導航:首頁 > 無縫鋼管 > 軋機鋼管老是斷芯棒什麼原因

軋機鋼管老是斷芯棒什麼原因

發布時間:2023-09-04 04:08:53

無縫管芯棒工作原理

常用的大口徑厚壁無縫鋼管冷軋機有二輥式和多輥式(三輥或四輥)兩種,前者應用較為廣泛。二輥式冷軋機是一種具有周期式工作制度的冷軋厚壁無縫管機。它的工作機架藉助於曲柄連桿機構做往復運動。
安裝在機架軸承中的工作軋輥,在軋制過程中藉助於裝在輥頸上的齒輪做往復運動,同時又進行滾動:在下輥兩側裝著的一對齒輪與裝在工作機架底座兩側上的齒條相嚙合。冷軋大口徑厚壁無縫鋼管時。管子套在錐形芯棒3上,用裝在軋輥2切槽中的兩個軋槽塊1進行軋制。在軋槽塊的圓周上開有截面不斷變化的孔型,孔型起點的尺寸相當於管料5的外徑,而其末端尺寸相當於成品管6的外徑。
冷軋周期軋管機在結構上,同熱軋周期軋大口徑厚壁無縫鋼管機的區別在於,冷軋管機的工作機架做往復運動,而用來軋管的錐形芯棒卻固定不動.此外,在冷軋管生產中,管料可以被全部利用,而在熱軋管生產中,相當大的一部分管料(周期頭)成了廢料。

鋼材壓力加工綜述

煉鋼工序生產的鋼錠或連鑄坯,不能直接作為其它工業生產的原材料或直接用於社會消費,因此必須對其作進一步的塑性加工或其它加工,製成各種形狀並能滿足各種用途的鋼材。鋼材既是工業生產的基礎原材料,同時也是社會生活中重要的消費材料,在國民經濟中具有十分廣泛的用途。
鋼鐵工業生產中,絕大多數鋼材是經過塑性加工製成或先經塑性加工再經其它加工製成的。所謂金屬塑性加工,就是用不同的設備、工具對金屬施加外力,使之產生塑性變形,製成具有預期的尺寸、形狀和性能的產品的加工方法,又稱金屬壓力加工。
塑性加工方法很多,有熱壓延加工法和冷壓延加工法。熱壓延加工是將坯料加熱到金屬再結晶溫度以上進行的塑性加工,其中熱軋法是最主要的生產方法,約有90%的鋼是採用熱軋法直接成材,或先經熱軋然後再採用其它加工方法成材的。
一、熱壓延加工法
熱壓延加工法包括熱軋、鍛壓、擠壓等方法。
(一)熱軋法
熱軋法是將鋼料加熱到1000℃~1250℃左右,用軋鋼機軋製成材的方法。
1、軋鋼機
(1)按用途分類
熱軋機按用途分類有以下幾種:
1)初軋機。用於將大鋼錠軋成半成品,如方坯、板坯等。初軋機的大小以軋輥名義直徑來表示,例如「850」初軋機,表示其軋輥名義直徑為850毫米。初軋機的軋輥直徑一般在700毫米以上,目前國內最大的初軋機輥徑為1300毫米(在寶鋼股份公司)。隨著連鑄的迅速發展,初軋機的作用在逐步減弱,現已不再建設初軋機。
2)鋼坯軋機。用於將小鋼錠或連鑄坯或經初軋後仍較大的鋼坯軋成較小的鋼坯。鋼坯軋機的大小以軋輥名義直徑來表示,例如「650」開坯機,表示其軋輥名義直徑為 650毫米。鋼坯軋機的軋輥直徑一般為 450毫米~700毫米。
3)型鋼軋機。用於軋制各種型鋼、鋼軌、棒材、鋼筋和線材等產品。型鋼軋機包括軌梁軋機、大型軋機、中型軋機、小型軋機、棒材軋機和線材軋機等。型鋼軋機的大小用精軋機軋輥名義直徑表示,軌梁軋機的軋輥名義直徑一般為750毫米~950毫米,大型軋機一般為550毫米~650毫米,中型軋機為350毫米~500毫米,小型軋機為250毫米~300毫米,線材軋機在25O毫米以下。
4)鋼板、鋼帶軋機。用於軋制鋼板、鋼帶。鋼板(帶)軋機大小以工作輥的輥身長度來表示,例如「1700」鋼板軋機,表示其工作輥輥身長度為1700毫米。鋼板軋機按所軋鋼板厚度分為特厚板軋機、中厚板軋機、薄板軋機。
5) 鋼管軋機。用於以軋製法生產無縫鋼管。鋼管軋機以能軋鋼管的最大外徑來表示,例如 「140」軋管機,表示這套軋管機能生產外徑最大為140毫米的無縫鋼管。
6)特種軋機。有車輪、輪箍軋機、鋼球軋機等。
(2)按排列方式分類
軋鋼機按其排列方式分類主要有以下4種:
1)單機架軋機。軋件在僅有的一台機架中完成軋制。
2)橫列式軋機。數台機架橫列,由一台或兩台電動機驅動。軋件依次在各機架軋制一道或數道。
3)縱列式軋機。數台機架按軋制方向排成一行,軋件依次在各機架中軋制一道,但不同時在數台機架中軋制,或雖然同時在數台機架中軋制,但不構成連軋關系。
4)連續式軋機。數台機架按軋制方向排成一行,軋件同時在幾台機架中軋制,並保持連軋關系,即各架軋機單位時間內的金屬流量相等。
(3)按軋輥在機座中的排列方式分類
按軋輥在機座中的排列方式分類有以下4種:
1)水平式軋機。即軋輥水平布置的軋機。初軋機、型鋼軋機、鋼板軋機都屬於這一類。這類軋機按軋輥的數目和排列方式又可分為二輥式軋機、三輥式軋機、四輥式軋機、多輥式軋機(如六輥、八輥、十二輥、十四輥、十六輥、二十輥軋機及行星軋機等)。
2)立輥軋機。即軋輥直立布置的軋機。在連續式型鋼及鋼坯軋機、鋼板軋機、帶鋼軋機及線材軋機中都有立輥機座,它專門用於加工軋件的側面。
3)萬能軋機。既有立輥、又有水平輥的軋機。如二輥式、四輥式萬能軋機及萬能式鋼梁軋機等。
4)斜輥軋機。軋輥傾斜布置的軋機。如生產無縫鋼管的穿孔機、鋼球軋機等都屬於這一類。
2、生產方法
傳統的熱軋生產過程一般分以下兩個步驟:
第一步用初軋機或鋼坯軋機將鋼錠、鋼坯或連鑄坯軋成一定形狀和尺寸的鋼坯。這種軋制過程通常稱為半成品生產,也叫開坯生產。
第二步採用不同的成品軋機將鋼坯或連鑄坯軋成適當形狀和尺寸的成品鋼材,這種生產過程叫成品生產,一般又分為粗軋和精軋兩個階段。粗軋階段採取大的壓下量(每軋一道次壓下的量),以減少軋制道次,提高產量;粗軋之後再進入精軋階段,以小的壓下量進行精軋,以達到良好的表面和精確的尺寸。
隨著連鑄生產的發展,目前很多企業採用連鑄坯作為原料,只用上述的第二步驟生產鋼材,並且向連鑄連軋方向發展。
(二)鍛壓法
鍛壓法是用鍛錘、精鍛機、快鍛機或液壓機將鋼錠鍛壓成鋼材、鋼坯或鍛件毛坯。鍛壓是最早採用的加工方法,鍛造又分為自由鍛造和模型鍛造兩種。鍛壓法可以得到機械性能更好以及軋製法所不容易或不能夠得到的形狀的成品鋼材。
(三)擠壓法
擠壓法是將坯料裝入擠壓機的擠壓筒中加壓,使之從擠壓筒的孔中擠出,形成比坯料斷面小,並有一定斷面形狀的型材、管材或空心材等。擠壓法用於生產用熱軋法難以生產的產品(如復雜斷面鋼材、不銹鋼管等)。
二、冷壓延加工法
冷壓延加工法包括冷軋、冷拔和冷拉、冷彎、冷擠壓等方法。
冷壓延加工法是將熱軋後的鋼材在再結晶溫度以下繼續進行加工,使之成為冷壓延加工鋼材。採用冷壓延加工方法可以改善鋼材的機械性能,並得到尺寸精度高和有一定光潔度的產品。
(一)冷軋法
冷軋法主要用於生產冷軋鋼板、冷軋鋼管及冷軋鋼筋。
冷軋鋼板可採用二輥式軋機、四輥可逆式軋機、多輥可逆式軋機和冷連軋機生產。四輥和多輥軋機雖然工作輥仍然只有兩個,但每個工作輥都有一個乃至多個大直徑的支承輥支承著,可防止工作輥產生撓度。因而可以生產寬度大和更薄的鋼板,例如二十輥軋機能生產薄至0.001毫米的薄板,但兩輥軋機一般只能生產薄至0.35毫米的薄板。
冷軋鋼管採用二輥周期式冷軋管機和多輥式冷軋管機生產。
冷軋鋼筋採用Y型三輥軋機生產。
(二)冷拔法
冷拔法主要用於生產型鋼和鋼管。冷拔法就是用冷拔機對型鋼和鋼管進行冷拔。對鋼管進行冷拔又分無芯棒拉拔、長芯棒拉拔和短芯棒拉拔三種。
冷拔機大小以拉力來表示,如 10噸冷拔機是表示這台冷拔機的拉力為10噸。
(三)冷彎法
冷彎法主要用於生產冷彎型鋼和焊管。冷彎法是通過冷彎機將鋼帶或鋼板在冷狀態下彎曲成各種斷面形狀的鋼材。若彎曲成圓形、方形等中空形狀並以適當的焊接方法將接縫焊合形成的鋼管即是焊管。冷彎的優點:一是冷彎成的型鋼重量輕、承載大,用它代替熱軋型鋼可以節約金屬;二是可以生產熱軋所不能生產的各種特薄、特寬和斷面形狀復雜的型鋼。
三、鍍、塗層加工
為了提高鋼材的抗腐蝕性和裝飾性,在塑性加工鋼材的表面鍍或塗一層保護層,成為鍍、塗層鋼材,也是鋼材生產方法的重要內容。保護層材質分金屬和非金屬兩類。金屬保護層採用電鍍、熱鍍及化學鍍層方法。鍍層金屬主要有鋅、錫、銅、鋁、鉻等,其中以鍍鋅和鍍錫最為普遍。以薄板為例,薄板鍍鋅採用熱鍍方法的較多,連續熱鍍鋅是目前世界各國採用的一種主要鍍鋅方法。鋼板熱鍍鋅工藝具有效率高、產量大、成本低、鍍層厚等優點。薄鋼板鍍錫多採用連續式電鍍方法。薄鋼板電鍍錫工藝較熱鍍錫工藝雖有成本高、鍍層薄的不足,但具有鍍層均勻、光潔度好等優點。非金屬保護層採用輥塗等塗層方法,在冷軋板、鍍鋅板、焊管等鋼材上塗上一層或兩層有機塗料(如環氧酯、聚酯、丙烯酸脂、塑料溶膠等)或者覆上一層塑料薄膜。由於塗層可以製成不同的顏色,因此塗層鋼板也叫彩色鋼板或彩塗鋼板。輥塗法是目前採用的主要生產方法,具有效率高、成本低、有利於環境保護以及產品塗層厚度均勻,具有良好的著色性、成型性、耐蝕性等優點。

③ 20號鋼無縫鋼管的20號鋼無縫鋼管介紹

20號無縫鋼管在我國鋼管業中具有重要的地位。據不完全統計,我國現有20號無縫鋼管生產企業約240多家,無縫鋼管機組約250多套,年產能力約450多萬噸。從口徑看,<φ76的,佔35%,<φ159-650的,佔25%。從品種看,一般用途管190萬噸,佔54%;石油管76萬噸,佔5.7%;液壓支柱、精密管15萬噸,佔4.3%;不銹管、軸承管、汽車管共5萬噸,佔1.4%。
生產流程
軋制無縫管的原料是圓管坯,圓管胚要經過切割機的切割加工成長度約為1米的坯料,並經傳送帶送到熔爐內加熱。鋼坯被送入熔爐內加熱,溫度大約為1200攝氏度。燃料為氫氣或乙炔。爐內溫度控制是關鍵性的問題。
接下來是定心過程。由於管坯加熱,並且是毛坯,尺寸不規則,所以要確定圓柱中心線,即為定心過程。
圓管坯出爐後要經過壓力穿孔機進行穿空。一般較常見的穿孔機是錐形輥穿孔機,這種穿孔機生產效率高,產品質量好,穿孔擴徑量大,可穿多種鋼種。穿孔過程的機械受力情況現在依然沒有一個公認的結論說明這個問題。
穿孔後,圓管坯就先後被三輥斜軋、連軋或擠壓。鋼管中間的輔助棒材叫做芯棒。芯棒在軋制過程中有三種情況,即運動形態,分別是固定芯棒,浮動芯棒,半浮動芯棒。固定芯棒指芯棒不動,浮動芯棒指芯棒在軋制過程中自由運動,半浮動芯棒指芯棒先不動,等軋制過程接近結束的時候開時自由運動。每種方法都有其優缺點。
軋制之後再加熱,上面所示生產過程的圖片中加熱爐是一個步進式加熱爐。簡單說來就是圖上的兩個凸輪機構,帶動鋼管做循環往復運動。
隨後進行減徑,脫管定徑。其實定徑和減徑生產過程和工藝基本相同,只是鋼管直徑變化程度一個大一個小。定徑機通過錐形鑽頭高速旋轉入鋼胚打孔,形成鋼管。鋼管內徑由定徑機鑽頭的外徑尺寸來確定。鋼管經定徑後,進入冷卻塔中,通過噴水冷卻,鋼管經冷卻後,就要被矯直。矯直用矯直機矯直。
鋼管經矯直後由傳送帶送至金屬探傷機(或水壓實驗)進行內部探傷。若鋼管內部有裂紋,氣泡等問題,將被探測出。鋼管質檢後還要通過嚴格的手工挑選。鋼管質檢後,用油漆噴上編號、規格、生產批號等。並由吊車吊入倉庫中。

④ 軋機、軋鋼機的壓軋工藝流程是什麼

軋機、軋鋼機的壓軋工藝流程如下:

軋制過程:

一般單機架二十輥冷軋機的軋制過程可分為上料及穿帶、可逆軋制;卸料及重卷3個階
段。

二十輥軋機,特別是森吉米爾二十輥軋機,是採用大張力進行軋制的;軋制過程是從鋼
帶在軋機前後的卷取機/開卷機施加張力之後才開始的,這之前即是上料及穿帶階段。

上料及穿帶階段

一般用上料小車將鋼卷送到開卷機捲筒上;開卷多採用浮動開卷機,
以保證鋼帶始終處在軋機中央位置;浮動開卷機由光電對中裝置通用液壓缸來進行控制;開
卷後鋼帶經矯直機(三輥直頭或五輥矯直機)進行矯直;部分軋機設有液壓剪可以進行切頭;鋼帶用上擺式導板台跨過機前卷取機,直接送到二十輥軋機;然後開卷機繼續往前送出鋼帶穿過軋機一直送到機後卷取機鉗口,鉗口鉗住鋼帶帶頭並在捲筒上纏繞2—3圈後停止送帶,穿帶結束。
可逆軋制階段:

穿帶結束後,首先安放好上、下工作輥(穿帶時,工作輥已取下),然後調准軋制線,關閉軋機封閉門,機前壓板壓下,出口側擦拭器壓緊鋼帶,軋機工藝潤滑冷卻系統啟動供液,軋機帶鋼壓下,卷取機轉動給鋼帶前張力,機前後測厚儀、測速儀進入軋制線,機組運轉開始第一道次的軋制。
軋制過程中,如果發現鋼帶邊部有缺陷將影響到高速軋制,則當缺陷部位經過軋輥時;
操作工按一下操作台上的按鈕,將其缺陷位置信號輸入AGC系統。軋制將結束時軋機減速,當鋼帶尾部到達機前卷取機位置時,機組停車,第一道次結束。測厚儀、測速儀退出軋制
線,軋機壓下抬起,鋼帶張力解除,冷卻潤滑劑停止供給,壓板抬起。
第二道軋制時,鋼帶反向運動,機前機後位置互換。第二道次工作開始時機後卷取機反
向運行將機前鋼帶頭部送人機前卷取機捲筒鉗口,鉗口鉗住帶頭後,機前卷取機轉動將鋼帶
在捲筒上纏繞2—3圈;然後,軋機供給冷卻潤滑液,軋機壓下,機前後卷取機傳動給出後
張力,機前後測厚儀、測速儀進入軋制線,機組運轉開始第二道次的軋制。
從第二道次開始,軋制就在機前後卷取機和二十輥軋機之間往返進行。當軋機的自動厚度控制(ACC)系統投入工作時可以實現全自動控制。當軋制過程中鋼帶有缺陷的部位過軋輥時,軋機會自動減速。軋制終了,軋機會自動停車。
一般可逆式軋機軋制奇數道次,但是在機前後卷取機為脹縮式捲筒時,可以軋制偶數道
次,即在軋機開卷機一側也可以卸卷。
一般在成品道次軋制前,需要更換工作輥,以獲得高質量的及有特殊要求的鋼帶表面質
量。在成品道次軋制後,軋機停車,壓下拾起,測厚儀、測速儀退出軋制線,軋機停止冷卻潤滑液供給,卷取機的壓輥壓下,或者將卸卷小車升起用小車座輥頂住鋼卷,避免鋼卷松卷卷取機轉動將鋼帶尾部全部卷到捲筒上。至此可逆軋制過程結束。

卸卷及重卷階段:

對於脹縮式捲筒卷取機,卸卷比較簡單。首先用捆紮帶在鋼卷徑向捆
扎一道,卸卷小車升起頂住鋼卷,卷取機捲筒收縮,鉗口打開,鋼卷便被卸卷小車托住,卸卷小車和卷取機的輔助推板同步移動,便將鋼卷從卷取機上卸下,卸卷小車繼續移動將鋼卷送到鋼卷存放台上。
對於軋機前後為實心捲筒的卷取機,鋼卷不能夠從捲筒上直接卸下,只有將鋼卷重新卷
到一台脹縮式捲筒卷取機上,才能將鋼卷卸下來。森吉米爾二十輥軋機、森德威二十輥軋機,採用實心捲筒卷取機時,機組一般設有重卷機構,將成品鋼卷及實心捲筒一起從卷取位置轉移到重卷開卷位置i然後將鋼卷從開卷機往重卷機上重新卷取一次,由於重卷過程是在軋機軋制區域之外的位置進行的,所以重卷和軋制可以同時進行,互不影響。

軋制工藝:

1、壓下制度:
軋機的壓下制度,應根據軋機的技術參數、軋制材料的力學性能、產品的質量要求來制
定,同時還要考慮軋機生產能力要高,消耗要低。
用二十輥軋機軋制優質碳素鋼,相對來說是非常容易的,使用二十輥軋機的目的是追求
產品的高質量,有高的尺寸精度、板形和表面質量,獲得更薄的產品。
碳素鋼,特別是低碳軟鋼,在二十輥軋機上,一個軋程的總壓下率能達到95%以上,道次壓下率可以達到66%。
對於可逆式冷軋機,由於各道次是在同一-架軋機上軋制,所以道次壓下率分配是用等壓力軋制原則來確定壓下規程。一般第一道第二道的壓下率最大,隨著被軋鋼帶的加工硬
化,道次壓下率逐漸減小,以使各道次的軋制壓力大致相等。
為了提高軋機的生產能力,在充分利用軋機及機前後卷取機主傳動功率的前提下,要盡
可能地加大道次壓下率以減少軋制道次。但是,有時為了獲得良好的板形及表面質量,減少
鋼帶縱向的厚度偏差,也可以適當地增加軋制道次,在總壓下率相同的情況下,採用較多的軋制道次能使鋼帶的強度略有提高。成品道次的壓下率對板形的影響較大,一般採用10%
左右。
2、張力制度:
冷軋鋼帶的一個特點是張力軋制;沒有張力就無法進行鋼帶的冷軋。張力可以降低軋
制壓力,改善板形,穩定軋制過程。張力制度對於鋼帶冷軋非常重要。
採用小直徑工作輥軋制的二十輥軋機(及多輥軋機),軋制過程的工藝特點則是採用大
張力軋制。
必須採用大的單位張力,是由於被軋制材料具有物理—力學性能各向異性現象,或在小
變形弧長度內工作輥具有不大的歪斜,這樣沿帶材寬度出現壓下和延伸的不均衡性。在壓
下量小的區域內重新分布張力時,張力達到屈服極限,井可能使帶材寬度方向的延伸均衡。
實際上,在多輥軋機上軋制時,金屬的變形是依靠軋輥壓下和卷取機建立的帶材張力共同完
成的。
多輥軋機中採用的單位張力的大小取決於材料的物理—力學性能及冷加工硬化程度、帶
材厚度及其邊部質量。一般單位張力為20%一70% 。
為了實現穩定軋制過程所必須的大的單位張力及總張力,要求在多輥軋機中設置具有
大功率傳動的卷取機。一般二十輥軋機卷取機電機功率達到軋機主傳動功率的70%一
80%,有的甚至達到100%。
各道次張力按如下方法確定。一般來說,第一道次軋制時,由於酸洗機組的卷取張力較
小,為了避免造成鋼帶層間錯動而擦傷表面,第一道的後張力根小,小於酸洗機組卷取張力。
為了增加第一道軋制的後張力,二十輥軋機入口側設有壓板來增加軋制後張力;前張力可以
根據工藝要求自由決定。在以後的軋制道次中,根掘軋制鋼帶品種、規格,或者採用前張力
大於後張力,或者後張力大於前張力。一般採用將前一道次的軋制前張力作為本道次的後
張力,單位前張力大於單位後張力。成品道次的前張力(卷取張力)有兩種情況。對於脹縮式捲筒卷取機,由於在卷取機上可以直接卸卷並且鋼卷直接進罩式爐進行緊卷退火,為防止在退火中產生粘結,卷取張力應減小,卷取張力小於50Mpa時,退火粘結的幾率就很低了,但卷取張力低會影響軋機生產能力;對於實心捲筒卷取機,由於需要進行重卷,重卷時可以
採用較小的張力(10—40Mpa),因此軋制時能夠採用大張力,可以提高軋機生產能力。
道次的張力還應根據板形隨時進行調整,特別是軋制帶材較薄時。當材料中部有波浪時,應減小張力防止拉裂帶邊或斷帶;當帶材產生邊浪時,可以適當增加張力。
3、速度制度:
軋制速度的確定,應根據設備的能力,在軋機允許使用的速度范圍內盡可能採用高的軋
制速度,以提高軋機的生產能力;同時,當軋制速度增加時,軋制壓力相應有所減小。
一般第一道次軋制時採用較低的軋制速度,因為第一道的壓下量大,如果再用高速度軋
制,將使軋輥急劇發熱,由於多輥軋機軋輥冷卻條件較差,將影響軋輥壽命;另外,由於坯料縱向厚度偏差大,板形與軋輥不完全符合,第一道軋制時要對坯料進行調整,要求速度較低;同時採用高速度大壓下,主電機能力也不能滿足。
以後的道次,則根據壓下制度和張力制度及主電機的功率決定軋制速度,使主電機的能
力得到發揮。
每道次軋制的啟動和制動時,分別有一個升速和降速的過程。在軋制過程中,應盡可能
少調速,以保證軋制的穩定性,從而達到厚度偏差的均一性。
4、輥形:
由於二十輥軋機機架的剛性和零凸度設計,以及軋輥輥形的多種有效的調整手段,所以,
二十輥軋機能夠全部使用沒有輥形凸度的平輥進行軋制。根據需要,工作輥和第二中間輥也
可以適當地配置凸度輥;第一中間輥永遠是平輥,但—頭帶有錐度,供軋輥軸向調整使用;支撐輥的背襯軸承不能有凸度。

⑤ 軋管機的原理!

連軋管變形原理(deformation theory of continuous tube rolling process)

浮動芯棒連軋管運動學特徵
咬入階段
隱態連軋階段
拋鋼階段
軋制速度的設定
限動芯棒連軋管運動學特徵
浮動芯棒連軋管的變形特徵
孔型系統
孔型側壁
延伸系數
減壁量
限動芯棒連軋管的孔型和變形參數選擇
軋制力和軋制力矩的確定
軋制力
軋制力矩
竹節現象
有關連續軋管機軋管時運動學、變形、軋制力和制力矩以及「竹節」形成的基本理論。
浮動芯棒連軋管運動學特徵 浮動芯棒連軋管時插入芯棒後的穿孔毛管,一般經過8機架連軋加工成為荒管。整個軋管過程包括咬入、穩態連軋和拋鋼3個軋制階段,其運動學特徵即連軋管過程的時間一位移關系的特徵(見圖1)。

圖1連軋管過程的時間-位移關系特徵圖
虛線abcd-芯棒頭部速度變化;虛線ABCD-芯棒尾部速度變化
實線Aa』b』c』d』-毛管頭部速度變化;實線A』B』C』D』-一毛管尾部速度變化
咬入階段 從第1架軋機開始咬入毛管頭部到最後一架咬入毛管頭部為止。咬入過程是一個非穩定的軋制過程。管子頭部Va』b』從進入各機架變形時隨著延伸系數的加大而增加運動速度(即產生階躍加速變化)。管子頭部速度的階躍增量為△V(n-1)→n=(μn-1)V n-1。式中μn為第n架的延伸系數;V n-1為第n一1架的軋制出口速度。管子尾部Va』b』則由第1架咬入速度確定,可以假定保持不變。
由於自由浮動的長芯棒是一根剛性體工具,芯棒頭部Vab和尾部VAB的運動速度相同,並隨著管子速度階躍變化也呈階躍加速變化。但芯棒速度的階躍增量總是小於管頭速度增量。若管頭在第8架的出口速度為V8(1→8)時,芯棒速度則是1~8架管子速度的平均值。若芯棒速度由Vd[1→(n-1)]階躍加速為Vd[1→n]時,則芯棒速度階躍增量為△Vdn={Vd[1-n] -Vd[1→(n-1)]}>0。管頭速度的階躍變化引起了芯棒速度的階躍變化,交變著的芯棒速度又反過來引起了在各架軋機上管子實際出口速度的變化,並取決於芯棒速度階躍增量和摩擦條件。管子實際出口速度的變化可用下式表示:
△V』n(1→n) =f2△Vdn/(f1+f2)
式中△V』n(1→n)為管子同時處於1~n架連軋時,在第n架軋機上由於芯棒速度階躍變化而引起的管子實際出口速度的增量變化;f1為軋輥與管子外表面之問的摩擦系數;f2為芯棒與管子內壁之間的摩擦系數。
在各機架咬入時都存在著一次咬入(管子頭部與軋輥接觸瞬間,靠旋轉的軋輥和金屬之間的摩擦力把管子曳入變形區中,開始減徑)和二次咬入(管子內表面與芯棒相接觸瞬間,靠旋轉的軋輥與金屬之間的摩擦力來克服芯棒的軸向阻力而把管子曳入減壁區中)。對連軋管機第1架,由於一般採用輥道送鋼,可以看成在無外推力的情況下實現一次咬入和二次咬入。而對第2架和以後各機架的咬入都存在著上一機架所給予的後推力,一次和二次咬入條件均可得到改善。
連軋管機第1架的一次咬入條件為:
tanα≤f
連軋管機第1架的二次咬入條件為:
tanα2≤(2f-tanα)/1+2ftanα
式中α為一次咬入角;α2為二次咬入角;f為摩擦系數。
穩態連軋階段 從管子頭部進入第n架軋機後,管子同時處於第l~n架軋機之間進行穩定連續軋管開始到毛管尾部由第1架軋機拋出為止。在穩態連軋管過程中,由於管子同時處於n架軋機作用下,管子頭部速度Vb』c』、管子尾部速度VB』C』、芯棒頭部速度Vbc和芯棒尾部速度VBC均保持恆速運動。在各架軋機上的管子出口速度是連續遞增的。管頭速度遠大於管尾速度,即Vb』c』>VB』C』,Vb』c』=μεVB』C』(式中με為1~n架的總延伸率)。而芯棒則是一個恆定的平均速度,芯棒頭尾速度是一致的,並低於第n架管子出口速度即Vbc=VBC=常數,而Vb』c』>Vbc>VB』C』。
在穩態連軋階段存在著滯後機架、同步機架和導前機架等3種不同軋制狀態的機架。在n機架連軋管工作系統中,在芯棒和管子內表面的整個接觸長度上存在著一個速度同步面(或稱芯棒中性面K),也就是其中有一個申間機架的變形區內某一K截面的金屬流動速度等於芯棒速度。這個中間機架叫做同步機架(或稱K機架)。在同步機架前的各架稱為滯後機架,即在這些機架中金屬的速度滯後於芯棒速度;在同步機架後的各架稱為導前機架,即在這些機架中金屬的速度超前於芯棒速度。在咬鋼時,同步機架漸次由第1機架變化至第K機架;而拋鋼時,同步機架又由第K機架變化至第n機架。
拋鋼階段 從第1架軋機毛管尾部拋出開始,到荒管尾部由最後一架軋機拋出為止。
拋鋼時,管子頭部速度Vc』d』、管子尾部速度VC』D』、芯棒頭部速度Vcd和芯棒尾部速度VCD都同時具有階躍性加速的特點。芯棒速度的階躍變化大於管子出口速度的階躍變化,即VCD>VC』D』。當管子尾部從第1架軋機開始拋出後,便消失了一個對芯棒的後拖阻力,使芯棒產生一個加速。芯棒速度階躍增量△Vd=V d(2→8) -V d(1→8)。在拋鋼時,管子尾部出口速度的階躍增量要比咬入時的管頭出口速度的階躍增量大。
在長芯棒浮動連軋管的一個軋制周期內,將發生(2n一1)次運動狀態的變化,並引起2n次管子出口速度和(2n~1)次芯棒速度的變化。這種運動速度的復雜交變關系必然會通過各種力的傳遞作用而直接影響到軋制變形區內的應力-應變狀態及其金屬塑性流動規律。
穩態連軋管過程中按照通過各機架的變形區內任一截面上的金屬秒流量相等的原則,可以計算並預設定任一機架的軋制速度Vi和軋輥轉速ni。
F1V1=F2V2=…FiVi=const
而 Vi=πDKini/60
則 F(i-1)DK(i-1)n(i-1) =FiDKini
考慮各機架問的張力(或推力)時,
F(i-1)DK(i-1)n(i-1)=FiDKiniS(i-1)→i
n(i-1) =niDKi/DK(i-1) Fi/F(i-1)S(i-1)→i
又因 μ1=F 0/F1;μ2=F1/F2;…μi=Fi/Fi


式中DK(i-1)為前一架的軋輥工作輥徑,mm;DKi為後一架的軋輥工作直徑,mm;Fi-1為前一架的變形區出口截面積,mm2;Fi為後一架的變形區出口截面積,mm2;μi為第i架的延伸系數;S(i-1)→i為(i—1)機架與i機架間的張力(或推力)系數。
在現代連軋管機上,一般採用微張力(或推力)軋制。為了保證穩定軋制而不會出現較嚴重的抱芯棒現象,在第1~2架和第2~3架之間採用1%的張力系數,而在中間機架之間採用0.5%~0.8%的張力系數,以保證軋制過程的穩定性和荒管的尺寸精度。在最後兩架之間則採用≤1%的推力系數,以便於松棒脫棒。各機架張力系數的分配見表1。
表l連軋管機各機架的張力系數的分配

機組
傳動

各機架酊張力系數5(,。)一,

型式

1~2

2~3

3~4

4~5

5~6

6~7

7~8

8~9

單獨

傳動

1.01

1.01

1.008

1.008

1.005
l

1.OO

O.99

O.99

集體

傳動

1.12~

1.15

1.08~

1.10

1.06

1.05

1.04

1.00~

1.02

1.00

1.OO

軋制速度的設定 在浮動芯棒連軋管機上預設定各機架的軋輥轉速及其主電機轉速時,通常採用逆向法,從最後一架軋機開始向前逐架地推算到第1架軋機。
現代連軋管機(8機架)軋輥轉速系列預設定的計算程序如下:

根據上述的各機架軋輥轉速,通過各機架的減速器速比i,即可換算出備機架主電機轉速並給予設定。
工作輥徑DKi由下式確定:DKi=Da+△一λ1b
式中Da為軋輥輥身直徑,mm;△為輥縫(第一架取8~10mm,其餘各架取4~6mm);b為孔型高度,mm;λ1為孔型形狀系數,由圖2確定。
限動芯棒連軋管運動學特徵 限動芯棒連軋管運動學特徵主要是:在軋制過程中芯棒速度是恆定的,基本上沒有浮動芯棒軋制時金屬流動呈斷續軋制狀態而產生的「竹節」缺陷。
確定芯棒速度的原則是使芯棒速度必須低於任一機架的軋制速度,使各架均處於同一方向的差速軋制狀態。一般取芯棒速度低於第一機架的軋件平均運動速度。
芯棒速度對軋制過程的影響是:芯棒速度越低即同軋件的速度差越大,則後張力越大,可降低軋制壓力、減少寬展、促進延伸並有利於提高軋後鋼管尺寸精度。芯棒速度也不能過低,因為速度差太大,摩擦熱大,會導致芯棒磨損嚴重,降低芯棒使用壽命。一般芯棒限動速度在0.7~1.5mm/s,芯棒工作段長度在15m左右。

孔型側壁角αB/(。)
a

孔型側壁角αB/(。)
b

0 O.04 0.08 0.12 O.16 0.20
O.02 0.06 0.10 0.14 O.18
偏心矩e/mm
C
圖2確定λ1值圖
a-帶直線倒壁的圓孔型;b-帶圓弧側壁的圓孔型
c-橢圓孔型
1-μ=2.0;2-μ=1.5;3-μ=1.1

圖3 芯棒限動速度Vd曲線
a-快速送進芯棒並定位;b-限動速度軋制
c-芯棒快速返回
芯棒的限動速度曲線見圖3。芯棒在軋制過程中的位置見圖4。
浮動芯棒連軋管的變形特徵浮動芯棒連軋管的變形特徵包括孔型系統、孔型側壁、延伸系數和減壁量。

圖4芯棒工作位置圖
1、2-芯棒快速送進並定位;3、4-管子頭部充滿各架變形區;5-芯棒恆速軋制,6、7-管子尾部逐漸脫離各架變形區至終了
孔型系統 在現代浮動芯棒連軋管機上,一般採用橢圃一圓孔型系統。第1架(或頭兩架)軋機上採用帶圓弧側壁斜度的橢圓孔型,這種孔型能夠在減徑較大時保證必要的延伸,磨損後易於調整。中間機架(如2~6架)主要是減壁變形,可採用帶有圓弧側壁斜度的圓孔型或者採用偏心距漸小的橢圓孔型。最後兩架,為了保證軋出荒管的尺寸精度且易於脫棒,多採用具有小側壁(或無側壁)的圓孔型。圖5示出8架浮動芯棒連軋管機上的孔型系統及金屬充滿狀況。
當孔型寬度為b、孔型高度為dk時,孔型寬高比ξ=b/dk(或稱孔型橢圓度系統)表示孔型橢圓度大小。當ξ=1時孔型為圓形,ξ越大於1,孔型的橢圓度愈大。當ξ=1.25~1.35時,金屬在孔型中的橫向流動比較自由,易造成橫向壁厚不均。ξ<1.24時,金屬沿孔型周邊的變形比較均勻,軋管時的橫向壁厚不均較小,但不易脫棒。表2列出了某連軋管上孔型系統的ξ值。

圖5 浮動芯棒連軋營機上孔型系統及金屬充滿圖
孔型側壁 作用是在保證管子正常咬入的同時使管子外徑得到壓縮與夾持,並能夠獲得縱向延伸和避免出耳子。在連軋管機的頭幾架一般選擇較大的孔型側壁斜度,有利於金屬的橫向流動,寬展比較自由,能夠減少管子對芯棒的摩擦阻力,使金屬有可能獲得較大的縱向延伸。但是,過大的側壁斜度會使孔型側壁處的非接觸區增加過大,有可能導致壁厚不均、孔型過充滿,甚至產生縱向裂紋、耳子等缺陷。而最後兩架中應選取較小的側壁斜度,以保證均勻變形和荒管的尺寸精度。孔型側壁斜度大小可用孔型側壁角αB=arccosdk/b來表示。表3列出了連軋管機各機架孔型側壁角αB的分配情況。
表2連軋管機各機架中孔型f值的分配

機架序號№

1

2

3

4

5

6

7

8

9

孔型寬高比}值

1.20~1.25

1.20~1.25

1.Z5~1.30

1.25~1.3C

1.25~1.30

1.24~1.25

1.24~1.25

1.06~1.20

1.OO~1.02

延伸系數 浮動芯棒連軋管機的總延伸系數為4~6。各機架中道次延伸系數可按半拋物線型曲線分配確定。在頭3道次,因溫度高可採用大壓下量,以迅速減徑減壁,壁厚壓下率可達70%;而在中間機架(如4~6架)上的變形量則逐漸減少。最後兩架的變形量應是很微小的,以保證荒管尺寸精度並易於脫棒。連軋管機上各機架延伸系統的分配實例見表4。
表3連軋管機各機架中孔型側壁角c|B的分配

機架序號№

1

2

3

4

5

6

7

8

9

孔型側壁角蜘

45。~50。

40。~45。

40。~45。

40。~45。

40。~45。

40。~45。

40。~45。

30。~32。

28~~30。

表4連軋管機各機架延伸系數的分配實例

軋機類型

各機架的延伸系數肛

l

2

3

4

5

6

7

8

9

7機架

1.35~1.45

1.45~1.50

1.45~1.50

1.27~1.5C

1.16~1.20

1.10

1.05

9機架

1.20~1.45

1.20~1.55

1.20~1.40

1.15~1.35

1.15~1.30

1.10~1.25

1.02~1.10

1.02~1.03

1.003~

1.005

表5連軋管機各機架減壁量的分配實例

機架序號№

1

2

3

4

5

6

7

8

9

減壁量AS,/mm

4.2

6.3

4.4

3.4

2.O

1.3

O.4

O

O

減壁率等/%

30

45

44.9

44.1

37

30

11.7

O

0

減壁量 各機架減壁量的分配可按拋物線型的經驗公式來確定:
ΔSi=[0.0417+(7-i)2/40]ΔS∑
式中ΔSi為第i架中孔型頂部的減壁量,mm;i為機架序號;ΔS∑為連軋管中的總減壁量,mm。連軋管機各機架中減壁量的分配實例見表5。
限動芯棒連軋管的孔型和變形參數選擇 由於取消了脫棒機,芯棒是靠脫管時將鋼管從芯棒前端拔出,另外由於差速軋制有利於金屬縱向延伸,寬展小,故限動芯棒軋制時可取橢圓度小的孔型,孔型寬高比為1.0~1.03,並可取較大壁厚壓下量和總延伸系數,最大總延伸系數可達10。在這種孔型中變形比較均勻,軋出的管子尺寸精度高,壁厚公差可達到±5%~6%。
軋制力和軋制力矩的確定
軋制力 在芯棒上軋管時沿變形區長度上存在著減徑和減壁兩個區,其軋制力為:
P=pc1F1+pc2F2
式中pc1為減徑區的平均軋制單位壓力,MPa;pc2為減壁區的平均軋制單位壓力,MPa;F1為減徑區接觸面的水平投影,mm2;F2為減壁區接觸面的水平投影,mm2。
減徑區平均單位壓力為:
pc1 =ηKf2S0/Dcp
式中S0為毛管壁厚,mm;Dcp為減徑區管子平均直徑,mm;Kf為變形抗力,MPa;η為考慮外區對平均單位壓力的影響系數:

式中l1為減徑區長度。
減壁區平均單位壓力為:
Pc2=K(1+m)
式中K=1.15Kf;m為考慮外摩擦對平均單位壓力的影響系數m=2f1l2/S0+Sk;f1為金屬和軋輥之間的摩擦系數;l2為減壁區長度,mm;S0為軋前管子壁厚,mm;SK為軋後管子壁厚,mm。
用帶側壁的孔型軋管時變形區總接觸面積的水平投影為:

式中F為總接觸面積的水平投影,mm2;Dmin為孔型頂部軋輥直徑,Dmin=D1 -dk,mm;D1為軋輥輥環直徑,mm;dk為孔型高度,mm;b為孔型寬度,mm。
減壁區接觸面積的水平投影為:
F2=(δ0+2So)l2
式中δ0為芯棒直徑,mm;S0為前一架軋出管子的壁厚,mm;l2為減壁區長度,mm。
減徑區接觸面積的水平投影為:
F1=F-F2
分別求出聲pc1、pc2、F1和F2後,就可求出軋制力。
軋制力矩 在連軋管機上的軋制力矩應包括減徑區和減壁區的軋制力矩、前後張力(或推力)的力矩以及作用在鋼管與芯棒接觸面上的軸向力矩,即

式中Mr為作用在連軋管任一機架的一個軋輥上的軋制總力矩;P1、P2為減徑區與減壁區的長度;qH、qh為相鄰機架之間的前後張力(或推力),(其所產生的力矩與P1、P2產生的力矩同向時公式中用「+」號,反之用「一」號);R1為軋輥中心線與芯棒中心線之間的距離;Q為在鋼管和芯棒接觸面上的軸向力,Q=pc2πδ0L2f2(式中δ0為芯棒直徑;f2為金屬和芯棒之間的摩擦系數,取f2=0.08~0.1)。
限動芯棒連軋管時由於後張力的作用,軋制壓力比浮動芯棒連軋管降低30%左右,能耗降低20%~30%。
竹節現象 在浮動芯棒連軋管機上,由於芯棒速度的階躍變化反映在荒管質量上的一個突出問題是荒管沿長度方向上外徑和壁厚尺寸都產生縱向不均勻的規律性變化。人們把荒管的這種外徑與壁厚尺寸的縱向差異(呈周期性鼓肚)稱為竹節現象。根據荒管外徑與壁厚的縱向尺寸差異,在沿順軋制方向的前後兩段又劃分為前竹節和後竹節。如圖6所示,圖中B段為前竹節,D段為後竹節。

竹節形成機理是近代連軋管理論中的一個重要研究課題。一般認為,產生竹節原因是由於浮動芯棒連軋管過程中出現了2n次交變斷續軋制狀態,尤其是芯棒速度的階躍變化,在非穩定軋制時的變形區內引起了金屬塑性變形及其流動的不連續性所造成的。
控制竹節的工藝措施有:
(1)在工藝操作上,合理分配延伸;改善芯棒摩擦條件(如選好的芯棒潤滑劑及噴塗方法、提高芯棒耐磨性與減小表面粗糙度等);改進孔型設計,後部機架的軋輥孔型採用較大的側邊開口以減少管子對芯棒抱緊力,有利於金屬縱向流動並減弱前竹節現象;
(2)在設備改進上,採用變剛度軋機結構,以便消除荒管縱向尺寸的不均勻性;
(3)在電氣控制上,採用後竹節的轉速迫降控制環節、管頭尾突加張力控制環節、咬鋼動態速降補償環節等,以抵消芯棒加速的階躍增量或突加張力拉薄,以利提高荒管縱向尺寸精度。

⑥ 鋼管的鑒別

1.偽劣鋼管易出現折疊。
折疊是鋼管表面形成的各種折線,這種缺陷往往貫穿整個產品的縱向。產生折疊的原因是由於偽劣廠家追求高效率,壓下量偏大,產生耳子,下一道軋制時就產生折疊,折疊的產品折彎後就會開裂,鋼材的強度大下降。
2.偽劣鋼管外表經常有麻面現象。
麻面是由於軋槽磨損嚴重引起鋼材表面不規則的凹凸不平的缺陷。由於偽劣鋼管廠家要追求利潤,經常出現軋槽軋制最超標。
3.偽劣鋼管表面易產生結疤。
原因有兩點:(1).偽劣鋼管材質不均勻,雜質多。(2)。偽劣材廠家導衛設備簡陋,容易粘鋼,這些雜質咬人軋輥後易產生結疤。
4.偽劣材表面易產生裂紋,原因是它的坯料是土坯,土坯氣孔多,土坯在冷卻的過
程中由於受到熱應力的作用,產生裂痕,經過軋制後就有裂紋。
5.偽劣鋼管容易刮傷,原因是偽劣鋼管廠家設備簡陋,易產生毛刺,刮傷鋼材表面。深度刮傷降低鋼材的強度。
6.偽劣鋼管無金屬光澤,呈淡紅色或類似生鐵的顏色,原因有兩點二、它的坯料是土坯。2、偽劣材軋制的溫度不標准,他們的鋼溫是通過目測的,這樣無法按規定的奧氏體區域進行軋制,鋼材的性能自然就無法達標。
7.偽劣鋼管的橫筋細而低,經常出現充不滿的現象,原因是廠家為達到大的負公差,成品前幾道的壓下量偏大,鐵型偏小,孔型充不滿。
8.偽劣鋼管的橫截面呈橢圓形,原因是廠家為了節約材料,成品輥前二道的壓下量偏大,這種螺紋鋼的強度大大地下降,而且也不符合螺紋鋼外形尺寸的標准。
9.優質鋼材的成分均勻,冷剪機的噸位高,切頭端面平滑而整齊,而偽劣材由於材質差,切頭端面常常會有掉肉的現象,即凹凸不平,並且無金屬光澤。而且由於偽劣材廠家產品切頭少,頭尾會出現大耳子。
10.偽劣鋼管材質含雜質多,鋼的密度偏小,而且尺寸超差嚴重,所以在沒有游標卡尺的情況下,可以對它進行稱量核對。比如對於螺紋鋼 20,國家標准中規定最大負公差為 5%,定尺9M時它的單根理論重量為 120公斤,它的最小的重量應該是:120 X(l-5%)=114公斤,稱量出來單根的實際重量比114公斤小,則是偽劣鋼材,原因是它負公差超過了5%。一般來說整相稱量效果會更好,主要考慮到累積誤差和概率論這個問題。
11.偽劣鋼管的內徑尺寸波動較大,原因是;l、鋼溫不穩定有陰陽面。2、鋼的成分不均勻。3、由於設備簡陋,地基強度低,軋機的彈跳大。會出現有同一周內變化較大,這樣的鋼筋受力不均勻易產生斷裂。
12.優質管的商標和印字都比較規范。
13.三鋼管直徑16以上的大螺紋,兩商標之間的間距都在IM以上。
14.偽劣鋼材螺紋鋼的縱筋經常呈波浪形。
15.偽劣鋼管廠家由於沒有行車,所以打包比較鬆散。側面呈橢圓形。

⑦ 48*1.8的無縫鋼管工藝流程是什麼樣的

關於冷軋管軋管過程、變形和應力狀態、瞬時變形區、滑移和軸向力、軋制力等的基本理論。

二輥式冷軋管機的軋管過程 二輥式冷軋管機工作時,其工作機架藉助於曲柄連桿機構作往復移動。管子的軋制(圖1)是在一根擰在芯棒桿7上的固定不動的錐形芯棒和兩個軋槽塊5之間進行的。在軋槽塊的圓周開有半徑由大到小變化的孔型。孔型開始處的半徑相當於管料1的半徑,而其末端的半徑等於軋成管2的半徑。

圖1二輥式冷軋管機

1-管料;2-軋成管;3-工作機架;4-曲柄連桿機構;5-軋槽塊

6-軋輥;7-芯棒桿;8-芯棒桿卡盤;9-管料卡盤;10-中間卡盤;11-前卡盤

在送進和回轉時,孔型和管體是不接觸的,為此,軋槽塊5上在孔型工作部分的前面和後面,分別加工有一定長度的送進開口(半徑比管料半徑大)和回轉開口(半徑比軋成管的半徑大)。在軋制過程中,管料和芯棒被卡盤8、9夾住,因此,無論在正行程軋制或返行程軋制時,管料都不能作軸向移動。

工作機架由後極限位置移動到前極限位置為正行程;工作機架由前極限位置移動到後極限位置為返行程。

軋制過程中,當工作機架移到後極限位置時,把管料送進一小段,稱送進量。工作機架向前移動後,剛送進的管料以及原來處在工作機架兩極限位置之間尚未加工完畢的管體,在由孔型和芯棒所構成的尺寸逐漸減小的環形間隙中進行減徑和管壁壓下。當工作機架移動到前極限位置時,管料與芯棒一起回轉60。~90。。工作機架反向移動後,正行程中軋過的管體受孔型的繼續軋制而獲得均整並軋成一部分管材。軋成部分的管材在下一次管料送進時離開軋機。

圖2多輥式冷軋管機

1-柱形芯棒;2-軋輥;3-軋輥架;4-支承板;5-厚壁套筒;6-大連桿;7-搖桿;8-管子

多輥式冷軋管機的軋管過程 多輥式冷軋管機軋制管材時見(圖2),管子在圓柱形芯棒1和刻有等半徑軋槽的3~4個軋輥2之間進行變形。軋輥裝在軋輥架3中,其輥頸壓靠在具有一定形狀的支承板(滑道)4上,支承板裝在厚壁套筒5中,而厚壁套筒本身就是軋機的機架,它安裝在小車上。工作時,曲柄連桿和搖桿系統分別帶動小車和裝在工作機架內的軋輥架作往復移動。由於小車和軋輥架是通過大連桿6和小連桿分別與搖桿7相聯結的,所以當搖桿擺動時,軋輥與支承板便產生相對運動。當輥徑在具有一定形狀的支承板表面上作往復滾動時,軋輥和圓柱形芯棒組成的環形孔型就由大變小,再由小變大地作周期性改變。當小車走到後板極限位置時,送進一定長度的管料並將管體回轉一個角度。為了降低返行程軋制時的軸向力以防止兩根相鄰管料在端部相互切入,一般管料的送進和管體的回轉,是當小車在後極限位置時同時進行的。當小車離開後極限位置向前移動時,孔型逐漸變小,進行軋制,在返行程軋制時獲得均整。

冷軋管時金屬的變形和應力狀態 以二輥式冷軋管機軋管為例,在軋管過程中金屬的變形過程如圖3所示。送料時工作錐向軋制方向移動一段距離m(送進量),相當於管料的Ⅰ-Ⅰ截面移動相同的距離到了Ⅰ1-Ⅰ1,位置,Ⅱ一Ⅱ的截面移動同一個距離m到了Ⅱ1一Ⅱ1位置(圖3a)。由於在管料送進的時候,工作錐的內表面脫離了芯棒的表面,兩者之間形成了一個間隙c,所以,當工作機架前移,工作錐變形時,在變形區中先是減徑,然後是壓下管壁(圖3b),而且在變形和延伸的過程中,工作錐內表面與位於軋槽塊前的芯棒之間的間隙不斷增大。同時,工作錐的末端截面移動到Ⅱx一Ⅱx位置。

圖3 冷軋管時金屬變形

在返行程軋制時,由於軋制前管體回轉了一個角度,原來處在孔型側壁的金屬轉到了孔型頂部,因而工作錐受到了均整,使任何一個橫截面形狀更圓,壁厚更均勻。另外,由於變形時其中一部分金屬向周向流動的結果,在孔型側壁和工作錐的內表面管料脫離了芯棒,這樣有利於下一次管料送進。

圖4 冷軋管變形時的作用力

工作機架回到後極限位置Ⅰ時,一個軋制周期結束,軋成管的一段長度為△LT(圖3c):

△LT=πS0 (D0-S0)m/πST(DT-ST)=μεm

式中με為總延伸系數,等於管料截面積與軋成管截面積之比,m為送進量。總延伸系數με和送進量m越大;則△LT越大,反之△LT越小。

冷軋管時,金屬是在不斷改變著位置和形狀的瞬時變形區內變形的。金屬在軋輥的正壓力P、芯棒的正壓力N,來自軋輥的摩擦阻力T以及來自芯棒的摩擦阻力T1的作用下進行變形(圖4)。若在金屬與軋輥接觸的變形區中取一單元體,則其徑向主應力σ1、周向主應力σ2和軸向主應力σ3均為壓應力,所以冷軋管時,金屬變形基本應力的應力狀態是三向壓應力,但在輥縫處(φ角范圍內)軸向承受單向拉應力,見圖5。與冷拔管時的二向壓一向拉的應力狀態相比,這種應力狀態更有利於金屬塑性的發揮。

圖5 冷軋管變形時應力狀態沿軋槽分布圖

a-正行程;b-反行程

瞬時變形區的結構 無論正行程軋制或返行程軋制,瞬時變形區的出口截面都與工作機架的中心截面相重合。在二輥式冷軋管機上軋管時,由於進入變形區的管體要先減小直徑再減小壁厚,因此,瞬時變形區包括由減徑角θp和壓下角θt構成的兩部分(圖3b)。在工作機架的行程中θp、θt的大小是變化的。θp與θt之和構成瞬時變形區總的接觸角。在多輥式冷軋管機上軋管時,行程的開始階段瞬時變形區由單一的減徑區構成,在行程的其他部分,由於這種軋機使用圓柱形芯棒,瞬時變形區可以認為由單一的減壁區構成。

瞬時變形區變形量的確定 在一般縱軋過程中,變形區的幾何尺寸是不變的。所以坯料上的任一個截面都可以一直從變形區的入口移動到出口。變形區進口截面和出口截面的高度差、就是坯料上任一截面連續通過變形區時的壓下量,而且是穩定不變的。但在冷軋管時,進入變形區的和離開變形區的管體截面的尺寸是不斷變化的,而且瞬時變形區進口截面和出口截面的高度差也不等於工作錐上進入瞬時變形區的截面在一個軋制行程中的壓下量。因此,冷軋管時,工作錐上的任一截面在一個軋制行程中連續通過不斷變化著的瞬時變形區時所達到的變形量是不相同的,而且確定它的大小也是比較復雜的。在實際計算中,通常是根據各瞬時變形區出口截面的尺寸,確定該截面變形開始時在工作錐上的位置和尺寸,再計算其變形量。這個變形量稱為瞬時變形區變形量。瞬時變形區變形量的計算一般以下述原則為基礎:設某瞬時變形區的出口截面為Ⅰ-Ⅰ(圖6),該截面在通過瞬時變形區時所經受的壓下量等於它與另一截面Ⅱ一Ⅱ的高度差,而這兩個截面之間所包括的金屬體積等於送進的金屬體積。圖中Rx 、rx和Sx分別為瞬時變形區出口截面的外半徑、內半徑和壁厚;RΔx 、rΔx和SΔx分別為該截面變形前的外半徑、內半徑和壁厚。

圖6 直角坐標中的一段工作錐

在冷軋管時,主要變形是在正行程軋制過程中完成的;但是,由於工作機架:軋輥等零部件的彈性恢復和軋制前管體的回轉,有的軋機還有送進,因此在返行程軋制時工作錐也有一定的甚至較大的變形。

一般可用下列公式來計算正行程軋制和返行程軋制的壁厚壓下量

式中ΔSn為正行程軋制時的壁厚壓下量;ΔSo為返行程軋制時的壁厚壓下量:Vy=(R0+r0)/(Rx+rx)mSx為送進體積率;R0、r0為管料的外半徑和內半徑;α為錐形芯棒的母線傾斜角;γ為工作錐母線的傾斜角;Kt為計算返行程軋制時變形量的系數,一般可取Kt=0.3~0.4。

一個軋制周期中的壁厚壓下量為:

瞬時變形區的邊界和咬入角 為了計算變形時軋輥同軋件的接觸面積,必須知道瞬時變形區的前後邊界線。周期式軋制時,瞬時變形區的後邊界線(出口一側的邊界線)應是一條空間曲線,但實際上和軋機中心面與工作錐的交線相差不大,故一般把後者作為瞬時變形區的後邊界線。

瞬時變形區的前邊界線(入口一側的邊界線)是空間曲線,它取決於沿孔型周邊的變形區各縱截面上的接觸角θ0。(圖7)

圖7 瞬時變形區的縱截面

θ可按下列簡化公式計算:

式中ΔRx為瞬時變形區中的半徑壓下量;ρ0為軋輥的理想半徑;C為孔型周邊上不同點處孔型的高度,Rx為瞬時變形區出口截面工作錐的半徑。

在孔型的脊部,接觸角為:

式中ρr為孔型脊部軋輥的半徑。

若以瞬時變形區的壁厚壓下量ΔSx取代上式中的ΔRx,則可得到確定瞬時變形區前邊界線上各點接觸角的計算公式。

瞬時變形區的接觸面積 圖8為二輥式和多輥式冷軋管機軋制管子時的變形區及接觸面積圖示。

文獻中有多種計算瞬時變形區接觸面積的近似公式。一種常用的計算二輥式冷軋管機軋管時接觸面積的方法如下。

圖9為藉助於計算接觸角θ得到的正行程軋制時瞬時變形區接觸表面積的垂直投影和水平投影。區域OPLMC為總接觸表面積的垂直投影;OPRE=Fys為減壁區接觸表面積的垂直投影;B1L1M1NM2L2B2=Fdx用為總接觸表面積的水平投影;C1R1PR2C2=Fxs減壁區接觸表面積的水平投影。

圖8 冷軋鋼管時變形區及接觸面積圖示

a-二輥冷軋管機的變形區;b-多輥式冷軋管機變形區;c-正行程的接觸面積;d-返行程的接觸面積

1-塑性和彈性變形區;2-彈性變形區;3-管子;4-芯棒;5-軋輥

圖9 正行程軋制時瞬時變形區接觸面積

a-垂直投影;b-水平投影

先來確定減壁區接觸表面積的水平投影。由圖9可知,減壁區接觸表面積的水平投影可分成兩部分:

Fxs=2(Fc1p1po +Fp1R1P)

在孔型脊部C=Rx,面積Fc1p1po用下式計算具有足夠的精確度:

式中C為孔槽深,近似為孔槽寬之半。

面積Fp1R1P=η1 1/2(P1P)(R1D),式中η1 為系數,等於0.85。R1D=(ρ0-Cmin)sin(θtc-θtr),Cmin為孔型周邊與工作錐最先接觸處軋槽的高度;θtc為孔型脊部減壁區的接觸角;θtr為孔型周邊和工作錐最先接觸處減壁區的接觸角。

所以計算Fxs的公式可寫成[取sin(θtc-θtr)≈θtc-θtr]:

由於孔型側壁的開口角通常為16。~22。,用於工程計算可取Cmin=Rx。/3,所以孔型周邊與工作錐最先接觸處的總接觸角為:

而孔型脊部的總接觸角為:

因此

取 θtc/θtr =θoc/θor =η2

對不同軋機η2波動在1.60~1.70之間,軋機較大時其值較小。

以角θtr表示角θtc,並把所得的值代入Fxs式,可以把Fxs的計算公式寫成更簡單的形式:

式中η3為接觸面積的形狀系數,對於二輥冷軋管機,其值為1.20~1.25;對於三輥式冷軋管機可取為1.10。

相應地減壁區的總接觸表面積可按下式確定:

上兩式以ΔRx取代△Sx,則可求得總接觸表面積的水平投影及總接觸表面積。

軋制過程中的滑移及軸向力 在冷軋管過程中,金屬與軋槽表面之間存在著相對滑動即滑移。變形區由前滑區和後滑區構成。軋制過程中,在前滑區作用在金屬上的摩擦力(圖10中Tx2)的方向和機架移動的方向相反;在後滑區ABc作用在金屬上的摩擦力(圖10中的Tx1)的方向和機架移動的方向相同。

在沒有外加前後張力的一般簡單的縱軋過程中,變形區中軋輥作用在金屬上的正壓力的軸向分量和作用在前後滑區的摩擦力的軸向分量始終是互相平衡的。在這種軋制過程中,軋件的出口速度能根據變形條件而自動變化,相對於一定的變形條件,必有一個相應的出口速度以形成適宜的前後滑區,使這時前後滑區所產生的摩擦力的軸向分量正好與軋輥正壓力的軸向分量相平衡。

圖10 前後滑區接觸面積的水平投影及摩擦力的方向

在冷軋管時,由於軋制過程的強制性,(管料是被固定的而不能作軸向運動)不存在通過改變軋件出口速度調節前後滑區大小的可能。因此,在一般情況下,作用在變形區上各力的軸向分量不能相互平衡,其結果,在變形過程中管體受到來自變形工具的軸向力。有時軸向力還是比較大的。軸向力在工作機架行程長度上的分布是不均勻的,並且最大軸向力往往不與最大軋制力相對應。在正行程軋制時,軸向力可能是壓力(方向和工作錐延伸的方向相反)或拉力(方向和工作錐延伸方向相同);在返行程軋制時,一般只出現軸向壓力。軸向力過大會對軋制過程產生不良影響,如出現兩根相鄰管料的端部相互切入,芯棒桿縱向彎曲,軋制過程中工作錐竄動,送進管料時工作錐從芯棒上脫開時的阻力增加,以及送進機構的磨損加劇等。因此軸向力的大小在一定程度上決定著軋機的生產力和能夠達到的變形量。

軋制力 在二輥式冷軋管機上,金屬作用在軋輥上的平均軋制力可按下式計算:

式中Kδ為與軋制時金屬加工硬化有關的系數,對鋼它可取為1.42;δb50為變形程度為50%時金屬的強度極限;D0為管料的直徑;DT為軋成管的直徑;Rc為軋槽壓下段軋輥的平均半徑;lc為軋槽壓下段的長度;So為管料的壁厚;ST為軋成管的壁厚。在多輥式冷軋管機上,平均軋制力的計算公式為:

式中K為與多輥式冷軋管上變形特點有關的系數,一般可取為1.6~2.2;δbc為變形前後管材強度極限的平均值;Rk為軋制半徑;lpk為工作錐壓下段的長度。

⑧ 管材常見缺陷

一 內表面缺陷
1 內折
特徵:在鋼管的內表面上呈現直線或螺旋、半螺旋形的鋸齒狀缺陷。
產生原因:
1) 管坯:中心疏鬆、偏析;縮孔殘余嚴重;非金屬夾雜物超標。
2) 管坯加熱不均、溫度過高或過低、加熱時間過長。
3) 穿孔區域:頂頭磨損嚴重;穿孔機參數調整不當;穿孔輥老化等。
檢判:鋼管內表面不允許存在內折,管端內折應修磨或再切,修磨處壁厚實際值不得小於標准要求最小值;通長內折判廢。

2 內結疤
特徵:鋼管內表面呈現斑疤,一般不生根易剝落。
產生原因:
1) 石墨潤滑劑中帶有雜質。
2) 荒管後端鐵耳,被壓入鋼管內壁等。
檢判:鋼管內表面不允許存在,管端處應修磨及再切,修磨深度不應超標准要求負偏差,實際壁厚不得小於標准要求最小值;通長內結疤判廢。
3 翹皮
特徵:鋼管內表面呈現直線或斷續指甲狀翹起的小皮。多出現在毛管頭部,且易於剝落。
產生原因:
1) 穿孔機調整參數不當。
2) 頂頭粘鋼。
3) 荒管內氧化鐵皮堆積等。
檢判:鋼管內表面允許存在無根易剝落(或在熱處理時可燒掉)的翹皮。對有根的翹皮應修磨或切除。

4 內直道
特徵:在鋼管內表面存在具有一定寬度和深度的直線形劃傷。
產生原因:
1) 軋制溫度低,芯棒粘有金屬硬物。
2) 石墨中含有雜質等。
檢判:
1) 套管和普管允許深度不超過5%(壓力容器類最大深度0.4mm)的內直道存在。
慎獨超查德內直道應修磨、切除。
2) 邊緣尖銳的內直道應修磨平滑。

5 內棱
特徵:在鋼管內表面存在具有一定寬度和深度的直線形凸起。
產生原因:芯棒磨損嚴重,修磨出不圓滑或過深等。
檢判:
1)套管、管線管允許存在高度不超過壁厚道8%,最大高度不超過0.8mm不影響通徑的內棱存在。超差應修修磨及再切。
2)普管、管線管允許存在高度不超過壁厚8%(最大高度為0.8mm)的內棱存在。超差應修磨及再切。
3)對L2級(即N5)探傷要求鋼管,內棱高度不得超過5%(最大高度為0.5mm)。超差應修磨及再切。
4)邊線尖銳的內棱應修磨平滑。

6 內鼓包
特徵:鋼管內表面呈現有規律的凸超且外表面沒有損傷。
產生原因:連軋輥修磨量過大或掉肉等。
檢判:按照內棱要求檢判。

7 拉凹
特徵:鋼管內表面呈現有規律或無規律地凹坑且外表面無損傷。
產生原因:
1)連軋調整不當,各架輥軋速不匹配。
2)管坯加熱不均勻或溫度過低。
3)軋制中心線偏離,鋼管與連軋後輥道碰撞產生等(註:此種原因2003.1提出,原理尚在探討)。
檢判:不超過壁厚負偏差,實際壁厚大於壁厚要求最小值的拉凹允許存在。超標的拉凹應切除。(註:拉凹嚴重發展即為拉裂,此種傷應嚴格檢驗)。
8 內螺紋(此缺陷只在阿塞爾機組產生)
特徵:鋼管內表面有螺旋狀痕跡,多出現在薄壁管內表面,有凹凸不平的明顯手感。產生原因:
1) 斜軋工藝的固有缺陷。在阿塞爾軋管機工藝參數調整不當時,這種缺陷更為突出。
2) 變形量分配不合理,阿塞爾減壁量過大。
3) 阿塞爾軋型輥型配置不當。
檢判:鋼管內螺紋缺陷深度不大於0.3mm,且在一定的公差范圍之內。

二 外表面缺陷
1 外折
特徵:在鋼管外表面呈現螺旋狀的層狀折疊。
產生原因:
1) 管坯表面有折疊或裂縫。
2) 管坯的皮下氣孔,皮下夾雜較嚴重。
3) 管坯表面清理不良或有耳子、錯面等。
4) 軋制過程中,鋼管表面被掀起劃傷,通過軋制又被壓合到鋼管的基體上,形成外折等。
檢判:不允許存在:輕微的可進行修磨,修磨後壁厚和外徑實際值不得小於標准要求的最小值。

2 離層
特徵:在鋼管表面上呈現螺旋形或塊狀的分層和破裂。
產生原因:管坯中非金屬夾雜物嚴重、殘余縮孔或嚴重疏鬆等。
檢判:不允許存在。

3 外結疤
特徵:鋼管外表面呈現斑疤。
產生原因:
1) 軋輥粘鋼、老化、磨損嚴重或硌輥。
2) 輸送輥道粘有異物或磨損嚴重。
檢判:
1) 外結疤成片分布應修磨或切除。
2 ) 在有外結疤的管段上,外結疤面積超過10%應切除或修磨。
3) 深度超過壁厚5%的外結疤應修磨。
4) 修磨處的壁厚、外徑實際值不得小於標准要求的最小值。

4 麻面
特徵:鋼管表面呈現高低不平的麻坑。
產生原因:
1) 鋼管在爐內停留時間過長或加熱時間過高,使表面生成氧化鐵皮過厚,清除不凈,軋入鋼管表面。
2) 高壓水除磷設備不正常工作,除磷不凈等。
檢判:
1) 局部不超過壁厚負偏差的麻面允許存在。
2) 麻面面積不得超過有麻面管段面積20%。
3) 超差麻面可修磨或切除,修磨處壁厚、外徑實際值不得小於標准要求最小值。4) 嚴重麻面判廢。

5 青線
特徵:鋼管外表面呈現對稱或不對稱的直線形軋痕。
產生原因:
1) 定徑機孔型錯位或磨損嚴重。
2) 定徑機軋輥孔型設計不合理。
3) 軋低溫鋼。
4) 軋輥加工不好,軋輥邊部倒角太小。
5) 軋輥裝配不好,間隙過大等。
檢判:
1) 套管外表面允許高度不超過0.2mm青線存在,超差應修磨。
2) 高壓容器類管不允許有手感青線存在。有手感青線必須清除。修磨處應圓滑無稜角。
3) 普管類鋼管(結構、流體、液壓支架等)允許高度不超過0.4mm青線存在,超差應修磨。
4) 邊緣尖銳的青線應修磨平滑。
5) 修磨處壁厚、外徑值實際值不得超過標准要求最小值。

6 發紋
特徵:在鋼管外表面上,呈現連續或不連續的發狀細紋。
產生原因:
1) 管坯有皮下氣孔或夾雜物。
2) 管坯表面清理不徹底,有細小裂紋存在。
3) 軋輥過度磨損、老化。
4) 軋輥加工精度不好等。
檢判:鋼管外表面不允許存在肉眼可見的發紋,如存在應完全清除,清除後壁厚、外徑實際值不得小於標准要求最小值。

7 網狀裂紋
特徵:鋼管外表面上呈現帶狀且螺距大的魚鱗狀小裂紋。
產生原因:
1) 管坯有害元素含量過高(如砷元素)。
2) 穿孔輥老化、粘鋼。
3) 導板粘鋼等。
檢判:應完全清除。清除後的壁厚、外徑實際值不得小於標准要求最小值。

8 劃傷
特徵:鋼管外表面呈螺旋形或直線形溝狀缺陷,大部分可以看到溝底。
產生原因:
1) 機械劃傷主要產生於輥道、冷床、矯直、運輸方面。
2) 軋輥加工不好或磨損嚴重或輥縫夾有異物等。
檢判:
1) 鋼管外表面允許局部存在不超過0.5mm的劃傷,超0.5mm劃傷應修磨。修磨處壁厚、外徑實際值不得小於標准要求最小值。
2) 邊緣尖銳的劃傷應修磨平滑。

9 碰癟
特徵:鋼管外表面呈現外凹里凸的現象,而鋼管壁厚無損傷。
產生原因:
1) 在吊運中碰擊至癟。
2) 矯直咬入時碰癟。
3) 定徑機後輥道碰癟等。
檢判:局部不超外徑負偏差且表面平滑的碰癟可以存在。超差時切除。

10 碰傷
特徵:鋼管外表面因碰撞產生無規律的傷痕。
產生原因:可產生於冷區與熱區的各種碰撞等。
檢判:
1) 外表面允許局部存在深度不超過0.4mm的碰傷。
2) 超過0.4mm碰傷應修磨平滑且修磨處外徑、壁厚實際值不得小於標准要求最小值。

11 矯凹
特徵:鋼管外表面呈螺旋形的凹入。
產生原因:
1) 矯直機輥角度調整不當、壓下量過大。
2) 矯直輥磨損嚴重等。
檢判:鋼管外表面允許存在無明顯稜角的和內表面不突出,且外徑尺寸符合公差要求的矯凹。對超標矯凹應切除。

12 軋折
特徵:鋼管管壁沿縱向局部或通長呈現外凹里凸的皺折,外表面成條狀凹陷。
產生原因:
1) 孔型寬展系數選擇太小。
2) 軋機調整不當致使孔型錯位或軋制中心線不一致。
3) 連軋機各架壓下量分配不當等。
由於以上原因使得鋼管在軋制過程中金屬進入軋輥間隙或者管子失掉穩定性造成管壁皺折。
檢判:不允許存在。應切除或判廢。

13 拉裂
特徵:鋼管表面有拉開破裂現象,多產生在薄壁管上。
產生原因:
1) 由於管坯加熱溫度不均,使得變形部俊,溫度低的部位拉力軋制,當拉力較大時,將管子拉裂。
2) 連軋機各架速度和輥縫調整不當,造成拉鋼而撕破。
3) 毛管壁厚影響,當穿孔機供給連軋機的毛管壁厚較小時,在連軋機金屬變形量比設計變形量減小,造成連軋機拉力軋制,拉力大時而撕破。
4) 管坯本身局部存在較嚴重的夾雜物。
檢判:不允許存在。應切除或判廢

三 尺寸超差
1 壁厚不均
特徵:鋼管在同一截面上壁厚不均勻,最大壁厚和最小壁厚相差大。
產生原因:
1)管坯加熱不均。
2)穿孔機軋制線未調正,定心輥不穩定。
3)頂頭磨損或頂頭後孔偏心。
4)管坯定心孔補正。
5)管坯彎曲度、切斜度過大。
檢判:逐支測量,壁厚不均端應切除。

2 壁厚超差
特徵:鋼管壁厚單向超差,超正偏差者稱之為壁厚超厚;超負偏差者稱之為壁厚超薄。
產生原因:
1)管坯加熱不均。
2)穿孔機調整不當。
檢判:逐支測量,端部超差應切除,全長超差應改判或判廢。

3 外徑超差
特徵:鋼管外徑超標,超正差者稱之為外徑大,超負差者稱之為外徑小。
產生原因:
1)定徑機孔型磨損過大,或新孔型設計並不合理。
2)終軋溫度不穩定。
檢判:逐支測量,超標應給予改判或判廢。

4 彎曲
特徵:鋼管沿長度方向不平直或在鋼管端部呈現鵝頭狀的彎曲稱之為「鵝頭彎」。
產生原因:
1)人工熱檢時局部水冷造成。
2)矯直時調整不當,矯直輥磨損嚴重。
3)定徑機加工、裝配及調整不當。
4)吊裝運輸中造成彎曲。
檢判:彎曲度超標時,可二次重矯直,否則判廢。無法矯直的「鵝頭彎」應給予切除。

5 長度超差
特徵:鋼管長度超出要求,超正差稱長尺,超負差稱短尺。
產生原因:
1) 管坯長度超標。
2) 軋制不穩定。
3) 分切時沒控制好等。
檢判:長尺管再切或改判,短尺管改判或判廢

閱讀全文

與軋機鋼管老是斷芯棒什麼原因相關的資料

熱點內容
90度彎頭轉彎半徑怎麼算6 瀏覽:533
英雄無敵戰役鋼鐵防線怎麼過 瀏覽:329
鋼筋工一般一個月多少工程量 瀏覽:187
不銹鋼碗裝什麼食物 瀏覽:476
陶瓷喇叭怎麼焊接 瀏覽:356
焊接後強度如何確定 瀏覽:197
球形不銹鋼地漏多少錢一個 瀏覽:756
鋼化膜玻璃油墨 瀏覽:625
1立方鋼管架多少平方 瀏覽:624
pvc水管下水管彎頭怎麼去掉 瀏覽:680
夾心彩鋼板怎麼套定額 瀏覽:25
哈爾濱哪裡有賣月餅模具的 瀏覽:487
聚氨酯保溫彎頭怎麼包 瀏覽:413
鋼筋抬杠是什麼意思 瀏覽:84
古代做兵器用的什麼模具 瀏覽:930
鋼鐵雄心4醫療有什麼用 瀏覽:844
什麼叫鋼制對焊管件 瀏覽:765
不銹鋼無縫管為什麼不一樣長 瀏覽:858
三排的鋼筋怎麼表示 瀏覽:769
禪城區鋼材市場在哪裡 瀏覽:782