A. 模具鋼材料韌性受哪些因素的影響
在工作過程中,模具承受著沖擊載荷,為了減少在使用過程中的折斷、崩刃等形式的損壞,要求模具鋼具有一定的韌性。
德松模具作為專業的模具鋼材提供者,通過長期的生產和測試得出,模具鋼的化學成分,晶粒度,純凈度,碳化物和夾雜物等的數量、形貌、尺寸大小及分布情況,以及模具鋼的熱處理制度和熱處理後得到的金相組織等因素都對鋼的韌性帶來很大的影響。特別是鋼的純凈度和熱加工變形情況對於其橫向韌性的影響更為明顯。鋼的韌性、強度和耐磨性往往是相互矛盾的。因此,要合理地選擇鋼的化學成分並且採用合理的精煉、熱加工和熱處理工藝,以使模具材料的耐磨性、強度和韌性達到最佳的配合。
沖擊韌性系表特徵材料在一次沖擊過程中試樣在整個斷裂過程中吸收的總能量。但是很多工具是在不同工作條件下疲勞斷裂的,因此,常規的沖擊韌性不能全面地反映模具鋼的斷裂性能。小能量多次沖擊斷裂功或多次斷裂壽命和疲勞壽命等試驗技術正在被採用。
B. YK30和H13模具鋼撞擊性和韌性哪個好
YK30屬於油淬冷作工具鋼,是比較典型的碳素工具鋼,熱處理後可以得到很高的硬度和沖擊性能。
H13是適用面很廣的熱作模具鋼,一般用來製造耐高溫模具和工具,在一定的溫度下可以長時間工作,熱疲勞和韌性相當不錯。
這兩個材料在用途和類別上,剛好是相反的,所以很容易區分,如果你在硬度上要求不高,H13是比較好的選擇,如果有很高的硬度要求,還要耐磨,就是YK30好。
C. P20模具鋼拋光好後打產品表面很容易生銹,PC原料,透明模具,怎麼原因如何處理避勉再次生銹
我覺得你去做下化學鍍鎳,鍍層厚度以10微米為限,鍍鎳後直接使用也可以,但不如再做下650℃熱處理擴散,使得鍍層與鋼鐵之間互相滲透,結合力牢固,耐磨性好模具使用壽命長,不易生銹。
D. 應該是模具鋼經過多次的回火和淬火會影響它的性能嗎
???
如果做了熱處理,當然會影響性能。熱處理的目的就是改變工件的性能。
E. 模具鋼如何淬火
模具鋼國標通用淬火方法:
箱式電阻爐 加溫淬火溫度:960°
油冷
回火溫度:250°-280°封閉於爐內自然冷卻
硬度60-62HRC落料模具必須回火!
F. 模具鋼為什麼熱處理時有時候會開裂
鋼材淬火開裂的原因主要有:加熱溫度過高冷卻速度過快或不均,冷卻時間過長,幾何形狀復雜,截面變化急劇、而且無過渡區,表面有刀痕。鋼的化學成分和組織不均勻,如碳化物偏析。冶金或熱加工缺陷,如內裂紋、白點、晶粒粗大,脫碳嚴重,材料原來內應力大,鋼中夾雜物多,網狀碳化物多等,都會造成鋼材在淬火時開裂。
G. 現在的冷擠壓模具老是開裂,請問各路大神,用什麼材料不會開裂
冷擠壓模具老是開裂,從模具鋼角度考慮,是因為模具鋼韌性差。用UNIMAX,LG,8566材料比較好用。
1)UNIMAX模具鋼價格很貴,很多模具都吃不消。
2)LG是高硬度,韌性優異的多用途模具鋼材。熱處理硬度HRC56-58,具有高耐磨性的同時,具有高韌性,模具或沖頭不會開裂。
LG主要用於型腔復雜的冷擠壓模具;要求耐磨和鏡面拋光的塑膠模具(LG模具鋼鏡面拋光可達12000-15000號);型腔復雜的熱擠壓模具;也可用於重裁落料模具,粉末壓制模具,中溫熱鍛模具。韌性比VIKING還好,硬度比VIKING高,耐磨性自然比VIKING好。
3)8566韌性和LG一樣,耐磨性比LG好。8566熱處理硬度HRC58-60,適合型腔復雜,要求耐磨性長壽命的冷鐓模具。
重慶生產20Cr材質的,太陽花冷擠壓模具的陳老闆,以前用LD模具鋼,一副模具,只能生產500-800個產品,然後模具開始爆裂。一天兩個班,要更換6-8副模具。工人們無論怎麼努力,產量只能達到4000個產品。
現在用LG模具鋼做成模具,擠壓相同的產品。一副模具,一天兩個班,生產了6000個產品,模具還是完好如新。客戶預估,這套模具擠壓1萬個產品,都沒有問題。相當於模具壽命,至少提高了10倍。生產效率提高1.5倍。
H. 模具鋼的性能要求
1. 強度性能
(1)硬度硬度是模具鋼的主要技術指標,模具在高應力的作用下欲保持其形狀尺寸不變,必須具有足夠高的硬度。冷作模具鋼在室溫條件下一般硬度保持在HRC60左右,熱作模具鋼根據其工作條件,一般要求保持在HRC40~55范圍。對於同一鋼種而言,在一定的硬度值范圍內,硬度與變形抗力成正比;但具有同一硬度值而成分及組織不同的鋼種之間,其塑性變形抗力可能有明顯的差別。
(2)紅硬性 在高溫狀態下工作的熱作模具,要求保持其組織和性能的穩定,從而保持足夠高的硬度,這種性能稱為紅硬性。碳素工具鋼、低合金工具鋼通常能在180~250℃的溫度范圍內保持這種性能,鉻鉬熱作模具鋼一般在550~600℃的溫度范圍內保持這種性能。鋼的紅硬性主要取決於鋼的化學成分和熱處理工藝。
(3)抗壓屈服強度和抗壓彎曲強度 模具在使用過程中經常受到強度較高的壓力和彎曲的作用,因此要求模具材料應具有一定的抗壓強度和抗彎強度。在很多情況下,進行抗壓試驗和抗彎試驗的條件接近於模具的實際工作條件(例如,所測得的模具鋼的抗壓屈服強度與沖頭工作時所表現出來的變形抗力較為吻合)。抗彎試驗的另一個優點是應變數的絕對值大,能較靈敏地反映出不同鋼種之間以及在不同熱處理和組織狀態下變形抗力的差別。
2. 韌性
在工作過程中,模具承受著沖擊載荷,為了減少在使用過程中的折斷、崩刃等形式的損壞,要求模具鋼具有一定的韌性。
模具鋼的化學成分,晶粒度,純凈度,碳化物和夾雜物等的數量、形貌、尺寸大小及分布情況,以及模具鋼的熱處理制度和熱處理後得到的金相組織等因素都對鋼的韌性帶來很大的影響。特別是鋼的純凈度和熱加工變形情況對於其橫向韌性的影響更為明顯。鋼的韌性、強度和耐磨性往往是相互矛盾的。因此,要合理地選擇鋼的化學成分並且採用合理的精煉、熱加工和熱處理工藝,以使模具材料的耐磨性、強度和韌性達到最佳的配合。
沖擊韌性系表特徵材料在一次沖擊過程中試樣在整個斷裂過程中吸收的總能量。但是很多工具是在不同工作條件下疲勞斷裂的,因此,常規的沖擊韌性不能全面地反映模具鋼的斷裂性能。小能量多次沖擊斷裂功或多次斷裂壽命和疲勞壽命等試驗技術正在被採用。
3. 耐磨性
決定模具使用壽命最重要的因素往往是模具材料的耐磨性。模具在工作中承受相當大的壓應力和摩擦力,要求模具能夠在強烈摩擦下仍保持其尺寸精度。模具的磨損主要是機械磨損、氧化磨損和熔融磨損三種類型。為了改善模具鋼的耐磨性,就要既保持模具鋼具有高的硬度,又要保證鋼中碳化物或其他硬化相的組成、形貌和分布比較合理。對於重載、高速磨損條件下服役的模具,要求模具鋼表面能形成薄而緻密粘附性好的氧化膜,保持潤滑作用,減少模具和工件之間產生粘咬、焊合等熔融磨損,又能減少模具表面進行氧化造成氧化磨損。所以模具的工作條件對鋼的磨損有較大的影響。
耐磨性可用模擬的試驗方法,測出相對的耐磨指數,作為表徵不同化學成分及組織狀態下的耐磨性水平的參數。以呈現規定毛刺高度前的壽命,反映各種鋼種的耐磨水平;試驗是以Cr12MoV鋼為基準進行對比。
4. 抗熱疲勞能力
熱作模具鋼在服役條件下除了承受載荷的周期性變化之外,還受到高溫及周期性的急冷急熱的作用,因此,評價熱作模具鋼的斷裂抗力應重視材料的熱機械疲勞斷裂性能。熱機械疲勞是一種綜合性能的指標,它包括熱疲勞性能、機械疲勞裂紋擴展速率和斷裂韌性三個方面。
熱疲勞性能反映材料在熱疲勞裂紋萌生之前的工作壽命,抗熱疲勞性能高的材料,萌生熱疲勞裂紋的熱循環次數較多;機械疲勞裂紋擴展速率反映材料在熱疲勞裂紋萌生之後,在鍛壓力的作用下裂紋向內部擴展時,每一應力循環的擴展量;斷裂韌性反映材料對已存在的裂紋發生失穩擴展的抗力。斷裂韌性高的材料,其中的裂紋如要發生失穩擴展,必須在裂紋尖端具有足夠高的應力強度因子,也就是必須有較大的裂紋長度。在應力恆定的前提下,在一種模具中已經存在一條疲勞裂紋,如果模具材料的斷裂韌性值較高,則裂紋必須擴展得更深,才能發生失穩擴展。
也就是說,抗熱疲勞性能決定了疲勞裂紋萌生前的那部分壽命;而裂紋擴展速率和斷裂韌性,可以決定當裂紋萌生後發生亞臨界擴展的那部分壽命。因此,熱作模具如要獲得高的壽命,模具材料應具備高的抗熱疲勞性能、低的裂紋擴展速率和高的斷裂韌性值。
抗熱疲勞性能的指標可以用萌生熱疲勞裂紋的熱循環數,也可以用經過一定的熱循環後所出現的疲勞裂紋的條數及平均的深度或長度來衡量。
5. 咬合抗力
咬合抗力實際就是發生「冷焊」時的抵抗力。該性能對於模具材料較為重要。試驗時通常在干摩擦條件下,把被試驗的工具鋼試樣與具有咬合傾向的材料(如奧氏體鋼)進行恆速對偶摩擦運動,以一定的速度逐漸增大載荷,此時,轉矩也相應增大,該載荷稱為「咬合臨界載荷」,臨界載荷愈高,標志著咬合抗力愈強。
I. h13模具鋼對接焊總裂處理方法
焊前進行預熱,焊後進行消除焊接應力的退火。
J. 增加模具鋼表面耐磨性的方法有哪些請詳細說明,先謝謝了。
1、滲碳:是機械製造中最古老、最常用的一種化學熱處理工藝。它是滲碳介質在工件表面產生的活性碳原子,經過表面吸收和擴散將碳滲入低碳合金鋼工件的表層,是其達到共析或略高於共析成分的含碳量,以便將工件經淬火和低溫回火後,使表面的硬度、強度,特別是疲勞強度和耐磨性較心部有顯著的提高,而心部仍然有良好的韌性。根據滲碳劑的狀態不同,滲碳方法可分三類,即固體滲碳,氣體滲碳和液體滲碳,但液體滲碳常含有鹽,有劇毒。對於形狀復雜的工件,滲碳和淬火後清洗困難,基本不被採用。
固體滲碳:是把低碳工件埋在固體滲碳劑中,裝箱密封,加熱到930℃左右,保溫一定時間,使工件表層增碳的方法,這種方法除有滲劑來源廣泛、操作簡便、無需專用設備等優點外,由於滲碳後的空冷是在原滲劑保護下進行的,這樣避免了高溫出箱後與空氣接觸而造成滲層表面氧化脫碳,這些是氣體滲碳等方法不具備的特點。對於單件、小批量生產的模具零件,固體滲碳法是一種簡便易行的方法但與氣體滲碳相比,有工件透燒時間長、滲碳速度慢、勞動強度大、不易控制滲碳質量等缺點,因此在有條件的工廠,固體滲碳已逐漸被氣體滲碳所取代。
氣體滲碳:氣體滲碳所用的滲碳劑有兩大類:一類是碳氫化合物有機液體,如煤油、苯、醇等,它們在滲爐內的高溫下發生分解,析出活性碳原子;另一類是氣態介質,如天然氣、城市煤氣等。後者成分穩定,便於控制。當用煤油、苯、醇等做氣體碳劑時,是把這種液體直接滴入滲碳爐中,並用滴入速度來控制氣氛碳勢。為了加速滲碳劑的流通和攪動,避免死角,是滲碳均勻,在滲碳爐上裝在耐熱鋼制的風扇,在滲碳過程中對氣氛進行攪動。
2、滲氮:滲氮也叫氮化,是把氮滲入模具表面層以增加基表面硬度、耐磨性、疲勞強度、抗咬卡性、抗蝕性以及高溫軟化性等。由於滲層一般較薄,很硬,滲氮後除進行微量的磨削加工外,不允許作其他熱處理和切削加工。為了得到好的機械性能,模具在滲氮前一般進行調質處理。同時,為了不影響模具的性能,滲氮溫度不得高於調質處理中回火的溫度,一般採用500-700℃。在這個溫度范圍內,氮原子在鋼中的擴散速度較緩慢,所以滲氮要很長時間,滲層也較薄,一般為0.4-0.8mm。因為滲氮時工件既不發生相變,也沒有激冷、即熱過程,所以變形極小。由於氮原子滲入,工件略有漲大現象。
氣體滲氮:一般都採用專用的滲氮爐,根據滲氮工件的大小和形狀及操作的需要,有井式、罩式、箱式等基本類型,它們的共同特點是都有一個密封式的馬弗箱或罐。
滲氮氣體一般採用脫水氨氣。氮化過程和滲碳一樣,也可以分為分解、吸收、擴散三個階段。
離子滲氮:開發最早且應用最廣的離子化學熱處理技術是離子滲氮。在離子氮化爐內形成一定的真空度,在陰極(工件)和陽極(爐壁)之間加入直流高壓形成等離子體,N+、H+、NH3+等離子在陰極位降區加速轟擊工件表面產生系列反應,離子轟擊工件產生熱量並且在工件表面C、N、O、Fe等原子被轟擊出來,而Fe與陰極附近的活性氮離子(N+及電子)結合形成FeN。這些化合物因背散射效應又沉積在陰極表面,在離子轟擊和熱激活性作用下,依次分解出Fe、Fe2N、Fe3N、Fe4N,並同時產生活性氮原子[N],該活性氮原子大部分滲入工件內部,一部分返回等離子區。離子滲氮速度快,可以通過改變處理參數而達到最好的滲氮層組織及所需的性能,表面質量好,易於局部防滲氮處理,無公害,因此離子滲氮被廣泛應用於模具滲氮工藝。
3、碳氮共滲:就是在模具工件表層同時滲碳、氮的熱處理過程,亦稱氰化。碳氮共滲根據所使用介質的物理狀態不同,可分為固體、液體和氣體碳氮共滲三種,同時根據共滲溫度的不同,又可分為低溫(500-600℃)、中溫(700-800℃)和高溫(900-950℃)碳氮共滲三種。其中低溫碳氮共滲即目前廣泛應用的軟氮化處理,工件表層主要以滲氮為主,用以提高碳素鋼、合金鋼製造工模具的表面耐磨性和抗咬合性;中溫碳氮共滲,其目的與滲碳相似,主要是提高結構鋼零件的表面硬度,它與滲碳相比,將使工件具有更好的耐磨性和抗疲勞性能。高溫碳氮共滲,以滲碳為主。我國則以中溫氣體碳氮共滲軟氮化應用較廣。
中溫氣體碳氮共滲:
氣體軟氮化:軟氮化實質是在較低溫度下進行的以滲氮為主的碳氮共滲。它具有處理溫度低、共滲時間短、工件變形小、適用鋼鐵材料很為廣泛等特點,經軟氮化處理後,可顯著提高工件表面的疲勞強度及耐磨損、抗咬合、抗摩擦和腐蝕等性能。而且軟氮化所用設備部復雜,操作簡單。因此該工藝在許多冷作和熱作模具零件下採用,均收到良好的使用效果。
4、滲硼:滲硼處理是模具製造業中一項有效的化學處理。滲硼層有很高的硬度(1300-2000HV)和耐磨性。無論是碳素鋼或合金鋼,經滲硼後,均有較好的耐蝕性能,也顯著提高在800℃一下溫度的耐熱的性能。因此,近些年來,滲硼工藝發展很快,在工模具製造中應用日漸增多。滲硼處理對模具表面的粗糙度影響很少,因此在滲硼處理工件必須經過完善的精加工,滲硼後工件尺寸稍有增加,一般為滲層的10%-20%;對於形狀復雜的工件,滲硼前必須採用退火等熱處理工序,以便消除在工件內部的加工應力,否則滲硼處理後將引起工件的變形。
5、其他化學熱處理:
滲鉻:滲鉻工藝是在高溫下,將活性鉻原子通過工件表面吸收,以中和碳相互擴散,在模具表面生成一層牢固的鐵-鉻-碳合金層,這合金層組織既具高溫抗氧化、耐腐蝕性能,又有高的硬度、強度、耐磨性和耐疲勞性能等。所以它兼有滲碳、滲氮和滲鋁的優點。
滲硫和硫氮共滲
6、氣相沉澱技術:
碳化鈦塗層:
7、激光強化技術:
激光相變硬化(激光淬火):
激光非晶化:
激光表面合金化:
8、熱噴塗
沈陽中金模具鋼