不可恢復,也沒有強度儲備
所以一般可將鋼材視為理想的
彈塑性
材料。通常取屈服點作為
強度標准值
,而且取受拉和受壓的屈服點相同。一則極限強度與屈服點之間的強度差作為儲備,留有強度餘地;二則屈服點對應的應變(
宏觀
為變形)很小,可以滿足正常使用的要求,而極限強度對應的應變(變形)很要大近20倍左右,無法滿足正常使用的要求。
2.
塑性:鋼材受力斷裂過程中發生不能恢復的殘余變形的能力。
指標:伸長率
說明:因標距不同,有δ5(l0=5d)和δ10(l0=10d),但後一種已
基本上
不再採用,一則兩者共存容易產生混淆,二則可節省試件鋼材。
斷面收縮率
後者與標距無關,
表徵
塑性較前者更好,但
測量誤差
較大。塑性越好,越不容易發生
脆性斷裂
,受力過程中,應力和
內力
重分布就越充分,設計就越安全,破壞前的預兆越明顯。Z向(
厚度
方向性能)
鋼板
就是採用厚度方向拉伸的斷面收縮率作為性能
級別
的劃分
依據
。
3.
冷彎性能:常溫下鋼材承受彎曲加工變形的能力。
將試件冷彎180o而不出現
裂紋
或分層。
定性指標:合格或不合格。
冷彎性能合格的鋼材才具有良好的常溫加工
工藝性能
。
4.
韌性:鋼材在沖擊
荷載
作用下,變形和斷裂過程中吸收
機械能
的能力。
綜合反映鋼材的內在質量及力學性能,是強度和塑性的綜合指標(σ~ε曲線和
坐標軸
圍成的
面積
)。是衡量鋼材抵抗因
低溫
、應力集中、沖擊荷載等作用而脆性斷裂的能力。
指標:沖擊功Akv
原為梅氏(Mesnager)U形
缺口
試件,現採用
夏比
(Charpy)
V形缺口試件。
⑹ 什麼是鋼材的技術性質
屈服強度和抗拉強度。
鋼材的技術性質——力學性能
1.抗拉性能
抗拉性能是鋼材最主要的技術性能,通過拉伸試驗可以測得屈服強度、抗拉強度和伸長率,這些是鋼材的重要技術性能指標。
低碳鋼的抗拉性能可用受拉時的應力一應變圖來闡明。
低碳鋼從受拉到拉斷,經歷了如下四個階段:
(1)彈性階段
oa為彈性階段。在oa范圍內,隨著荷載的增加,應力和應變成比例增加。如卸去荷載,則恢復原狀,這種性質稱為彈性。oa是一直線,在此范圍內的變形,稱為彈性變形。a點所對應的應力稱為彈性極限,用σP表示。在這一范圍內,應力與應變的比值為一常量,稱為彈性模量,用E表示,即 。彈性模量反映了鋼材的剛度。是鋼材在受力條件下計算結構變形的重要指標。碳素結構鋼Q235的彈性模量E=(2.0~2.1)×105MPa,彈性極限σP=(180~200)MPa。
(2)屈服階段
ab為屈服階段。在ab曲線范圍內,應力與應變不能成比例變化。應力超過σP後,即開始產生塑性變形。應力到達Reh之後,變形急劇增加,應力則在不大的范圍內波動,直到b點止。Reh點是上屈服強度,ReL點是下屈服強度,ReL也可稱為屈服極限,當應力到達ReL時,鋼材抵抗外力能力下降,發生「屈服」現象。ReL是屈服階段應力波動的次低值,它表示鋼材在工作狀態允許達到的應力值,即在ReL之前,鋼材不會發生較大的塑性變形。故在設計中一般以下屈服強度作為強度取值的依據。碳素結構鋼Q235的ReL應不小於235MPa。
(3)強化階段
bc為強化階段。過b點後,抵抗塑衡遲性變形的能力又重新提高,變形發展速度比較快,隨著應力的提高而增加。對應於最高點C的應力,稱為抗拉強度,用Rm表示, (Fm為c點時荷載,S0為試件受力截面面積)。
抗拉強度不能直接利用,但下屈服強度和抗拉強度的比值(即屈強比ReL/Rm)卻能反映鋼材的安全可靠程度和利用率。屈強比越小,表明材料的安全性和可靠性越高,材料不易發生危險的脆性斷裂。如果屈強比太小,則利用率低,造成鋼材浪費。碳素結構鋼Q235的Rm應不小於375MPa,屈強比在0.58~0.63之間。
對於在外力作用下屈服告寬現象不明顯的硬鋼類,規定產生殘余變形為0.2%L0時的應力作為屈服強度,用 表示。
(4)頸縮階段
cd為頸縮階段。過C點,材料抵抗變形的能力明顯降低。在cd范圍內,應變迅速增加,而應力則反而下降,變形不能再是均勻的。鋼材被拉長,並在變形最大處發生「頸縮」,直至斷裂。
將拉斷的鋼材拼合後,測出標距部分的長度,便可按下式求得其斷後伸長率A:
式中 L0——試件原始標距長度,mm;
Lu——試件拉斷後標距部分的長度,mm。
以A和 分別表示L0=5d0和L0=10d0時的斷後伸長率,d0為試件的原直徑或厚度。對於同一鋼材,A大於 。
伸長率反映了鋼材的塑性大小,在工程中具有重要意義。塑性大,鋼質軟,結構塑性變形大,影響使用。塑性小,鋼質硬脆,超載後易斷裂破壞。塑咐友李性良好的鋼材,偶爾超載、產生塑性變形,會使內部應力重新分布,不致由於應力集中而發生脆斷。
2.沖擊韌性
沖擊韌性是指鋼材抵抗沖擊荷載作用的能力。
鋼材的沖擊韌性是用標准試件(中部加工有V型或U型缺口),在擺錘式沖擊試驗機上進行沖擊彎曲試驗後確定,試件缺口處受沖擊破壞後,以缺口底部處單位面積上所消耗的功,即為沖擊韌性指標,用沖擊韌性值ak(J/cm2)表示。ak越大,表示沖斷試件時消耗的功越多,鋼材的沖擊韌性越好。
鋼材進行沖擊試驗,能較全面地反映出材料的品質。鋼材的沖擊韌性對鋼的化學成分、組織狀態、冶煉和軋制質量,以及溫度和時效等都較敏感。
3.耐疲勞性
鋼材在交變荷載反復作用下,在遠小於抗拉強度時發生突然破壞,這種破壞叫疲勞破壞。疲勞破壞的危險應力用疲勞極限或疲勞強度表示。它是指鋼材在交變荷載作用下,於規定的周期基數內不發生斷裂所能承受的最大應力。
鋼材耐疲勞強度的大小與內部組織、成分偏析及各種缺陷有關。同時鋼材表面質量、截面變化和受腐蝕程度等都影響其耐疲勞性能。
4.硬度
表示鋼材表面局部體積內,抵抗外物壓入產生塑性變形的能力,是衡量鋼材軟硬程度的一個指標。
測定鋼材硬度的方法有布氏法、洛氏法和維氏法。常用的是布氏法和洛氏法。
⑺ 力學性能包括哪些
問題一:力學性能包括什麼? 材料的力學性能是指材料在不同環境(溫度、介質、濕度)下,承受各種外載入荷(拉伸、壓縮、彎曲、扭轉、沖擊、交變應力等)時所表現出的力學特徵 。
一般來說金屬的力學性能分為十種:
1.脆性 脆性是指材料在損壞之前沒有發生塑性變形的一種特性。它與韌性和塑性相反。脆性材料沒有屈服點,有斷裂強度和極限強度,並且二者幾乎一樣。鑄鐵、陶瓷、混凝土及石頭都是脆性材料。與其他許多工程材料相比,脆性材料在拉伸方面的性能較弱,對脆性材料通常採用壓縮試驗進行評定。
2.強度:金屬材料在靜載荷作用下抵抗永久變形或斷裂的能力.同時,它也可以定義為比例極限、屈服強度、斷裂強度或極限強度。沒有一個確切的單一參數能夠准確定義這個特性。因為金屬的行為隨著應力種類的變化和它應用形式的變化而變化。強度是一個很常用的術語。
3.塑性:金屬材料在載荷作用下產生永久變形而不破壞的能力.塑性變形發生在金屬材料承受的應力超過彈性極限並且載荷去除之後,此時材料保留了一部分或全部載荷時的變形.
4.硬度:金屬材料表面抵抗比他更硬的物體壓入的能力
5.韌性:金屬材料抵抗沖擊載荷而不被破壞的能力. 韌性是指金屬材料在拉應力的作用下,在發生斷裂前有一定塑性變形的特性。金、鋁、銅是韌性材料,它們很容易被拉成導線。
6.疲勞強度:材料零件和結構零件對疲勞破壞的抗力
7.彈性 彈性是指金屬材料在外力消失時,能使材料恢復原先尺寸的一種特性。鋼材在到達彈性極限前是彈性的。
8.延展性 延展性是指材料在拉應力或壓應力的作用下,材料斷裂前承受一定塑性變形的特性。塑性材料一般使用軋制和鍛造工藝。鋼材既是塑性的也是具有延展性的。
9. 剛性 剛性是金屬材料承受較高應力而沒有發生很大應變的特性。剛性的大小通過測量材料的彈性模量E來評價。
10.屈服點或屈服應力 屈服點或屈服應力是金屬的應力水平,用MPa度量。在屈服點以上,當外來載荷撤除後,金屬的變形仍然存在,金屬材料發生了塑性變形。
問題二:力學性能主要包括哪些指標 材料的力學性能是指材料在不同環境(溫度、介質、濕度)下,承受各種外載入荷(拉伸、壓縮、彎曲、扭轉、沖擊、交變應力等)時所表現出的力學特徵。
性能指標
包括:彈性指標、硬度指標、強度指標、塑性指標、韌性指標、疲勞性能、斷裂韌度。
鋼材的力學性能是指標准條件下鋼材的屈服強度、抗拉強度、伸長率、冷彎性能和沖擊韌性等,也稱機械性能。
問題三:金屬材料的力學性能包括哪些? 金屬的力學性能是指金屬材料抵抗各種外載入荷的能力,
其中包括:彈性和剛度、強度、塑性、硬度、沖擊韌度、斷裂韌度及疲勞強度等,它們是衡量材料性能極其重要的指標。
1、強度:材料在外力(載荷)作用下,抵抗變形和斷裂的能力。材料單位面積受載荷稱應力。
2、屈服點(бs):稱屈服強度,指材料在拉抻過程中,材料所受應力達到某一臨界值時,載荷不再增加變形卻繼續增加或產生0.2%L。時應力值,單位用牛頓/毫米2(N/mm2)表示。
3、抗拉強度(бb)也叫強度極限指材料在拉斷前承受最大應力值。單位用牛頓/毫米2(N/mm2)表示。如鋁鋰合金抗拉強度可達689.5MPa
4、延伸率(δ):材料在拉伸斷裂後,總伸長與原始標距長度的百分比。
工程上常將δ≥5%的材料稱為塑性材料,如常溫靜載的低碳鋼、鋁、銅等;而把δ≤5%的材料稱為脆性材料,如常溫靜載下的鑄鐵、玻璃、陶瓷等。
5、斷面收縮率(Ψ)材料在拉伸斷裂後、斷面最大縮小面積與原斷面積百分比。
6、硬度:指材料抵抗其它更硬物壓力其表面的能力,常用硬度按其范圍測定分布氏硬度(HBS、HBW)和洛氏硬度(HKA、HKB、HRC)。
7、沖擊韌性(Ak):材料抵抗沖擊載荷的能力,單位為焦耳/厘米2(J/cm2)。
對低碳鋼拉伸的應力――應變曲線分析
1.彈性:εe=σe/E, 指標σe,E
2.剛性:△L=P・l/E・F 抵抗彈性變形的能力強度
3.強度:σs---屈服強度,σb---抗拉強度
4.韌性:沖擊吸收功Ak
5.延展性:
①.延性:是指材料的結構、構件或構件的某個截面從屈服開始到達最大承載能力或到達以後而承載能力還沒有明顯下降期間的變形能力。
②.展性:指物體可以壓成薄片的性質。
6.疲勞強度:交變負荷σ-1 問題四:材料力學性能有哪些? 強度
屈服強度Rp0.2 MPa
抗拉強度Rm(舊σb)MPa
※ksi是kips per squar inch(千磅力每平方英寸)的縮寫。
1ksi=1000 lbf/in^2=6894.76 kPa=6.89476 MPa
塑性
斷後伸長率 A %
斷面收縮率 φ %
硬度
布氏硬度HBW
洛氏硬度HRA HRB HRC
韌性(缺口敏感性)
沖擊功 Ak J
疲勞強度
問題五:金屬材料的基本力學性能包括哪些? 硬度、延展性、強度、抗折
問題六:混凝土力學性能包括哪些 混凝土的力學性能主要指立方體抗壓強度、軸心抗壓強度、軸心抗拉強度和變形模量。
問題七:力學性能有哪些 一般來說金屬的力學性能分為十種:
1.脆性 脆性是指材料在損壞之前沒有發生塑性變形的一種特性。它與韌性和塑性相反。脆性材料沒有屈服點,有斷裂強度和極限強度,並且二者幾乎一樣。鑄鐵、陶瓷、混凝土及石頭都是脆性材料。與其他許多工程材料相比,脆性材料在拉伸方面的性能較弱,對脆性材料通常採用壓縮試驗進行評定。
2.強度:金屬材料在靜載荷作用下抵抗永久變形或斷裂的能力.同時,它也可以定義為比例極限、屈服強度、斷裂強度或極限強度。沒有一個確切的單一參數能夠准確定義這個特性。因為金屬的行為隨著應力種類的變化和它應用形式的變化而變化。強度是一個很常用的術語。
3.塑性:金屬材料在載荷作用下產生永久變形而不破壞的能力.塑性變形發生在金屬材料承受的應力超過彈性極限並且載荷去除之後,此時材料保留了一部分或全部載荷時的變形.
4.硬度:金屬材料表面抵抗比他更硬的物體壓入的能力
5.韌性:金屬材料抵抗沖擊載荷而不被破壞的能力. 韌性是指金屬材料在拉應力的作用下,在發生斷裂前有一定塑性變形的特性。金、鋁、銅是韌性材料,它們很容易被拉成導線。
6.疲勞強度:材料零件和結構零件對疲勞破壞的抗力
7.彈性 彈性是指金屬材料在外力消失時,能使材料恢復原先尺寸的一種特性。鋼材在到達彈性極限前是彈性的。
8.延展性 延展性是指材料在拉應力或壓應力的作用下,材料斷裂前承受一定塑性變形的特性。塑性材料一般使用軋制和鍛造工藝。鋼材既是塑性的也是具有延展性的。
9. 剛性 剛性是金屬材料承受較高應力而沒有發生很大應變的特性。剛性的大小通過測量材料的彈性模量E來評價。
10.屈服點或屈服應力 屈服點或屈服應力是金屬的應力水平,用MPa度量。在屈服點以上,當外來載荷撤除後,金屬的變形仍然存在,金屬材料發生了塑性變形。
問題八:什麼是力學性能?都包括哪些性能? 10分 應該是材料的力學性能或機械性能。基本的力學性能是指材料的單向拉伸和壓縮性能,包括材料的屈服極限、強度極限、楊氏模量、泊松比、延伸率等的材料常數。當然還有其它的一些力學性能,如疲勞方面的材料的持久極限、沖擊韌度等。
問題九:建築鋼材的力學性能主要有哪幾項? 鋼材的主要性能包括力學性能和工藝性能。其中力學性能是鋼材最重要的使用性能,包括拉伸性能、沖擊性能、疲勞性能等。工藝性能表示鋼材在各種加工過程中的行為,包括彎曲性能和焊接性能等。(1)拉伸性能反映建築鋼材拉伸性能的指標,包括屈服強度、抗拉強度和伸長率。屈服強度是結構設計中鋼材強度的取值依據。抗拉強度與屈服強度之比(強屈比)是評價鋼材使用可靠性的一個參數。強屈比愈大,鋼材受力超過屈服點工作時的可靠性越大,安全性越高;但強屈比太大,鋼材強度利用率偏低,浪費材料。鋼材在受力破壞前可以經受永久變形的性能,稱為塑性。在工程應用中,鋼材的塑性指標通常用伸長率表示。伸長率是鋼材發生斷裂時所能承受永久變形的能力。伸長率越大,說明鋼材的塑性越大。試件拉斷後標距長度的增量與原標距長度之比的百分比即為斷後伸長率。對常用的熱軋鋼筋而言,還有一個最大力總伸長率的指標要求。預應力混凝土用高強度鋼筋和鋼絲具有硬鋼的特點,抗拉強度高,無明顯的屈服階段,伸長率小。由於屈服現象不明顯,不能測定屈服點,故常以發生殘余變形為0.2%原標距長度時的應力作為屈服強度,稱條件屈服強度,用σ0.2表示。(2)沖擊性能沖擊性能是指鋼材抵抗沖擊荷載的能力。鋼的化學成分及冶煉、加工質量都對沖擊性能有明顯的影響。除此以外,鋼的沖擊性能受溫度的影響較大,沖擊性能隨溫度的下降而減小;當降到一定溫度范圍時,沖擊值急劇下降,從而可使鋼材出現脆性斷裂,這種性質稱為鋼的冷脆性,這時的溫度稱為脆性臨界溫度。脆性臨界溫度的數值愈低,鋼材的低溫沖擊性能愈好。所以,在負溫下使用的結構,應當選用脆性臨界溫度較使用溫度低的鋼材。(3)疲勞性能受交變荷載反復作用時,鋼材在應力遠低於其屈服強度的情況下突然發生脆性斷裂破壞的現象,稱為疲勞破壞。疲勞破壞是在低應力狀態下突然發生的,所以危害極大,往往造成災難性的事故。鋼材的疲勞極限與其抗拉強度有關,一般抗拉強度高,其疲勞極限也較高。――2011年一級建造師《建築工程管理與實務》考點
⑻ 鋼材的力學性能有哪些
力學性能是鋼材最重要的使用性能,包括抗拉性能、塑性、韌性及硬度等。
(1)抗拉性能。表示鋼材抗拉性能的指標有屈服強度、抗拉強度、屈強比、伸長率、斷面收縮率。
屈服是指鋼材試樣在拉伸過程中,負荷不再增加,而試樣仍繼續發生變形的現象。發生屈服現象時的最小應力,稱為屈服點或屈服極限,在結構設計時,一般以屈服強度作為設計依據。
抗拉強度是指試樣拉伸時,在拉斷前所承受的最大荷載與試樣原橫截面面積之比。
鋼材的屈服點(屈服強度)與抗拉強度的比值,稱為屈強比。屈強比越大,結構零件的可靠性越高,一般碳素鋼屈強比為0.6~0.65,低合金結構鋼為0.65~0.75,合金結構鋼為0.84~0.86。
伸長率是指金屬材料在拉伸時,試樣拉斷後,其標距部分所增加的長度與原標距長度的百分比;斷面收縮率是指金屬試樣拉斷後,其縮頸處橫截面面積的最大縮減量與原橫截面面積的百分比。伸長率和斷面收縮率越大,鋼材的塑性越好。
(2)冷彎性能。冷彎性能是指鋼材在常溫下抵抗彎曲變形的能力,表示鋼材在惡劣條件下的塑性。鋼材按規定的彎曲角度a和彎心直徑d彎曲後,通過檢查彎曲處的外面和側面有無裂紋、起層或斷裂等進行評定。
通過冷彎可以揭示鋼材內部的應力、雜質等缺陷,還可用於鋼材焊接質量的檢驗,能揭示焊件在受彎面的裂紋、雜質等缺陷。
(3)沖擊韌性。沖擊韌性是指鋼材抵抗沖擊荷載作用而不破壞的能力。
工程上常用一次擺錘沖擊彎曲試驗來測定材料抵抗沖擊載荷的能力,即測定沖擊載荷試樣被折斷而消耗的沖擊功Ak,單位為焦耳(J)。鋼材的沖擊韌性是衡量鋼材質量的一項指標,特別對經常承受荷載沖擊作用的構件,如重量級的吊車梁等,要經過沖擊韌性的鑒定。沖擊韌性越大,表明鋼材的沖擊韌性越好。
(4)硬度。硬度是指金屬抵抗硬物體壓人其表面的能力,硬度不是一個單純的物理量,而是反映彈性、強度、塑性等的一個綜合性能指標。
硬度的表示方法有布氏硬度、洛氏硬度、維氏硬度、肖氏硬度。最常用表示方法為布氏硬度,是用一定直徑的球體(鋼球或硬質合金球),以相應的試驗力壓人試樣表面,經規定的保持時間後,卸除試驗力,測表面壓痕直徑計算其硬度值。
(5)疲勞破壞。鋼材在交變應力作用下,應力在遠低於靜荷載抗拉強度的情況下突然破壞,甚至在低於靜荷載屈服強度時即發生破壞,這種破壞稱為疲勞破壞。鋼材疲勞破壞的應力指標用疲勞強度(或稱疲勞極限)來表示,它是指試件在交變應力的作用下,不發生疲勞破壞的最大應力值。一般把鋼材承受交變荷載1×107周次時不發生破壞所能承受的最大應力作為疲勞強度。設計承受交變荷載且需進行疲勞驗算的結構時,應當了解所用鋼材的疲勞強度。