導航:首頁 > 鋼鐵貿易 > 鋼鐵冶煉技術怎麼進步的

鋼鐵冶煉技術怎麼進步的

發布時間:2023-06-14 19:23:03

㈠ 現代冶煉技術的發展過程是怎樣的

人類進入鋼的時代

——現代冶煉技術的發明與發展19世紀中葉以後,歐洲鋼的生產開始了大發展,1856年是大發展的起點,這一年貝塞麥發明了轉爐吹煉法,大大縮短了煉鋼時間,不久西門子又發明了平爐煉法(1867年),不僅能生產優質鋼,而且可大利用大量廢鋼。這兩種方法為現代化煉鋼打下了基礎,使人類進入鋼的時代。

磷的問題是20多年後才由英國人托馬斯解決。他從化學反應的角度來研究磷的行為,認為生鐵中的磷被空氣氧化後生成五氧化二磷,又被吹煉爐的硅質爐襯還原成磷,重新進入鋼中,因此他認為,如果採用另一種爐,使它能夠和五氧化二磷結合,就能解決這一問題。他和P·吉爾克里斯特合作,於1877年在一座小爐上進行了一系列試驗,證明用鹼性襯爐可以脫磷,以後又在1.5噸的爐子里進行擴大試驗,採用白雲石作為爐襯,並以焦油作粘結劑,於1879年獲得成功,創造丁鹼性轉爐煉鋼法,又稱貝塞麥—托馬斯法,從此該法在歐洲推廣應用,取得顯著成效。

平爐煉鋼的發明者是德國人西門子,他和其弟一起研究蓄熱式熱交換器以及用煤氣作燃料,成功地用於玻璃熔化爐,可節省燃料50%,以後應用於熔化坩堝鋼,接著研究成功了用生鐵和鐵礦石一起煉鋼的方法,即平爐煉鋼法,於1867年取得專利。平爐煉鋼的冶煉系在中間的反射爐內進行,爐子的下面有兩個蓄熱式熱交換器,分列左右,輪換使用,用以預熱空氣。這種爐子的特點是熱效率較高,並可達到很高的爐溫。同一時候,法國馬丁取得西門子關於蓄熱室爐子的專利後,試驗成功了用生鐵和熟鐵一起熔煉成鋼的方法,接著又用廢鋼代替熟鐵和生鐵一起煉鋼,這就是現在通用的平爐煉鋼法,又稱西門子—馬丁法。斗早平爐的爐襯也有酸性和鹼性兩種。

平爐的冶煉時間比轉爐長得多,對於100噸的爐子,原料如為生鐵:廢鋼=50:50,則冶煉周期約為8~12小時。

和塌岩轉爐煉鋼比較,平爐具有以下優點:

平爐去除鋼中雜質是個緩慢過程,因此鋼的成分空衫雀容易控制。

可以加入任何比例的廢鋼(當時轉爐限於5%)。

鹼性平爐可以不受生鐵中含磷量的限制(鹼性轉爐要求生鐵中含有足夠高的磷,一般須為1.7~2%,否則氧化發熱量不夠,難以維持爐溫;而酸性轉爐則要求生鐵中含量足夠低,才能保證鋼的良好性能)。

鋼中含氮量少(轉爐系空氣直接吹入熔體,鋼中吸收了一部分氮,易使鋼變脆)。

由於具有上述優點,因此平爐發展很快,到1894年時產量已超過了轉爐,達到157.5萬噸,轉爐鋼則為153.53萬噸。

電爐煉鋼系用電作為熱源進行煉鋼,有兩種形式,一是電弧爐,一是感應爐。

電弧爐——西門子於1878年首先應用電弧爐熔化廢鋼,但由於當時電費太貴,且電力供應不足,限制了該法的發展。1900年法國埃洛特建立了第一座工業用的電弧煉鋼爐,先將生鐵在鹼性轉爐內吹煉,去掉硅、錳及大部分碳,然後將熔體裝入鹼性電弧爐內進一步除磷及碳,直到達到要求的含量,這樣可使每爐鋼的成分基本一樣。

感應爐——義大利費蘭蒂於1877年最先採用高頻爐熔化金屬,但工業應用則始於1899年客林在瑞典建立的爐子。英國的煉鋼中心設菲爾德於1907年建立了一座實驗爐,可生產2噸重的鋼鑄件,由於1925年發明了電動發電機組,能獲得比較合適的頻率(500~3000周/秒),從而加速了感應爐的發展,使它逐漸取代了坩堝爐,用來生產高質量的工具鋼。感應爐僅系熔化而不發生冶煉作用,因此可按照需要成分預先配好爐原料。感應加熱時產生渦流,對熔體有攪動作用,使鋼的成分均勻一致。

用電爐可以冶煉各種性能的合金鋼。

合金鋼的創始人當推法拉第,他為了尋找適合於電磁方面用的材料,從1819年開始曾將各種不同的元素加入鐵中,包括鉻。可惜他的工作沒有進一步做下去,不然「合金鋼時代」將會提前50年到來。

1871年英國試制了鉻鋼,1877年法國製成含鉻生鐵及鉻鋼,並用於工業,高爐煉鐵鉻合金也隨即開始。

R·馬希特在1871年發現錳鎢鋼在空氣中冷卻後有很大的硬度,於是用作工具鋼。這一合金的出現使機械工業發生了革命,使用壽命為以前高碳鋼的5—6倍,並使機床的速度提高了1倍。

接著R·哈德菲爾德在合金鋼領域里又邁出了重要的一步,他於1883年發明了錳鋼。以前曾有人研究過錳的作用,發現加入錳後雖然能使鋼變硬,但卻變脆。而R·哈德菲爾德進一步發現:如果加入大量的錳(10%或更多),鋼不僅具有足夠的硬度,而且具有很好的抗拉強度和延展性。將錳鋼加熱至1050℃並在水中淬火,還可以提高它的韌性(而碳鋼經過這樣的處理卻變脆)。錳鋼還有另一個優良性能:當撞擊時,表面層變硬而內部仍保持韌性,因此十分適用於製造鐵路叉道、掘土機、挖泥船等。錳鋼的發現又使機械工業增加了一種寶貴的材料。

哈德菲爾德還發明了硅鋼,開始時用作工具鋼,後來發現當含硅至5%時具有高導磁率、高電阻、低磁滯的特性,特別適用於製造電動機和發電機的轉子、變壓器芯及其它電器用具。從1907年以來硅鋼已成了電力工業中不可缺少的一種基本材料。

1889年英國J·賴利發明的鎳鋼在工程界起了極為重要的作用。他發現當加鎳至4.7%時,可使鋼的強度增加2倍。這一優良性能很快確立了鎳鋼的地位。

本世紀初由美國F·W·泰勒和M·懷特發明了高速鋼很快被歐洲所採用,典型成分是:鎢18%,鉻4%,釩1%,碳0.5%,有時還含鈷。這種鋼在高溫時不軟化。採用這種鋼做刀具,切削速度可自高碳鋼的30英尺/分提高至500英尺/分。

1913年英國H·布里爾利發明了不銹鋼,成分是鉻13%,碳0.3%。後來德國B·施特勞斯和E·毛雷爾加入鎳進一步改善了抗腐蝕性能和機械性能,這就是今天廣泛使用的含鉻18%、含鎳8%的18~8不銹鋼。鋼中加入鉻不僅抗蝕,而且防止高溫時氧化掉皮,因此是用於原子能工業、火箭、汽輪機等的理想材料。

自從工業革命以來,金屬材料在工業化大生產中長期處於重要位置。在金屬材料中,鐵和鋼又占居首位。19世紀中葉以前,鐵是主要的金屬材料,從」世紀下半葉起,鋼迅速取代鐵成為工業發展的重要支柱,開創了材料工業的鋼鐵時代。進入20世紀,由於工業、交通、建築、軍事等部門的大量需要,鋼在產量、質量、品種、冶煉技術上都有新發展。

20世紀上半葉,煉鐵技術雖仍以19世紀發明的高爐冶煉為主,煉鋼技術也仍以19世紀發明的平爐冶煉為主,轉爐煉鋼和電爐煉特種鋼為鋪,但在煉爐技術、原料處理和軋制技術上都不斷有改進。

1930年前後,冶金學家開始研究直接使用氧氣的煉鋼法,論證了用高濃度的氧代替空氣助燃,可以提高煉鋼效率。

本世紀40年代,氧氣斜吹轉爐煉鋼法、卧式轉爐雙管吹氧法、純氧頂吹轉爐煉鋼法等相繼出現,其中以純氧頂吹轉爐煉鋼法的優點最為明顯,它與當時通用的平爐相比,投資減少約一半,效率提高達數倍,成本低、質量高,因而迅速得到了推廣。電弧爐煉鋼法和感應爐煉鋼法在電力比較充足的國家,如美、意等國陸續被用於煉制特種鋼的生產中。40年代出現的連續鑄鋼法是煉鋼技術的一個重大進步,它可以省掉鋼錠模和初軋機,使生產率成倍提高,投資和成本明顯下降。

煉鋼技術的發展還表明在各種特種鋼和合金鋼的不斷問世上。不同的特種鋼和合金鋼可以適應不同的特殊需要。20世紀初發明了滲碳法,不久又發展了利用滲碳技術滲氮。20年代末至30年代又把鎳、鉻等加到普通的碳鋼中,製成了一系列堅韌的鎳鋼和鉻鋼。一種重要的合金鋼——錳鋼的煉制技術也有了新的進步。1882年,英國人S·R·哈德菲爾德第一個研製出的錳鋼,含錳約為12~13%。20世紀初則研製成含錳達80%的高錳鋼,堅韌性極高,可用於艦艇和武器的裝甲。哈德菲爾德於1900年又研製出有很高磁導率的硅鋼,是製造電機電器的好材料。1912年,英國人H·布里爾利制出了含一定比例的鎳、鉻,有良好抗腐蝕性能的不銹鋼。1912年,美國生產了含鎳達71~80%的透磁鋼。1923年,德國研製成功高硬度的氮化鋼。第二次世界大戰中,把鎳鉻合金經氮化處理和熱處理後得到了質硬、耐磨的新合金。40年代出現了能耐800℃高溫的鎳鉻合金。此外,加入不同比例的硅、鉬、鈮、鋁、鈦等元素,各有特種性能的多種合金鋼在這一時期也相繼誕生。這些合金材料的出現,促進了機器、電氣、化工、交通運輸、軍事工業的發展。

後來出現的金屬材料如鈦等雖然在強度上超過了鋼,但由於其數量極為有限,故還遠遠達不到取代鋼的地位。鋼以其龐大的數量,品種的繁多一直稱雄金屬材料世界。據專家預測,至少在今後50年內還沒有任何金屬材料取代其霸主地位。

㈡ 我國古代的鐵器冶煉技術發展史

關於鐵器:

中國開始和使用鐵器的年代,目前尚無定論。考古發現的人工冶煉的最早鐵器屬於春秋時期,目前已知有大約二十件左右,有凹形鋤(臿)刃,梯形錛刃、削、刮刀、劍、鼎等,經金相核驗,多數屬固態還原的塊煉鐵(指不含炭的鐵)。戰國時期,掌握了塊煉滲碳鋼及其淬火工藝,大大提高了鐵器的實用的性能,為戰國中期以後的鐵器大量應用於軍事和農業生產創造了技術條件。

關於我國何時出現鐵器的問題,主要有以下三種不同意見:

第一種意見,1972年底,河北藳城台西遺址發現了一件商代中期的鐵刃銅鉞,而且,這件器物的鐵刃經鑒定是經過鍛打的。1977年8月北京平谷縣南獨樂河公社劉家河大隊商代墓葬中又出土了一件鐵刃銅鉞;此外,解放前還發現有一件西周初年的鐵刃銅鉞和鐵援銅戈,傳說是1931年在河南浚縣出土的。上述幾件器物經分析,均含有較高成分的鎳,這正是隕鐵的特徵。所以,一般認為這幾件器物由隕鐵製成,而不是由人工鍛冶的鐵製成的。另外,在商代藳城台西遺址中還出土了兩塊赤鐵礦石和十幾塊鐵渣,所以有的研究者認為這是商代中期已開始冶鐵的反映。但人們在冶銅時,礦石中的氧化鐵同樣會留在礦渣之中,而且礦渣中的含鐵量可達到36%以上,甚至達50%。所以,有的研究者又認為:「台西遺址出土的所謂鐵渣,應是煉銅的礦渣,而不是人工冶鐵的遺物」,等等。總之,學術界占統治地位的意見認為,中國在商代還沒有出現人工制鐵。

第二種意見,西周初期有無人工冶鐵?有的學者認為西周初期可能出現人工冶鐵。《逸周書·克殷》載:「……乃石擊之以輕呂,斬之以玄鉞」。有的學者認為,這里的「玄鉞」並非鐵器,而指隕鐵制的鐵刃銅鉞,不能證明商末周初已能冶鐵。《詩經·大雅·公劉》:「取厲取鍛。」《尚書·費誓》:「鍛乃戈矛,礪乃鋒刃。」對這兩處中的「鍛」,過去一些學者認為制鍛鐵,現在一些學者則認為「鍛」指對青銅的捶鍛。而且至今考古發現西周戈、矛等兵器均為青銅製品,青銅兵器、工具也可以通過鍛打而變得鋒利。因此,西周初期出現人工冶鐵的意見也因缺乏實證而被否定。

第三種意見,西周中晚期出現人工冶鐵。《禮記·月令》載:「天子……乘玄路,駕鐵驪,載玄旗……」這一記載系指西周而言。《詩經·秦風·駟鐵》: 「駟鐵孔阜」,是西周末秦襄公時的詩,意為四匹馬的顏色如鐵。只有鐵成為習見事物之後,才會以其顏色稱呼別的器物。考古已發現了西周末的人工冶鐵製品,即河南三門峽虢國大墓中出土的銅柄鐵劍。這件器物屬西周晚期人工冶鐵的塊煉鐵製品已為學術界公認。此外,陝西鳳翔秦公一號墓出土了西周、東周之際的鐵鏟,甘肅靈台發現春秋早期的銅柄鐵劍,甘肅永昌則發現春秋早期的鐵鍤等。據上述事實,學術界認為中國中原地區人工冶鐵最早發生於西周中晚期。

從現在接觸到的文獻資料和考古發現的實物證據來看,把中國最早出現的人工冶鐵定在西周中晚期是比較合理的。

濕法煉銅:Fe+CuSO4=FeSO4+Cu
不一定用鐵,金屬活動性比銅強就行.
也不一定用硫酸銅,可溶性的銅鹽就可以.

關於冶鐵:

冶鐵技術是古代化學工藝的應用實例,也是應用化學知識的集中表現。人類最早煉得的鐵,是鐵礦石在800℃~1000℃條件下,由木炭還原直接得到的。江蘇省六合縣程橋出土的公元前6世紀前後東周墓內的鐵凡、鐵條,在湖南省長沙市洞坡等地的遺址中,發現經過人工冶煉的鐵塊,這是世界上最早的生鐵實物。

商周時代,我國的青銅鑄造業非常發達,這意味著采礦、鼓風、冶煉等技術都很先進。在這個基礎上,冶鐵業也迅速發展起來。由於早期的冶煉技術底下,煉爐很小,鼓風能力也不強,無法使礦石充分熔化,因此只能煉成海綿狀的熟鐵塊。在海綿鐵中還含有很多雜質,需要經過反復煅打才能得到較純的鐵塊,這種技術叫做塊鐵法。歐洲曾經長期使用這種方法煉鐵,一直要到14世紀發明了水力鼓風爐以後才能冶煉鑄鐵,比我國晚了1900多年。

文獻上關於冶煉生鐵的記載最早見於《左傳》。公元前513年,晉國曾在國都徵收「一鼓鐵」的軍賦,並把成文的刑法鑄在鐵鼎上,即所謂的 「鑄刑鼎」。這說明春秋晚期民間已經出現了煉鐵作坊,並且已經能夠鑄造鼎這樣復雜的鐵容器了。目前發現的最早的鐵器都是春秋時代的,這些鐵器經金相分析,有的是塊鐵法製造的,有的是鑄鐵鑄造的,有的是把鑄鐵加熱退火柔化處理為展性鑄鐵製成的,顯示出技術已經非常熟練了。

早期的鑄鐵是白口鐵,質地脆而硬,容易折斷,不耐用。戰國時期人們已經掌握了鑄鐵柔化技術。他們把鑄鐵加熱鍛打脫碳,得到白心可鍛鑄鐵,或經過長時間加熱退火,得到韌性更好的黑心可鍛鑄鐵。如果脫碳不完全,僅使鑄件外層成為鋼而內層還是鑄鐵,就可以得到一種鋼和鐵的復合品,使鑄件的質量更加優良,歐洲要到18世紀才有白心可鍛鑄鐵,美國要到19世紀才有黑心可鍛鑄鐵,我國的鑄鐵柔化技術比他們早發明了兩千多年。

生鐵、熟鐵和鋼的區別在於含碳量的不同,生鐵的含碳量大於2%,熟鐵的含碳量小於0.04%,鋼的含碳量界於二者之間。鋼可以通過生鐵脫碳得到,也可以通過熟鐵滲碳製得。燕下都出土的一部分兵器就是把塊煉鐵放在熾熱的木炭中長期加熱使其表面滲碳,在經過鍛打成為滲碳鋼片,又把滲碳鋼片對折鍛打多次製成的,這種煉鋼法也叫 「百煉成鋼」,漢代有些用這種方法製成的鋼刀上常常刻有「卅煉鋼」、「百煉鋼」等字樣。

漢代冶鐵的一項突出成就,就是出現了球墨鑄鐵,而現代的球墨鑄鐵要到1947年才研製成功。百煉鋼工藝的日益成熟和炒鋼技術的發明,也是漢代鋼鐵冶煉技術進步的標志。西漢中晚期出現了利用生鐵炒成熟鐵或鋼的新技術,即將生鐵加熱到半液體、半固體狀態再進行攪拌,利用空氣或鐵礦粉中的氧進行脫碳以獲得熟鐵或鋼。運用這種技術可以有控制的把生鐵炒到所需要的含碳量,然後再加熱鍛打成質量較好的鋼件,從而大大的促進了百煉鋼的發展。

㈢ 中國鋼鐵冶煉業及世界鋼鐵冶煉業發展歷史

一、 生產工具的鐵器化與冶鐵業的發展

戰國以後,由於冶鐵技術的進步,社會經濟制度的變革,社會上對於鐵器需要量的增加,鐵礦的開采,鐵的冶煉和鑄造成為關系國計民生的重要手工業,因此,冶鐵業開始發展起來。在戰國時代開發的鐵礦已經不少,戰國時代的著作《山海經·五藏山經》所載產鐵之山就有37處,記錄屬南陽的就有「帝X之山『其陰多鐵』」,約在今河南省泌陽縣和南陽縣之間;另一處即「兔床之山,『其陽多鐵』」,約在今嵩縣和南陽縣之間。戰國時代各國都有冶鐵手工業,其中韓、楚兩國的冶鐵手工業最為發達,著名的冶鐵手工業地點也最多,當時的南陽已經成為戰國時代聞名的冶鐵中心。《荀子·議兵篇》記載:「宛鉅鐵(釒也),慘如蜂蠆。」至秦漢時期,鐵器和冶鐵技術在廣大地區已經得到了廣泛的傳播和使用。從考古中發現,西漢初年鐵制農具和工具已取代了銅、骨、石、木器,到西漢中期,隨著冶鐵技術的發展,鍛鐵工具增多,鐵兵器也逐步占據了主要地位,直至東漢,主要的兵器全部為鋼鐵所制,從而完成了兵器和生產工具的鐵器化進程。

西漢初年,冶鐵業可聽任商人經營。魏國的孔氏原經營冶鐵業,秦滅魏後,被強行遷到南陽,靠冶鐵成為巨富。西漢武帝時,武帝任用南陽的大冶鐵商孔僅為「大農丞,領鹽、鐵事」,管理全國的鹽鐵業,南陽成為全國設立鐵官的手工業基地之一。在南陽瓦房庄發掘的漢代冶鐵遺址中,就曾發現西漢時期的冶鐵遺物(熔爐基、耐火磚、鼓風管、鑄造用的模具及鐵器,包括鐵犁鏵、鐵耬鏵、鐵鍤、錛、斧等)。至東漢,南陽的冶鐵業在西漢基礎上,冶鐵作坊數量增多,規模空前擴大,技術顯著提高。建國後在南陽附近發現的冶鐵遺址就有:南陽市北關瓦房庄鑄鐵作坊遺址,桐柏張陂村的大張陂冶鐵遺址,桐柏縣鐵爐村遺址,南召縣太山廟、草店冶鐵遺址,方城縣趙河村冶鐵遺址,鎮平縣安國城鐵范、鐵鑄件遺址,西峽縣白石尖冶鐵石等。1959~1960年南陽市北關瓦房庄發掘的漢代冶鐵遺址,主要遺址面積達2800平米,發現了大量的冶鐵遺跡和遺物,其中熔爐9座,炒鋼爐8座,鍛爐1座。發現在當時的生產條件下冶鐵過程中使用了熱鼓風爐,這是我國早期使用的節約熱能的熔爐。鑄造使用的模和范近40種。由文物考古發掘的遺物可見,在當時南陽已經成為全國的冶鑄中心。

二、 冶鐵技術、工藝的發展

冶鐵技術在秦漢時期得到進一步的發展。高爐煉鐵已成為一種經濟而有效的煉鐵方法。高爐煉鐵從上邊裝料,下部鼓風,形成爐料下降和煤氣上升的相對運動。燃料產生的高溫煤氣穿過料層上升,把熱量傳給爐料,其中所含一氧化碳同時對氧化鐵起還原作用。這樣燃料的熱能和化學能同時得到比較充分的利用,下層的爐料被逐漸還原以至熔化,上層的爐料便從爐頂徐徐下降,燃料被預熱而能達到更高的燃燒溫度。這確是一種比較合理的冶煉方法,因而具有強大的生命力而長期流傳。其冶煉水平的發展表現在以下幾個方面:

第一,高爐煉鐵中的築爐技術達到了較高的水平。有的用含三氧化硅較高的黃色或紅色耐火粘土燒成的長方形或弧形的耐火磚砌築。南陽瓦房庄遺址出土的耐火磚,在不同部位耐火磚所用的材料、厚度、形狀均不相同。有的用直徑0.3~0.5cm的白色石英砂粒並摻有少量的細砂。有的用草拌泥、黃粘土及大量的石英砂混合而成,所用石英砂不僅有天然的,而且還有經過加工破碎的。這些耐火磚耐火強度達到1463℃~1469℃之間,這顯然是耐火土中摻入了含有二氧化硅相當高的砂石的結果。這種含二氧化硅相當高的酸性耐火材料,從我國古代高爐所出大都是酸性爐渣來看,是合適的。

第二,高爐煉鐵所用原料大部分已進行了加工。冶煉工人從長期的實踐經驗中發現,爐料的粒度整齊可以減少對煤氣的阻力。因此,在冶煉之前,就要對原料進行加工,在桐柏縣張畈村遺址中,曾挖出數以千噸計的礦石粉末,說明當時已十分注意對礦石的加工。

除了高爐煉鐵外,在西漢時期還發現有坩堝煉鐵技術。南陽市北關瓦房庄遺址中,就發現坩堝煉爐17座,其中3座較完整,都近似長方形。其中一座長3.6米,寬1.82米,深度殘存0.82米。爐的建築方法是,就地面挖出長方坑,留下爐門,周壁經過夯打後再塗薄泥一層。爐頂用弧形的耐火磚砌成,磚的大小不同,磚的內面敷有一層厚約1厘米的耐火泥,泥的表面還留有很薄的灰白色岩漿,磚的背面塗有較厚(約5厘米)的草拌泥。有一部分是用土坯和草拌泥券成。爐由門、池、窯膛、煙囪四部分組成。門在爐的最前端,當是用來裝爐和通風的,左右兩壁都經火燒,已成磚灰色。池在門內,周壁也燒成磚灰色,池底留有厚約1厘米的細砂,當是用作燃燒時的「風窩」的。爐膛為長方形,周壁糊有草拌泥,火燒較輕,當是盛放成行排列的坩堝和木柴、木炭等燃料的,爐的後部設有3個煙囪,當是排出爐煙用的。有的爐內填滿木柴灰,有的爐底堆有很多燒土塊和磚瓦碎片。發現坩堝3件,都是橢圓形的圜底陶罐,罐外敷有草拌泥厚約3~4厘米,泥的內部燒成紅磚色,表面則成光亮的深黑色,並存有一層灰白色光亮岩漿。另在一坩堝的內壁還粘有鐵渣的碎塊。從煉爐的結構以及流傳到後世的坩堝煉鐵法,可以推知當時的煉鐵方法是:先用碎塊礦石和木炭以及助溶劑混合配好,裝入坩堝,裝爐前,先在爐底鋪上一層適當數量的磚瓦碎片,使爐底通風;並留出許多「火口」放進易燃物,以便點火,接著就鋪上一層木炭,在木炭上安裝成行坩堝;然後在這層坩堝之上再鋪上一層木炭,在木炭上再安裝成行坩堝,待爐裝滿,便可以從「火口」點火,並加以鼓風,使坩堝中礦石還原溶化成生鐵。

第三,鼓風技術的發展。高爐煉鐵和冶鐵技術的發展,與鼓風技術的改進是分不開的。我國古代煉鐵高爐是用皮製的「橐」作為鼓風器的。隨著時間的推移以及經驗的積累,人們逐步改變了鼓風的方法。在大型的冶煉爐中不止有一個鼓風器,而是增加鼓風器和鼓風管,使得爐中燃料充分燃燒,提高爐子的溫度,加速冶煉的進程。在瓦房庄的冶鐵遺址中,有大量的鼓風管出土,其中有一部分帶有彎頭的陶制鼓風管,粗端內徑約100mm,細端內徑為50mm,長約400mm。由於陶胎鼓風管下測泥層被燒琉,經測定,其燒琉溫度當為1250℃~1280℃之間。從此溫度及挖掘出的實物可判斷,漢代南陽冶鐵爐裝有熱鼓風裝置(《南陽漢代冶鐵》,中州古籍出版社,1995年12月,第23頁。)。這種裝置利用爐口余熱把風管內冷風變成熱風鼓進熔爐,既提高了熔爐溫度,又縮短了冶煉時間,提高了鐵水質量。就鼓風動力而言,出現了「人排」鼓風動力,畜力鼓風,如「馬排」、「牛排」等。東漢建武七年(31),杜詩任南陽太守,創造了用水力鼓風的「水排」,並進行了推廣。利用水排鼓風,鑄造農具,比用人力鼓風要「用力少,見功多」,並取得良好的效果。現今發掘的桐柏縣張畈村的冶鐵遺址距礦山較遠,而是建在河流旁,很可能就是利用「水排」來鼓風的緣故。水排的發明和應用,不僅提高了鼓風能力,而且大大降低了成本,因而長期被冶鐵工業所沿用。像這樣以水為動力的鼓風機械,歐州在1100多年後才出現。

鼓風技術的改進,促進了冶鐵技術的發展。除了冶鑄生鐵技術的快速發展之外,還創造了鑄鐵柔化工藝,出現了灰口鑄鐵及球墨鑄鐵。在南陽市北關瓦房庄漢代冶鐵遺址出土的鐵器中,經分析檢驗,可以看到漢代的農具主要採用可鍛鑄鐵。在其中檢驗的12件農具中,有9件是可鍛鑄鐵,2件是鑄鐵脫碳鋼,1件是白口鐵。這表明在鑄鐵中已經採用了柔化技術。從質量上看,當時的鑄鐵柔化技術已相當穩定。在瓦房庄冶鐵遺址的東漢地層中出土的135號鐵钁,它的石墨組織雖不是出自鑄態,而是在高溫退火時形成的,但形狀規則接近球狀,邊緣也很光滑,從而提高了工件的機械性能。

三、 炒鋼、鑄鐵脫碳鋼及鑄造技術

為了適應社會對鋼鐵製品的需要,到西漢後期已創造了「炒鋼」技術。這種技術把生鐵加熱到熔化或基本熔化的狀態下加以炒煉,使鐵脫碳成鋼或熟鐵。

在南陽市方城縣趙河村漢代冶鐵遺址中也曾發現與鞏縣鐵生溝漢代冶鐵遺址中相同的爐型6座。這種炒鐵爐容積小,呈缶形,溫度可以集中;挖入地下成為地爐,散熱少,有利於溫度升高;爐下部作「缶底」狀,是為了便於裝料攪拌。此外,在南陽市北關瓦房庄冶鐵遺址中也發現幾座炒鋼爐,形制和構築方法大同小異,爐底還有鐵塊。從這個遺址發掘內容看,南陽瓦房庄的冶鐵作坊中,不僅鑄造鐵器,而且還用生鐵炒鋼或熟鐵,以此鍛制工具和其他構件。在此遺址中還出土有鑿、钁等,當是該作坊自製的鑿、钁等。通過考古資料證明,到東漢時期,炒鋼技術已很普及。南陽東郊曾出土一件東漢鐵刀,形制較特殊,類似炊事用刀,刀身有一道平行於刃部的鍛接痕跡,刀寬112厘米,長約17厘米,刀背厚約05厘米,保存較完好,是用炒鋼鍛制而成(河南省博物館等:《河南漢代冶鐵技術初探》,《考古學報》1978年第1期。)。

西漢後期已經創造了簡便的炒鋼爐,將生鐵炒煉成熟鐵或鋼的技術發展,標志著煉鋼技術發展到了一個新的階段,使得鋼材的產量大大提高,這對於當時生產工具的改進,鋼製品的推廣均具有重要的意義。

古代煉鋼以含碳量低的塊煉鐵或熟鐵為原料,採用滲碳的方法煉製成鋼(現在仍然使用此法),一種即以含碳量高的生鐵為原料,在固體狀態下脫碳制鋼。戰國時代已經採用了柔化處理工藝,將生鐵進行脫碳退火,得到了脫碳不完全的鑄鐵脫碳鋼件(李眾:《中國封建社會前期鋼鐵冶煉技術發展的探討》,《考古學報》,1975年第2期。),至漢代仍然使用這一工藝。如,南陽瓦房庄冶鐵遺址所出土的鐵斧,中心是白口組織,表層是鋼的成份。類似這樣的鐵器在其他遺址里也有發現。它們都是用白口鐵坯件,在氧化氣氛下退火,使外層脫碳,由表及裡依次成為純鐵素體、亞共析、共析組織,由於脫碳不完全,內部仍然是鐵,實際上是一種由鋼和鐵組成的復合材料。另一種情況是脫碳比較完全,已全部清除白口組織,但內層析出部分石墨。如南陽瓦房庄出土的一件鐵鑿,從外形看是鑄件,表面金相分析是鋼的組織,很容易誤認為是鋼鑄件。在漢代當時的技術條件下,沒有高於1500℃的高溫和相應的耐火材料,是不可能出現液態鑄鋼的。南陽瓦房庄出土的另一件鐵鑿,經檢驗,基體為過共析鋼,內層殘留石墨,證明它是經脫碳而成的鋼質工具。另外,在南陽瓦房庄冶鐵遺址中還有成形的薄鐵板出土,這些鐵板實際是經過脫碳熱處理的已成為含碳較低的鋼板,可以鍛打成器,實際上是創造了一種新的制鋼工藝。這樣就擴大了生鐵的使用范圍,增加了優質鋼材的來源,對於鋼鐵生產有重大的作用。

鑄鐵的熱處理技術在漢代有很大的發展,並臻於成熟。在南陽瓦房庄冶鐵遺址中所發掘的9件農具,經檢驗8件為黑心韌性鑄鐵,質量良好,有一些與現代黑心韌性鑄鐵已無大的差別。還有一部分白心韌性鑄鐵,白心韌性鑄鐵可製作耐沖擊、性能良好的手工工具,黑心韌性鑄鐵可製作耐磨的農具。在鑄制的鐵器中有一部分鐵鍤、鐵耬鏵、鐵钁即為白心韌性鑄鐵。

從發現的漢代冶鐵遺址來看,當時的作坊有以煉鐵為主而兼鑄鐵器的,也有專門鑄造鐵器的。而最初的鐵鑄件,是由煉鐵爐的鐵水直接澆鑄。在漢代,出現了專門的化鐵爐,這對於提高熔鐵的質量,獲得優質鑄件,有很大的好處。從南陽瓦房庄遺址看,化鐵爐的結構和築爐材料與煉鐵爐有明顯的區別,說明當時的煉鐵與化鐵的分工已很明確。

南陽瓦房庄冶鐵遺址出土化鐵爐7座,它的構築方法是:在平整的地面上,鋪築直徑約2.6m、厚50mm的草拌泥,燒成橙黃色,作為爐基。爐底是空心的,由整體基底、束腰式支柱、周壁與爐缸底部組成。基底約厚45mm,用羼有大量大顆粒砂的耐火粘土鋪成,砂的粒度在10mm左右。周壁和支柱的築爐材料與基底稍有不同。羼有大量小顆粒砂。周壁厚40~50mm,支柱直徑70~120mm,高70cm,根據遺址所出土的長方形耐火磚的尺寸來估算,支柱可能有15個左右,基上砌築爐缸底部。

爐體全用弧形耐火磚建造,從磚的內表面不同的熔融程度看,爐體可分為3個區域:爐口及其下三、四層磚(磚長36cm,寬17cm,厚6~9cm不等),爐襯略現熔融,有許多龜裂紋道,溫度最低,為預熱區。爐體中部的三、四層磚,爐襯均有燒琉,說明溫度較高,應是還原區。再往下三、四層磚,爐襯普遍燒琉,甚至全部流下,露出磚體,這里溫度最高,當是靠近風口的氧化區。依照耐火磚的高度及上述爐壁燒琉情況來推算,化鐵爐的爐體高度約為3~4m。

化鐵爐的爐壁分3層,弧形耐火磚是特製的成形磚塊,外敷草拌泥,厚約15~50mm,內搪爐襯,厚約40mm。根據出土時較完整的14塊耐火磚的弧度來看,化鐵爐最小外徑為1.16m,內徑為0.92m,最大外徑為2.3m,內徑為2.14m,其平均內徑有1.5m左右。經鑒定,耐火磚均有砂粒和粘土配製,從石英砂的顆粒組成看,有渾圓狀的和稜角狀的白石英和少量長石,說明除天然砂外,已使用了人工破碎的砂粒。石英顆粒有裂紋出現,玻璃相中析出針狀莫來石晶體,有流動結構,均說明當時化鐵爐能夠達到相當高的溫度。

從遺址中出土的大量鼓風管的情況推測,化鐵時有可能已試用換熱式熱風裝置,有一種陶質鼓風管,外敷厚約45mm的草拌泥,下層泥料表層燒熔下滴,靠近拐角處的泥料熔融順角流下,據測定溫度,燒琉溫度當在1250℃~1280℃之間。風管的這種燒琉狀態,有一種解釋認為,它可能是架設在爐頂上,作為預熱管道使用的。

此外,在出土的大量碎鐵塊和熔渣中,有不少梯形鐵板和鏵、鍤、錛、钁、鋤、斧等鐵器殘片(厚度約40~70mm)。這些遺物可能是化鐵爐所用原料,方形的鐵砧和鐵錘,既是鍛造工具,又是用來破碎原料的工具。大量的木炭渣表明所用燃料為木炭,爐中殘留木炭凝塊,有的與表面微熔的鐵塊凝結在一起,某些器形尚能辨認。由這種現象推測可能是分層裝料的結果。從出土的爐襯看,斷面明顯分成三層,至少已經過兩次停爐和補爐,補爐的材料與耐火磚所用材料相同。根據出土的遺物推測,對於這樣大的熔爐,當是半連續操作的,每過一定時間,出一次鐵水,澆注一批鑄范。當熔煉過久或鑄范已畢需適時停爐。這說明漢代工匠已很好地掌握了熔爐的操作程序。漢代鑄造技術,在戰國時代鑄造鐵器和銅器的技術上又有所發展。這時鑄造所用的范有泥范、陶范和鐵范,特別是鐵范的使用,使鑄造鐵器的質量及效率均有不同程度的提高。從南陽瓦房庄發掘出的各種模及范來看,其工藝過程大致如下:制模工人就地選取黃粘土,羼入35%左右的細砂,加水調泥,製成模版,然後精工細雕地挖模面,按照嚴格的尺寸要求,塑制不同模面上的各個部位的形體。模面制妥後,塗上塗料涼干,這是首先的必要的制模工序。在澆鑄之前,先合模,糊加固泥,再將鑄模送入窯中烘烤,到一定溫度之後停烘出窯,乘熱澆鑄鐵汁,在澆注時將澆口、冒口注滿鐵汁,以適應模腔收縮的需要。待鐵汁在模腔中凝固到一定程度之後,打開加固泥,脫去泥模,再打掉澆口鐵,即可獲得鐵質的鑄范。然後把鑄出的鐵上范、鐵下范進行合范,再將鐵范芯插入范腔中,並用某種鐵工具將鐵范捆紮夾固,以免澆注時鐵汁的熱漲作用而開裂。合范後,也可能入窯烘烤,乘熱澆注鐵汁,待鐵汁凝固到一定程度之後,打開鐵范,並打掉澆口、冒口鐵,便獲得產品。

鑄造技術方法的發展還表現在疊鑄技術方面。疊鑄技術就是把許多范片或范塊層層疊合起來,用統一的直澆道,一次澆鑄出多個鑄件。這種方法在戰國時已經發明(梓 溪:《談幾種古器物的范》,《文物參考資料》1957年8期。),它主要適用於小型鑄件的大量生產。到漢代疊鑄技術又有了進一步發展,如河南溫縣發掘的一處漢代烘范窯,出土有500多套疊鑄范,有16種鑄件,36種規格,一套范有4~14層不等,每層有1~6個鑄件,最多的一次可鑄84件,這樣就大大提高了生產效率。南陽瓦房庄冶鐵遺址出土有幾件疊堆微熔遺物和三至五個「V」字形鐵犁鏵套疊遺物等,充分證明南陽是最早採用雙堆疊鑄技術的冶鐵大郡。

鑄范的設計也相當科學,范腔之間的泥層很薄,為使范面緊湊盡可能減少吃泥量,有些范的直澆口製成扁圓形,合范用的榫卯定位結構也按此原則予以布置。范的外形與范腔相吻合,不少鑄范削去角部,使邊厚盡可能一致,不但可以減少范的體積和用泥量,而且使散熱更加均勻,提高鑄件質量。

范芯的製造,除自帶泥芯外,形狀簡單的用泥條捺入芯座內。復雜的,如車(車口)泥芯,用泥質對開式芯盒製成。南陽瓦房庄發現的東漢時期多堆式疊鑄(車口)范,范塊採用對開式垂直分型面,兩堆鑄范共用一個直澆道,使金屬實收率更高,澆注時間更少,說明疊鑄技術有了進一步的發展。

㈣ 中國的鋼鐵是如何冶煉的

鐵礦石是地殼的主要組成成分之一,鐵在自然界中的分布很廣,但是人類發現鐵和利用鐵卻比黃金和銅晚。首先,這是由於天然的單質狀態的鐵在地球上是找不到的,而且它容易氧化生銹;其次是它的熔點(1 539℃)比銅高得多,使它比銅難於熔煉。

人類最早發現的鐵是從天空落下的隕石。隕石中含鐵的質量分數很高,它是鐵和鎳、鈷等金屬的混合物。考古學家曾經在今天伊拉克境內美索不達米亞(Mesopotamia)烏爾(Ur)城的古代蘇美爾人(Sumerians)的墳墓中,發現一把隕鐵製成的小斧。在埃及第五至第六王朝(公元前2400年前)的金字塔所藏的宗教經文中,記述著太陽神等當時重要神像的寶座是用鐵製成的。這顯然也是從隕石得來的,因為鐵在當時被認為是帶有神秘性的最珍貴的金屬。埃及人乾脆把鐵叫做「天石」。阿拉伯人傳說,天上的金雨落進沙漠里變成了黑色的鐵。在古希臘文里,「星」和「鐵」是同一個詞。

1972年,在我國河北省藁城縣台西村的商代(約公元前16世紀~約公元前1066)遺址曾出土一件銅鉞,上面鑲鑄有鐵刃。鉞(yuè)是我國古代一種像斧子的兵器。鐵刃銅鉞的發現表明我國勞動人民早在三千多年前已經認識了鐵,掌握鐵的鍛造性能,識別鐵與青銅在性質上的差別,能夠把鐵進行鍛打加工並和青銅鑄接成器,增強銅的堅韌性。鐵刃雖已全部銹蝕,但經過科學鑒定,證明鐵刃是用隕鐵鍛成的,因為鐵中不含有人工冶煉過程夾帶的硅酸鹽等雜質,同時鐵銹中含有鎳和鈷。

我國出土的用隕鐵鍛成的銅器還有:1931年,在我國河南浚縣出土的商末周初的鐵刃銅鉞和鐵援銅戈各一件,於解放前流入美國,現存華盛頓弗里爾藝術館。還有,1978年在北京市平谷縣南獨樂河出土的商代鐵刃銅鉞。

由於隕石來源極稀少,從隕石中得來的鐵對生產起不了什麼作用。只是隨著青銅熔煉技術的成熟,才逐漸為鐵的冶煉技術的發展創造了條件。雖然最初提煉出來的鐵在硬度和防腐蝕性能等方面都不如青銅,但是由於鐵礦在自然界中的分布比銅廣泛,而且鐵器的好些性能比銅器好,遂使鐵器能夠迅速取代青銅器和石器。

我國古代人民什麼時候開始使用鐵,雖然說法不一,但多數歷史學者和科技史研究者斷定是在公元前1 000年的前後。

從目前考古發掘的結果來看,我國最早人工冶煉的鐵是在春秋(公元前722~公元前481)戰國(公元前403~公元前221)之交的時期出現的。江蘇六合縣程橋鎮春秋墓出土的鐵條、鐵丸和河南洛陽市水泥製品廠戰國早期灰坑中出土的鐵錛(音bēn,削平木料的平頭斧)、鐵(音bó,古代鋤田除草的農具)是迄今為止能確定的我國最早的生鐵工具。經過冶金學家們檢驗,鐵條屬於早期的塊狀煉鐵鍛成的;鐵丸和鐵錛、鐵是生鐵鑄件。這些鐵器證明我國在春秋晚期出現塊狀煉鐵的同時或稍後就出現了生鐵冶鑄技術。人類在冶煉鐵的過程中,最初因鼓風設備的限制,煉出的鐵不能熔化,只是塊狀的海綿體熟鐵,性質柔軟,可鍛而不可鑄,不宜製作硬度較大的工具,只是在提高煉鐵爐的溫度後,才能得到熔融的生鐵,用於鑄造。

歐洲一些國家在公元前1 000年前後也生產塊狀煉鐵,但多廢棄不用,直到公元14世紀才使用鑄鐵,其間經歷了十分漫長的發展道路。而我國古代只用較短的時間就實現了這一技術的突破,出現了鑄鐵。

我國生鐵的發明是人類用鐵的重大發展,也是我國勞動人民對人類作出的一項重大貢獻。英國科學史學家貝爾納(J.D.Bernal)在他編著的《歷史上的科學》(伍況甫等譯.北京:科學出版社,1959年,82頁)一書中寫到:「在歐洲,實在直到14世紀,古代所用的鐵,總是在手力鼓風的小型泥爐內,用木炭經低溫還原法而製成的。把所得的海綿狀的未經熔過的純鐵錠,打成比較軟的熟鐵條,再經鍛工和熔接,就成一些更復雜的鐵製品。」又寫到:「在古時候,作為金屬的鐵卻有一個很嚴重的缺點,就是爐中鼓風不夠,就熔不了它,所以澆鑄就留給青銅獨用了,例外的是中國,早在公元前二世紀,中國已能鑄鐵。」這說明我國生鐵的出現比歐洲早1 000多年。

我國的生鐵鑄造技術,在很長的一段時期內一直處於世界領先地位。隨著產量的增加和技術的提高,除鐵制的生產工具、生活用具以及兵器外,又出現大型鑄造的宗教藝術品。如現存的西安雁塔里的大鐵鍾,是唐代(618~907)的作品;世界上著名的河北省滄州大鐵獅是五代後周廣順三年(公元953年)的作品;山西太原晉祠鐵人是北宋年代(960~1127)的作品。

我國煉鋼技術的發展也很早。漢朝趙曄所著的《吳越春秋·闔閭內傳》中記載著:「闔閭請干將鑄作名劍二枚。干將者,吳人也,與歐冶子同師,俱能為劍……干將作劍,采五山之鐵精……使童女童男三百人鼓橐裝炭,金鐵乃濡,遂以成劍。」闔閭是春秋末年今江蘇一帶的吳國君(公元前514~公元前496在位)。可見,距今2000多年前,我國勞動人民已能煉鋼,而且規模還不小。文中的「橐」(tuó)按今天的字意解釋是「一種口袋」,在古代是指鼓風用的皮囊;「濡」(rú)按今天的字意解釋是「沾」、「漬」,在古代又作「柔韌」講。

1978年8月5日的《人民日報》第二版刊出一則消息:「湖南省博物館長沙鐵路車站建設工程文物發掘隊,從一座古墓出土一口鋼劍,從古墓隨葬陶器的器形、紋飾以及墓葬的形制來看,可以斷定它是春秋晚期的墓葬。從而說明我國煉鋼技術的出現,至少應推前200年左右,即春秋戰國之交,而不是過去認為的戰國中、晚期。經取樣分析,這口劍所用的鋼是含碳量0.5%(質量分數)左右的中碳鋼,金相組織比較均勻,說明可能還進行過熱處理。」

我國到西漢(公元前206~公元23)中、晚期出現了利用生鐵「炒」成熟鐵或製成不同含碳量的鋼的炒鋼技術。這是將生鐵加熱成半液體、半固體的狀態,再進行攪拌,利用空氣或鐵礦粉中的氧,進行脫碳,以獲得熟鐵或鋼。1974年在山東蒼山縣出土的漢安帝永初六年(112)的鋼刀和1978年在徐州漢代磚室墓中發掘出的漢章帝建初二年(77)的鋼劍經鑒定都是以炒鋼為原料,經多次反復加熱折疊鍛打而成的。

歐洲用炒鋼法冶煉熟鐵的技術在18世紀中葉才開始出現,比我國要晚1 900餘年。

在漢代炒鋼技術的基礎上,到南北朝(420~581)時期,我國又出現了灌鋼技術。這是先將含碳量高的生鐵熔化,澆灌到熟鐵上,使碳滲入熟鐵,增加熟鐵的含碳量,然後分別用牲畜尿或油脂淬火而成鋼。淬火是鋼鐵的一種熱處理工藝,是將工件加熱到適宜溫度,隨即在水、油或空氣中冷卻,以提高鋼鐵的硬度和強度。

在歐洲的坩堝煉鋼技術發明之前,灌鋼法是一種先進的煉鋼技術,對後世有重大影響。

㈤ 中國的冶煉技術的發展史有哪些

中國古文明象徵的商周到戰國的青銅器,可以說是鑄造技術所造就的。從重875公斤的司母戊方鼎、精美的曾侯乙尊盤和大型的隨縣編鍾群,以至大量的禮器、日用器、車馬器、兵器、生產工具等,可以看到當時中國已經非常熟練地掌握了綜合利用渾鑄、分鑄、失蠟法、錫焊、銅焊的鑄造技術,在冶鑄工藝技術上已處於世界領先的地位。而《考工記》中所記載的:「金有六齊。六分其金而錫居一,謂之鍾鼎之齊。五分其金而錫居一,謂之斧斤之齊。四分其金而錫居一,謂之戈戟之齊。三分其金而錫居一,謂之大刃之齊。五分其金而錫居二,謂之削殺矢之齊。金、錫半,謂之鑒燧之齊」,是世界上最早的合金配比的經驗性科學總結,表明當時中國已認識到合金成分與青銅的性能和用途之間的關系,並已定量地控制銅錫的配比,以得到性能各異,適於不同用途的青銅合金。

2.鑄鐵冶煉

在很長的一段時間里我們的鋼鐵冶煉技術是一度領先於世界的,中國冶煉塊鐵的起始年代在公元前6世紀,古代冶煉技術的演進春秋以前,中國的冶煉技術處於比較原始的階段,當時使用的冶煉方法稱為「塊煉法」。當時煉鐵使用木炭作燃料,熱量少,加上爐體小,鼓風設備差,因此爐溫比較低,不能達到鐵的熔煉溫度,所以煉出的鐵是海綿狀的固體塊,稱為「塊煉鐵」。塊煉鐵冶煉比較費時,質地比較軟,含雜質多,經過鍛打成為可以使用的熟鐵。鋼鐵冶煉技術的進一步發展到「塊煉滲碳鋼」。出土文物表明,中國最遲在戰國晚期已經掌握這種最初期的煉鋼技術。人們在鍛打塊煉鐵和熟鐵的過程中,需要不斷地反復加熱,鐵吸收木炭中的碳份,提高了含碳量,減少夾雜物後成為鋼。這種鋼組織緊密、碳分均勻,適用於製作兵器和刀具。進一步發展到「百煉鋼」技術。人們在打制器物的時候,有意識地增加折疊、鍛打次數,一塊鋼往往需要燒燒打打、打打燒燒,重復很多次,甚至上百次,所以稱之為百煉鋼。百煉鋼碳分比較多,組織更加細密,成份更加均勻,所以鋼的品質提高,主要用於製作寶刀、寶劍。

冶煉鑄鐵的技術比歐洲早。中國鑄鐵的發明出現在公元前5世紀,而歐洲則遲至公元後的15世紀。由於鑄鐵的性能遠高於塊鐵,所以真正的鐵器時代是從鑄鐵誕生後開始的。社會發展的歷史表明,鑄鐵的出現是社會生產力提高和社會進步的主要標志。中國從塊鐵到鑄鐵發明的過渡只用了約一個世紀的時間,而西方則花費了近三千年的漫長路程。中國古代煉鐵技術發展得如此迅速是世界上絕無僅有的。英國著名科學史家貝爾納說,這是世界煉鐵史上的一個唯一的例外。

另一傑出的生鐵加工技術是炒鋼,它是中國古代由生鐵變成鋼或熟鐵的主要方法,大約發明於西漢後期。其法是把生鐵加熱成液態或半液態,並不斷攪拌,使生鐵中的碳份和雜質不斷氧化,從而得到鋼或熟鐵。河南鞏縣鐵生溝和南陽瓦房庄漢代冶鐵遺址,都提供了漢代應用炒鋼工藝的實物證據。東漢時成書的《太平經》中也說:「有急乃後使工師擊治石,求其中鐵,燒冶之使成水,乃後使良工萬鍛之,乃成莫耶。」「莫耶」乃古代寶劍之稱。這段文字雖失之疏簡,但不難看出,它敘述的是由礦石冶煉得到生鐵,再由生鐵水經過炒煉,鍛打成器的工藝過程。炒鋼工藝操作簡便,原料易得,可以連續大規模生產,效率高,所得鋼材或熟鐵的質量高,對中國古代鋼鐵生產和社會發展都有重要的意義。類似的技術,在歐洲直至十八世紀中葉方由英國人發明。

中國古代的煉鋼技術主要是百煉鋼。自從西晉劉琨寫下「何意百煉鋼,化為繞指柔」這一膾炙人口的詩句後,「千錘百煉」、「百煉成鋼」便成為人們常用的成語。百煉鋼肇始於西漢早期的塊煉滲碳鋼,其後不斷增加鍛打次數而成定型的加工工藝。到東漢、三國時,百煉鋼工藝已相當成熟。上引《太平經》中的「萬鍛之,乃成莫邪」,即是其生動的寫照。曹操曾令工師製作「百辟利器」,曹丕的《典論·劍銘》中說:「選茲良金(指鐵),命彼國工,精而煉之,至於百辟」。劉備曾令「蒲元造刀五千口,皆連環,及刃口刻七十二湅」。《古今注·輿服》亦說:「吳大帝有寶劍三,……一曰百煉,二曰青犢,三曰漏景」。後世這一工藝一直被繼承,並不斷得到發展。 但是炒鋼和百煉鋼技術還存在一定缺陷,如炒鋼工藝復雜,不容易掌握;百煉鋼費工費時。

此外,在1981年經中國學者關洪野等人對513件出土的漢魏時期鐵器研究後表明,中國早在兩千多年前的漢代就已經發明了球墨鑄鐵,遠遠早於發達的歐洲國家。目前,中國學者所做的結論已經得到了國際學術界的承認。

創始於魏晉南北朝時期的灌鋼技術,是中國冶金史上的一項獨創性發明。陶弘景說:「鋼鐵是雜煉生柔作刀鐮者」,北齊的綦母懷文「造宿鐵刀,其法燒生鐵精以重柔鋌,數宿則成剛」,說的就是灌鋼技術。灌鋼的工藝過程大致為,將熔化的生鐵與熟鐵合煉,生鐵中的碳份會向熟鐵中擴散,並趨於均勻分布,且可去除部分雜質,而成優質鋼材。

綦毋懷文發展灌鋼法大約在東漢末,可能出現煉鋼新工藝「灌鋼」法的初始形式。南北朝時,綦毋懷文對這一煉鋼工藝進行了重大改進和完善。南朝齊、梁時的陶弘景首先記載了灌鋼法,北朝魏、齊間的綦毋懷文曾用這種方法製成十分鋒利的「宿鐵刀」。綦毋懷文,姓綦毋,名懷文,是中國南北朝時期著名冶金家。他生活在公元6世紀北朝的東魏、北齊間,具體生卒年代歷史上缺乏記載,只知道他好「道術」,曾經作過北齊的信州(今四川省奉節縣一帶)刺史。據史書記載,綦毋懷文的煉鋼方法是:「燒生鐵精,以重柔鋌,數宿則成鋼」,就是說,選用品位比較高的鐵礦石,冶煉出優質生鐵,然後,把液態生鐵澆注在熟鐵上,經過幾度熔煉,使鐵滲碳成為鋼。由於是讓生鐵和熟鐵「宿」在一起,所以煉出的鋼被成為「宿鐵」。灌鋼法是中國古代煉鋼技術上一個了不起的成就。同百煉法或炒煉法比較,其優點1)生鐵作為1種滲碳劑,因熔化後溫度高,加速向熟鐵中滲碳的速度,縮短冶煉時間,提高生產率。(2)熟鐵因為碳的滲入而成為鋼,生鐵由於脫碳也可以變成鋼,增加了鋼的產量。(3)在高溫下,液態生鐵中的碳、硅、錳等與熟鐵中的氧化物夾雜發生反應,去除雜質,純化金屬組織,提高金屬品質。(4)灌鋼法操作簡便,容易掌握。要想得到不同含碳量的鋼,只要把生鐵和熟鐵按一定比例配合好,加以熔煉,就可獲得。3推動中國古代刀劍技術的發展綦毋懷文是一位出色的制刀專家,對前人造刀經驗進行研究、比較,經過不斷實踐,創造一套新的制刀工藝和熱處理技術。

綦毋懷文造刀的方法是:先把生鐵和熟鐵以灌鋼法燒煉成鋼,做成刃口,然後「以柔鐵為刀脊,浴以5牲之溺,淬以5牲之脂」這樣做出來的刀稱為「宿鐵刀」,極其鋒利,能夠一下子斬斷鐵甲30札。對於含碳量比較高的鋼,理想的淬火介質應該是:當工件在比較高的溫度650~400℃,具有較大的冷卻速度,在低溫300~200℃,具有較慢的冷卻速度。這就需要採用雙液淬火法。綦毋懷文先用動物尿、後用動物油進行雙液淬火,能夠造出品質很高的「宿鐵刀」。中國早在戰國時代就使用了淬火技術,但是長期以來,人們一般都是用水作為淬火的冷卻介質。雖然三國時的制刀能手蒲元等人已經認識到:用不同的水作淬火的冷卻介質,可以得到不同性能的刀,但仍沒有突破水的范圍。而綦毋懷文則實現了這一突破,他在製作「宿鐵刀」時使用了雙液淬火法,即先在冷卻速度大的動物尿中淬火,然後再在冷卻速度小的動物油脂中淬火,這樣可以得到性能比較好的鋼,避免單純使用1種淬火(即單液淬火)的局限。雙液淬火法,即在工件的溫度比較高的時候,選用冷卻速度比較快的淬火介質,以保證工件的硬度;而在溫度比較低的時候,則選用冷卻速度比較小的淬火介質,以防止工件開裂和變形,使其有一定的韌性。雙液淬火法是1種比較復雜的淬火工藝,這在當時沒有測溫、控溫設備的條件下,完全依賴操作及經驗,是一個了不起的成就。在綦毋懷文之前,中國古代的鋼刀大都用百煉鋼製成,這樣製作的刀劍雖然性能優異鋒利,但也存在不少缺陷,整把刀全部用百煉鋼製成,價格昂貴;如一把東漢時期的名鋼劍的價錢可以購買當時供7個人吃2年9個月的糧食。

而且百煉鋼製作刀劍費時費力。三國時,曹操命有司製作寶刀5把,用了3年時間。為此,綦毋懷文對制刀工藝進行了重大更新。這表明綦毋懷文對鋼鐵的性能有比較深刻的認識,而且能根據不同的用途合理選擇材質,發揮各種材質的優點,節省某些貴重材料,降低成本和費用。1把刀的背部、刃口實際起著不同的作用,因而要求具有不同的性能。

一般來說,刃口主要起刺殺作用,因而要求有比較高的硬度,這樣才能保證刀的鋒利,所以應該選擇含碳量較高、硬度較大的鋼來製造。而刀背主要起1種支撐作用,要求有比較好的韌性,使刀在受到比較大的沖擊時不致折斷,這樣就要選擇含碳量較低、韌性較大的熟鐵。綦毋懷文正是有了上述類似的認識,在製作刀具時才能夠將熟鐵和鋼巧妙的結合起來,將2者恰到好處地用在合適的地方,既滿足了鋼刀的不同部分的不同要求,又節省大量昂貴鋼材,利於鋼刀的推廣和普及。這種制刀工藝,今天還在沿用。

灌鋼技術在宋以後不斷被改進,減少了灌煉次數,以至一次煉成。沈括在《夢溪筆談》卷三說:「世間鍛鐵所謂鋼鐵者,用柔鐵屈盤之,乃以生鐵陷其間,泥封煉之,鍛令相入,謂之『團鋼』,亦謂之『灌鋼』」,並說「二三煉則生鐵自熟,仍是柔鐵」,正反映了灌煉次數的減少。其中把柔鐵屈盤起來是為了增加生熟鐵的接觸面,提高灌鋼的效率,並促使碳份分布更均勻;封泥則可以促進造渣,去除雜質,並起保護作用。明代灌鋼技術又進一步發展,據《天工開物》卷十四記載,已把柔鐵屈盤改為薄熟鐵片,進一步增加了生熟鐵的接觸面,加速「生熟相和,煉成則鋼」的進程,泥封亦改為草泥混封。灌鋼又稱「抹鋼」、「蘇鋼」,其工藝自清至近代仍很盛行。在坩堝煉鋼法發明之前,灌鋼法是一種最先進的煉鋼技術。

由於綦毋懷文和千百萬工匠的辛勤勞動,使中國古代冶金技術自立於世界之林。因此,當我們研究和總結古代科學技術成就的時候,不應該忘記綦毋懷文的功績。這是中國冶金史上的一項傑出成就和偉大創新,在世界煉鋼史上佔有一定地位。4灌鋼法的進一步革新灌鋼法的出現,使鋼的產量和品質大大提高,為隋唐以後生產力的大幅度增長提供了條件。後來,灌鋼法又不斷發展。宋代又把生鐵片嵌在盤繞的熟鐵條中間,用泥巴把煉鋼爐密封起來,進行燒煉,效果更好。明代又有改進,把生鐵片蓋在捆緊的若干熟鐵薄片上,使生鐵液可以更好均勻地滲入熟鐵之中。不用泥封而用塗泥的草鞋遮蓋爐口,使生鐵可從空氣中得到氧氣而更易熔化,從而提高冶煉的效率。明中期以後,灌鋼法更進一步發展為蘇鋼法以熟鐵為料鐵,置於爐中,而將生鐵板放在爐口,當爐溫升高到1300℃左右,生鐵板開始熔化時,既用火鉗夾住生鐵板左右移動,並不斷翻動料鐵,使料鐵均勻地淋到生鐵液;這樣,既可產生很好的滲碳作用,又可產生劇烈的氧化作用,使鐵和渣分離,生產出含渣少而成份均勻的鋼材。直到現今,在蕪湖、湘潭、重慶、威遠等地人們還在使用;可見其影響的深遠。在17世紀以前,中國的煉鋼技術長期居於世界領先地位,受到各國地普遍贊揚。公元1世紀時,羅馬博物學家在其名著《自然史》中說:「雖然鐵的種類很多,但沒有一種能和中國來的鋼相媲美。」

㈥ 中國歷史上煉鋼技術發展

我國古代煉鋼技術至遲發明於春秋晚期。由先秦到西漢中晚期,主要制鋼工藝是塊鐵滲碳法;由漢代到明清,主要又是炒鋼法和灌鋼法,其次還有百煉鋼法和炒鐵滲碳法,漢魏南北朝時還有「鑄鐵脫碳鋼」,漢代還有坩堝煉鋼法。炒鋼工藝主要生產一般的可鍛鐵(包括鋼和熟鐵),灌鋼工藝主要生產含碳較高的刃鋼,百煉鋼是對普通炒鋼的再加工。「鑄鐵脫碳鋼」和炒鐵滲碳鋼工藝將在第五章介紹,這里主要討論其他五種。
一、煉鋼術的發明和塊鐵滲碳鋼之使用
今在考古發掘中所見我國最早的鋼制器物是1976年長沙楊家山出土的春秋晚期鋼劍,劍全長38.4厘米,身長30.6厘米。經分析,含碳量約與中碳鋼相當,組織均勻緻密。長沙鐵路東站建設工程文物發掘隊:《長沙新發現春秋晚期的鋼劍和鐵器》,《文物》1978年第10期。可知我國古代制鋼術至遲在春秋晚期便已發明。戰國中晚期後,煉鋼術在我國南北許多地方都迅速發展起來,並首先在南方的楚國達到較高水平。《史記And#8226;;范雎列傳》雲:秦昭王臨朝嘆息曰:「吾聞楚之鐵劍利而倡優拙。」《荀子And#8226;;議兵》亦雲:「宛鉅鐵釶,慘如蠭蠆。」「宛」治所在今南陽。「鉅」即鋼,「釶」即矛。《荀子And#8226;;議兵》楊倞注。此鋒利的「鐵劍」、「鐵矛」,顯然由鋼製成。中原的韓國也製作了許多鋒利兵器,《戰國策And#8226;;韓策一》說:「韓卒之劍戟,皆出於冥山、棠溪、墨陽、合伯(膊)、鄧師、宛馮、龍淵、太阿。皆陸斷馬牛,水擊鵠雁,當敵即斬。」這些鋒利的劍戟,後世學者一般都認為是鋼鐵所制。其中的冥山(今信縣境)、棠溪(西平縣境)、合伯(西平縣境)、馮池(滎陽縣境)《史記And#8226;;蘇秦列傳》引「徐廣曰:滎陽有馮池」。索隱:「宛人於馮池鑄劍故號宛馮」,「鄧國有工鑄劍,因名鄧師。」鄧國在今河南漯河市東南。、龍泉、太阿(均在西平縣境,今為舞陽鋼鐵廠管轄)等處都發現了古代冶鐵遺址。董文安:《韓國十大寶劍產地初考》,全國金屬學史學術討論會論文,1989年,舞陽。墨陽在今河南淅川縣。1965年,河北易縣燕下都第44號墓出土鋼鐵劍15枚、矛19枚、戟12枚等;人們分析了其中的6枚兵刃器,除1枚為塊煉鐵外,其餘5枚皆由鋼製成。北京鋼鐵學院壓力加工專業:《易縣燕下都44號墓葬鐵器金相考察初步報告》。《考古》1975年第4期,發掘報告見同刊同期《河北易縣燕下都44號墓發掘簡報》。說明當時北方的燕國制鋼術亦已發展起來。
人類早期冶煉的鋼一般都是在低溫還原冶煉後再經滲碳而成,整個過程約分兩步:第一步先由礦石煉取塊煉鐵,第二步再由塊煉鐵滲碳成鋼。此滲碳過程中要不斷地折疊鍛打,以幫助碳的擴散。這樣得到的鋼便叫塊鐵滲碳鋼。燕下都鋼劍等兵器就是由這種鋼製成的。如若控製得當,也有不經第二步,而一次還原冶煉成鋼的,這種鋼便叫塊煉鋼或自然鋼。這兩種鋼的強度和硬度均較塊煉鐵為高。其缺點是:(1)含碳量一般較低。(2)碳分布往往不夠均勻。(3)鋼中所含夾雜往往較多。(4)生產率較低。在中原文化區,這種制鋼工藝一直沿用到西漢中期,之後由於炒鋼的發明和發展而漸被取代。滿城漢墓出土的劉勝佩劍和錯金書刀等皆由塊鐵滲碳鋼製成,其夾雜已較燕下都鋼劍為少,組織亦較之均勻緻密。這種鋼主要用來製作刀劍等兵刃器,農業和手工業中使用甚少。
二、炒鋼及其工藝操作
炒鋼工藝是一種半液態冶煉。它以生鐵為原料,把生鐵加熱到液態半液態後,利用鼓風中的氧使生鐵脫碳到鋼和熟鐵的成分范圍。冶煉過程中要不斷地炒動金屬。古謂之「擣剛」,本世紀五十年代以前,習謂之炒鐵、炒「熟鐵」。
(一)炒鋼的發明和發展
我國古代炒鋼技術約發明於西漢中晚期,今見較早的遺物有:鞏縣鐵生溝、南陽瓦房庄、新安孤燈村等冶鑄鐵遺址出土的漢代炒鋼爐,以及鐵生溝出土的鐵塊、殘鐵鋤、鐵臿等14件炒煉產品。鐵生溝炒鋼爐系向地下挖出的缶形小坑,內塗耐火泥,長0.37米,寬0.28米,殘高0.15米,爐壁已被燒成黑色,內中殘存一鐵塊。河南省文化局文物工作隊:《鞏縣鐵生溝》,文物出版社1962年版,趙青雲等:《鞏縣鐵生溝漢代冶鑄遺址再探討》,《考古學報》1985年第2期。我國古代關於炒鋼的記載始見於東漢中晚期。《太平經》卷七十二雲:「今軍師兵,不祥之器也……有急乃後使工師擊治石,求其中鐵,燒冶之,使成水,乃後使良工萬鍛之,乃成莫邪耶?」此「莫邪」指鋒利兵器。「燒冶之」等三句所指即是炒煉及其制器的全過程。《太平經》系道家著作,基本上保持了東漢中晚期的原貌。
炒鋼的發明,迅速地改變了我國社會可鍛鐵的使用情況。1952-1953年,洛陽燒溝發掘了225座西漢中期至東漢晚期墓葬,出土鋼鐵刀116枚、劍33枚、矛5枚、斧4枚;而在青銅兵器刃器中,只有銅刀7枚(儀仗器),矛1枚,無劍。中國科學院考古研究所:《洛陽燒溝漢墓》,科學出版社1959年版。1957-1958年,洛陽西郊發掘217座同一時期的漢墓,出土鋼鐵刀52枚,劍58枚,戟1枚,斧1枚;青銅兵刃器只有刀1枚。中國科學院考古研究所洛陽發掘隊:《洛陽西郊漢墓發掘報告》,《考古學報》1963年第2期。西漢中期以後,除了弩機和鏃仍然較多地使用青銅外,其他兵器刃器已多用鋼鐵製作,其原料顯然是炒鋼。這樣,鋼鐵器物便在農業、手工業、軍事三方面完全取代了青銅和木石的主導地位。
炒鋼工藝在我國由漢代一直沿用到明清。有關記載在唐《夏侯陽算經》、宋蘇頌《圖經本草》、明唐順之《武編前編》、趙常吉《神器譜》、朱國楨《涌幢小品》、清屈大均《廣東新語》等書中都可看到。《廣東新語》卷一五「貨語And#8226;;鐵」條說:「其炒鐵則以生鐵團之入爐,火燒透紅乃出而置砧上,一人鉗之,二三人錘之,旁十餘童子扇之,童子必唱歌不輟,然後可煉熟而為鑊也。」1920年出版的耿步蟾《山西礦務志略》卷五說:「將煉出之生鐵加煤末燒之,使化為鐵汁,冷後復置於炒鐵爐內炒之,即成熟鐵。」二十世紀八十年代,湖南攸縣等地仍用此法生產。
炒鋼工藝的優點是:(1)用作原料的生鐵易於獲得,就擴大了原料來源。(2)冶煉在半液態下進行,脫碳反映較為迅速,生產率較高。(3)成分范圍較寬。據分析,鐵生溝所出一件炒鋼料含碳1.288%、硅0.231%、錳0.017%、磷0.024%、硫0.022%,與過共析高碳鋼相當;另一件成分為:碳0.048%、硅2.35%、錳微量、磷0.154%、硫0.012%,與今之熟鐵相當。李眾:《中國封建社會前期鋼鐵冶煉技術發展的探討》,《考古學報》1975年第2期。今世學者常把先煉生鐵,後再由生鐵煉鋼的工藝叫兩步冶煉,那麼炒鋼的出現便是兩步冶煉的某點,在世界冶金史上佔有重要地位。在歐洲,與炒鋼相類似的工藝大約在十六、十七世紀才出現,整個中世紀佔主導地位的是自然鋼法和塊鐵滲碳法。因此其可鍛鐵供應長時期不夠充分,這對社會的進步自然是有影響的。
炒鋼法是我國古代可鍛鐵生產的基本工藝,其主要用途有三:(1)製作一般鍛件。由漢到明清,我國一般鍛件,包括生產工具、生活用具和兵刃器中的鍛件大約都是炒鋼及其再加工的產品製成的。(2)用作百煉鋼的原料。(3)用作灌鋼的原料。
(二)炒鋼的工藝操作
我國炒鋼主要有三種不同的工藝類型:
(1)單室式炒煉。基本特點是金屬熔煉與燃料燃燒同在一個爐膛中進行。此法發明較早,沿用時間較長,前述鞏縣鐵生溝、南陽瓦房庄、新安孤燈村漢代炒煉法皆屬此類。本世紀五十年代,河南、山西等地都曾流行過一種「地爐」,築爐於地面以下,狀如缶形或直筒形,爐口與地面平直。冶煉時先放木炭(煤炭),後放生鐵,生鐵需擊碎,上面再蓋以煤末。之後再點火、送風、封閉爐口。生鐵接近熔化時,啟開爐口,用鐵棍或木棍不斷地攪動金屬。隨著炒煉之進行,碳分不斷降低,金屬熔點升高,便粘結成一個海綿狀固體塊,之後夾出錘擊,排除夾雜,並賦予一定形狀,便是炒煉產品。南方一些省分又流行過一種「台爐」,築爐於專門的爐台上,並有一個較大的加熱兼炒煉空間。溫州地區的炒爐以磚砌成,狀如雞籠,爐底接近地平面,炒煉室是一個不規則的長方形空間,爐子正面設一爐口,在此進料、操作、出鋼,並由此逸出廢氣;鼓風從爐底進入,並正對爐底正中;操作法與地爐大同小異。湖南攸縣也有類似的爐子溫州炒煉工藝系1977年調查,攸縣炒鋼系1980年調查,當年皆在生產。單室式炒煉的優點是設備簡單,缺點是因金屬與燃料直接接觸,所含有害夾雜往往較多。
(2)雙室式炒煉,或叫反射爐(倒焰爐)炒煉。基本特點是燃料燃燒與金屬熔煉各佔一個獨立的空間。燃料燃燒產生的高溫火焰流越過火牆(火道)進入熔煉室,並加熱金屬,之後從爐門或專門設置的煙囪排出。因其金屬不與燃料直接接觸,就減少了有害雜質磷、硫進入其中的可能性。這種煉鋼法的發明時間待考。1935年出版的《中國實業志(湖南省)》第七編說:「湘省邵陽、武岡、新寧、湘潭縣之土法煉鋼,由來已久。邵陽原名寶慶,所產之鋼,稱曰『寶慶大條鋼』。邵陽附近之武岡、新寧出品,均集中於邵陽,業中人亦以『寶慶大條鋼』名之。前清初葉,寶慶大條鋼,極負盛名,而產之多,首推邵陽南鄉。」因寶慶大條鋼系倒焰爐所煉,由這段記載看,反射爐發明年代應在清代初葉以前。今在考古發掘中所見最早的倒焰窯是南京眼香廟發現的明洪武初年所建一排六座琉璃窯。南京博物院:《明代南京聚寶山琉璃窯》,《文物》1960年第2期。1958年,這種倒焰爐煉鋼在我國南北許多地方都使用過。河南魯山的爐子較為簡單,兩室左右相近,皆築於地面以下,鼓風從燃燒室下部進入,後從炒煉室頂部進入炒煉室。西安的爐子又另是一個樣,炒煉室築於地面以下,燃燒室築於地面以上,兩室上下疊加,燃燒室底部正對炒煉室中心,風從燃燒室上部鼓入,再經由燃燒室底部火口直射到炒煉室中。燃燒室頂口用蓋板封閉。科技衛生出版社編:《土法低溫煉鋼》第六編《最簡單的反射爐煉鋼》,1958年版。
(3)串聯式炒煉。有關記載唯見於明代宋應星《天工開物》卷一四「鐵」條:「若造熟鐵,則生鐵流出時,相連數尺內,低下數寸,築一方塘,短牆抵之。其鐵流入塘內,數人執持柳木棍排立牆上。先以污潮泥曬干。舂篩細羅如面,一人疾手撒And#63083;;,眾人柳棍疾攪,即時炒成熟鐵。其柳棍每炒一次燒折二三寸,再用則又更之。炒過稍冷之時,或有就塘內斬劃成方塊者,或有提出揮椎打圓後貨者。若瀏陽諸冶,不知出此也。」(圖2-3)此「污潮泥」很可能是造渣熔劑。這里談到了串聯式炒煉的全過程。此法的優點是生鐵出爐後直接流入方塘炒煉,省去了生鐵再加熱的工序,從而節省了工時,降低了成本。
需要特別注意的是古代「熟鐵」一詞,宋應星在上述引文中曾兩次提及,在其他古代文獻中也經常看到,其含義與現代熟鐵是不同的。古人沒有含碳量的概念,區別生鐵、鋼、熟鐵的主要依據是它的使用性能,硬且脆者為「生」,可鍛者為「熟」,其性剛強者為鋼。因炒煉過程是在半液態下進行的,渣鐵分離較難,產品所含夾雜往往較多,即使含碳量較高,但其性不剛,也只能稱作「熟鐵」。元人偽撰《格物粗談》卷下「偶記」條雲:「地溲油又如泥,色黃金,氣腥烈,柔鐵燒赤投之二三次,剛可切玉。」此「柔鐵」即「熟鐵」。蘇恭《唐本草》雲:「柔鐵也,即熟鐵。」這是以材料性能來區分鋼和「熟鐵」的。蘇頌《圖經本草》雲:「初煉去礦,用以鑄瀉器物者為生鐵,再三銷拍,可以作鍱者為鑐鐵,亦謂之熟鐵。」蘇恭《唐本草》、蘇頌《圖經本草》皆引自《本草綱目》卷八「金石And#8226;;鐵」。這是以材料性能和冶煉工藝來區分鋼、鐵的。《天工開物》卷十四「鐵」條:「凡鐵分生熟,出爐未炒為生,既炒則熟。」這里單以冶煉工藝作為區分鋼、鐵的標准。有學者視古代「熟鐵」與現代熟鐵等同,把《天工開物》卷十四所載炒煉「熟鐵」的工

㈦ 兩次工業革命期間鋼鐵工業發展的原因

機器的發明和使用是第一次工業革命的第一階段。珍妮機的出現是棉紡織業第一項具有深遠影響的發明,使紡織效益提高了40倍以上。珍妮機的發明,一般認為是英國工業革命的開始。之後,有更多的機器被發明出來並得以應用,在冶金、採煤等其他行業,也出現發明和使用機器的高潮。 伴隨「電氣時代」而來的是「鋼鐵時代」。

新的技術革命也推動了老工業部門的發展,最突出的是鋼鐵工業。19世紀上半葉,由於房屋結構和鐵路的需要,熟鐵和鑄鐵的產量提高極快,但鋼的產量裹足不前。英國是當時世界上鋼產量最多的國家,1850年年產量不過6萬噸,同年它的鐵產量卻達到250萬噸。由於冶煉工藝的限制,鋼產量不高,價格昂貴,其用途局限於工具和儀表。19世紀下半葉,由於西門子、托馬斯等人在鋼鐵冶煉技術方面的貢獻,鋼得以大量生產且質量大幅度提高,因而逐漸代替熟鐵,作為機械製造、鐵路建設、房屋橋梁建築等方面的新材料而風行全球。鋼鐵工業的發展如日中天,導致重工業在工業中的比重直線上升,史稱「鋼鐵時代」。

第二次工業革命的顯著特點就是電力的廣泛應用,電動生產資料和生活用具如雨後春筍般涌現出來,迅速地改變著社會上生產與生活的面貌。由於使用電力,其他工業部門也快速發展起來,特別是鋼鐵行業的發展,使人類在材料領域告別了棉花時代,進入到鋼鐵時代。 第二次工業革命則是主要以重工業為主如機器製造工業,電力工業,化學工業,鋼鐵工業,汽車工業等.凱利,貝塞麥,托馬斯,馬丁和西門子等的煉鋼法,以及後來發明的電爐煉鋼法,使得鋼產量劇增.鋼產量的劇增,導致了其價格猛跌,便宜價格又導致了鋼鐵迅速在很多部門和領域代替了鐵,應用的范圍廣泛擴大.鋼鐵技術的進步,不但引起了原有的重工業如採煤業,機器製造業,鐵路運輸業等的飛躍發展,而且存進了其它以鋼鐵為原料的新興工業的發展,如電力工業,電器製造,化學工業,石油工業,汽車工業和飛機製造業等.重工業很快地成為各個資本主義國家經濟的非常重要的部分.到19世紀末到20世紀初,重工業已經在世界工業中開始占據了主導地位.

閱讀全文

與鋼鐵冶煉技術怎麼進步的相關的資料

熱點內容
1建築面積配鋼筋多少錢 瀏覽:661
鋼材和陶瓷粘接用什麼膠 瀏覽:858
不銹鋼管如何與塑料管連接 瀏覽:167
焊縫為什麼用錘子敲 瀏覽:420
硅鋼和不銹鋼哪個效果好 瀏覽:532
海南省聚乙烯塗塑鋼管哪裡買 瀏覽:92
男生說他是鋼鐵直男怎麼會 瀏覽:710
機器焊接引腳為什麼是彎的 瀏覽:943
bn300代表鋼管什麼規格 瀏覽:590
淮安富士康模具工資多少 瀏覽:387
鋼材里csc是什麼 瀏覽:910
天正暖通向下彎頭怎麼畫 瀏覽:408
2520不銹鋼用什麼焊條 瀏覽:436
rc鋼管DN125外徑多少 瀏覽:764
窗戶護欄長度怎麼算 瀏覽:131
玻璃鋼管道補漏用什麼好 瀏覽:836
廣聯達怎麼畫圓形鋼筋 瀏覽:563
nc加工不銹鋼用什麼刀 瀏覽:174
窗戶護欄怎麼延長出去 瀏覽:889
土建鋼材水泥佔多少比例 瀏覽:554