❶ l拉伸模具怎麼做拉伸的產品褶皺和斷裂是怎麼回事
拉伸件一般都要拉伸幾次才能成型,所以,拉伸模的第一道工序都是落料拉伸。接下來是第二次、第三次,……,直到第N次拉伸。最後是整形工序。拉伸件在拉伸時,容易出現褶皺和斷裂,其原因是不同的;褶皺的原因是壓料板或者托料板沒有壓緊,或者拉伸凹模的R過大,造成拉深件的褶皺;而拉深件的斷裂則是由於壓料板或者托料板頂的過緊,或者拉伸凹模的R過小,造成了拉伸料不容易流進去。另外,在拉伸時,如果沒有很好的潤滑,也容易造成拉伸件的斷裂。所以,在拉伸時,應根據拉伸的實際情況,針對具體問題,採取有針對性的解決辦法,使拉伸得以正常進行。
❷ 在沖壓模具中拉伸模的方形拉伸筋、半圓形截面拉伸筋,拉伸坎,各有什麼不同,分別適用於哪方面
在拉伸模具中,設置拉延筋,目的是阻礙材料的流動,選那種類型的拉延筋,取決於產品材料,拉延型面,不同拉延筋對材料的阻不同,相同截面面積條件下,力量由大到小依次為: 方形拉伸筋、半圓形截面拉伸筋,拉伸坎
❸ 五金拉伸模具怎麼做
拉伸(又稱拉延,拉深)因為適用於各行各業,實用性廣泛,所以是沖壓工藝里比較常見的一道工序。從毛坯到拉伸成型,需要多步驟完成,初次拉伸→二次拉伸→……→成型。
一、拉伸概念:
1.拉伸:將板料壓製成空心件(壁厚基本不變)。
2.拉伸過程:是由平面(凸緣)上的材料轉移到筒形(盒形)側壁上,因此平面的外形尺寸發生較大的變化。
3.拉伸系數:拉伸直徑與毛胚直徑之比值「m」(毛胚到工件的變形程度)。
為體現「凸緣不變」原則,讓第一次拉伸形成的凸緣不參與以後各次的拉伸變形,寬凸緣拉伸減首次入凹模的材料(即形成壁與底的材料)應比最後拉伸完成實際所需的材料多3~10%。
注:按面積計算拉伸次數多時取上限,反之取下限。這些多餘的材料將在以後各次拉伸琢步返回到凸緣上,引起凸緣變厚但能避免頭部拉裂,局部變薄的區域可通過整形來修正。因此拉伸時嚴格控制各次的拉伸高度是相當重要的。
模具設計流程:
客戶提供圖紙樣品之後,
圖紙評估
1。確認加工工藝
2。報價
3。繪制模具圖(AUTO CAD/UG/SOLIDWORKS 等繪圖軟體)
4。出圖
5。采購模具材料,模具配件
6。模具加工備料
7。熱處理
8。磨床研磨,線切割加工
9。組裝
10.試模
11.交板
❹ 拉伸模具常見的問題有哪些有哪些特性
拉伸(又稱拉延,拉深)因為適用於各行各業。模具在拉伸的過程中會產生各種問題,常見的問題比如:起皺、頂部R拉裂、側壁拉裂、製品表面拉傷、拉伸高度太高或者太矮等等…一系列的問題。所以拉伸工藝在沖壓模具里也是一個難點。
下面介紹五金拉伸模具大概特性:
一、拉伸概念:
1.拉伸:將板料壓製成空心件(壁厚基本不變)。
2.拉伸過程:是由平面(凸緣)上的材料轉移到筒形(盒形)側壁上,因此平面的外形尺寸發生較大的變化。
3.拉伸系數:拉伸直徑與毛胚直徑之比值「m」(毛胚到工件的變形程度)。
二、影響拉伸系數的主要因素:
1.材料機械性能(降伏強度---彈性變形;抗拉強度----塑性變形;延伸系數;斷面收縮率)。
2.材料的相對厚度。
3.拉伸次數。
4.拉伸方式。
5.凸凹模圓角半徑。
6.拉伸工作面的光潔度以及潤滑條件,間隙等。
7.拉伸速度。
三、拉伸工序安排:
1.材料較薄拉伸深度比直徑大的零件:用減小筒形直徑來達到增加高度的方法,圓角半徑可逐次小。
2.材料較厚拉伸深度和直徑相近的零件:可用維持高度不變逐步減小筒形直徑過程中減小圓角半徑。
3.凸緣很大且圓半徑很小時:應通過多次整形達成。
4.凸緣過大時:必要時采應脹形成形法。
為體現「凸緣不變」原則,讓第一次拉伸形成的凸緣不參與以後各次的拉伸變形,寬凸緣拉伸減首次入凹模的材料(即形成壁與底的材料)應比最後拉伸完成實際所需的材料多3~10%。
注:按面積計算拉伸次數多時取上限,反之取下限。這些多餘的材料將在以後各次拉伸琢步返回到凸緣上,引起凸緣變厚但能避免頭部拉裂,局部變薄的區域可通過整形來修正。因此拉伸時嚴格控制各次的拉伸高度是相當重要的。
四、盒形件拉伸
轉角部分相當於筒形件的拉伸,直壁部分相當於彎曲變形;
五、拉伸潤滑
在拉伸過程中,材料與模具之間有摩擦存在,所以要有專用的沖壓拉伸潤滑油,摩擦力大不僅使拉伸系數增大,拉伸力增加而且會磨損,刮傷模具和工間表面所以是有害的,因而利用潤滑條件發揮傳力區的變形潛力來補償不均勻性,既能提高傳力區的承載能力,又能促進整個變形區順利進行塑性變形。所以在拉伸中潤滑條件是必備的。
以上為拉伸模具的簡單介紹及特性。雖然拉伸模具的一些問題的確讓人頭疼,但問題都是會有解決的方法。只要掌握好「力」和「間隙」這兩點,很多問題都可以得到解決。
❺ 沖壓模具當中鋁型材料在拉伸時流動性怎麼控制
不管拉伸的是什麼材料,控制材料在拉伸時的流動方法無非是凸模、凹模的R的大小,彈性壓板壓力的大小。凸模、凹模R大一些,彈性壓板的壓力小一些,拉伸材料的流動性就會好一些;反之,凸模、凹模的R小一些,彈性壓板的壓力大一些,拉伸材料的流動性就會差一些。但是,前者過了,拉伸材料容易起皺,而後者過了,拉伸材料容易拉破。所以,在拉伸模具的調節時,它們之間的相互關系要反復的進行調整,以達到理想的效果。
❻ 如何解決模具及沖壓成形的穩定性
模具的設計與製造中,設計人員的經驗與技能起到關鍵作用。設計合理與否,通過試模才能確認;而模具則需要通過多次試模及反復修改,才能最終完成。生產實踐
中,有些模具一旦投入到生產線上使用以後,卻往往會產生各種問題,無法滿足產品的生產要求或技術要求,造成生產線的非正常停工等,帶來諸多不穩定因素。於
是,如何提高模具的穩定性,成為模具製造企業面臨的現實問題。文章有【鍛件鍛壓網】提供
模具及沖壓成形的穩定性及其影響因素
何謂穩定性?穩定性分為工藝穩定性和生產穩定性。工藝穩定性指滿足生產合格產品具有穩定性的工藝方案;生產穩定性則指生產過程中具有穩定性的生產能力。
由於國內的模具製造企業大多為中小企業,而且這其中的相當一部分企業,尚停留在傳統作坊式的生產管理階段,往往忽略了模具的穩定性,造成模具開發周期長、製造成本高等問題,嚴重製約了企業的發展步伐。
先讓我們來看看影響模具及沖壓成形穩定性的主要因素,分別為:模具材料的使用方法;模具結構件的強度要求;沖壓材料性能的穩定性;材料厚度的波動特性;材質的變化范圍;拉伸筋阻力大小;壓邊力變化范圍;潤滑劑的選擇。
綜合權衡影響穩定性的各項因素
值得注意的是,在沖壓成形過程中,由於每一種沖壓板材都有自己的化學成分、力學性能以及與沖壓性能密切相關的特性值,沖壓材料的性能不穩定、沖壓材料厚度的波動、以及沖壓材質的變化,不但直接影響到沖壓成形加工的精度和品質,亦可能導致模具的損壞。
以拉伸筋為例,其在沖壓成形中便占據有非常重要的地位。在拉伸成形過程中,產品的成形需要具備一定大小、且
沿固定周邊適當分布的拉力,這種拉力來自沖壓設備的作用力、邊緣部分材料的變形阻力,以及壓邊圈面上的流動阻力。而流動阻力的產生,如果僅僅是依靠壓邊力
的作用,則模具和材料之間的摩擦力是不夠的。
為此,還須在壓邊圈上設置能產生較大阻力的拉伸筋,以增加進料的阻力,從而使材料產生較大的塑性變形,以滿
足材料的塑性變形和塑性流動的要求。同時,通過改變拉伸筋阻力的大小與分布,並控制材料向模具內流動的速度和進料量,實現對拉伸件各變形區域內的拉力及其
分布狀況的有效調節,從而防止拉伸成形時產品的破裂、起皺,以及變形等品質問題。由上可見,在制定沖壓工藝和模具設計過程中,必須考慮拉伸阻力的大小,根
據壓邊力的變化范圍來布置拉伸筋並確定拉伸筋的形式,使各變形區域按需要的變形方式和變形程度完成成形。
為了解決模具穩定性問題,需要從以下幾方面嚴格把關:
①在工藝制定階段,通過對產品進行分析,預知產品在製造中可能產生的缺陷,從而制定一個具有穩定性的製造工藝方案;
②實施生產流程的規范化、生產工藝的標准化;
③建立資料庫,並不斷對其總結優化;藉助CAE分析軟體系統,得出最優化解決方案。
❼ 拉深模具設計時,應該注意材料流動「等體積」原則,什麼叫等體積原則
等體積原則:
舉個例子:你把一尺厚一米見方的鋸末攤薄成半尺厚一米寬二米長的據末,總體積不變。就是拉伸前後總體積不變。
❽ 拉伸模具的製作工序
易拉罐是由三種不同成分的鋁合金組成,罐體、罐蓋、拉環。鋁質是制罐的關鍵,罐體不成形、罐蓋口拉不開都是鋁質的問題。在國內開模具沒有問題。下面是製造工藝,希望對你有所幫助。 罐體製造工藝和技術 : 罐體製造工藝流程 CCB-1A型罐罐體的主要製造工藝流程如下:卷料輸送→卷料潤滑→落料、拉伸→罐體成形→修邊→清洗/烘乾→堆垛/卸→塗底色→烘乾→彩印→底塗→烘乾→內噴塗→內烘乾→罐口潤滑→縮頸→旋壓縮頸。 在工藝流程中,落料、拉伸、罐體成形、修邊、縮徑、旋壓縮徑/翻邊工序需要模具加工,其中以落料、拉伸和罐體成形工序與模具最為關鍵,其工藝水平及模具設計製造水平的高低,直接影響易拉罐的質量和生產成本。 罐體製造工藝分析 (1)落料一拉伸復合工序。拉伸時,坯料邊緣的材料沿著徑向形成杯,因此在塑性流動區域的單元體為雙向受壓,單向受拉的三向應力狀態,如圖1所示。由於受凸模圓弧和拉伸凹模圓弧的作用,杯下部壁厚約減薄10%,而杯口增厚約25%。杯轉角處的圓弧大小對後續工序(罐體成形)有較大的影響,若控制不好,易產生斷罐。因此落料拉伸工序必須考慮以下因素:杯的直徑和拉伸比、凸模圓弧、拉伸凹模圓弧、凸、凹模間隙、鋁材的機械性能、模具表面的摩擦性能、材料表面的潤滑、拉伸速度、突耳率等。突耳的產生主要由2個因素確定:一是金屬材料的性能,二是拉伸模具的設計。突耳出現在杯的最高點同時也是最薄點,將會對罐體成形帶來影響,造成修邊不全,廢品率增高。基於以上分析,確定拉伸工序選擇的拉伸比m=36.55%,坯料直徑Dp=140.20±0.0lmm,杯直徑Dc=88.95mm。 (2)罐體成形工序。 變薄拉伸工藝分析。典型的鋁罐拉伸、變薄拉伸過程如圖2所示,變薄拉伸過程中受力狀況如圖3所示。 在拉伸過程中,集中在凹模口內錐形部分的金屬是變形區,而傳力區則為通過凹模後的筒壁及殼體底部。在變形區,材料處於軸向受拉、切向受壓、徑向受壓的三向應力狀態,金屬在三向應力的作用下,晶粒細化,強度增加,伴有加工硬化的產生。在傳力區,各部分材料受力狀況是不相同的,其中位於凸模圓角區域的金屬受力情況最為惡劣,其在軸向、切向兩向受拉,徑向受壓,因而材料的減薄趨勢嚴重,金屬易從此處發生斷裂,從而導致拉伸失敗。比較變形區和傳力區金屬的應力狀態可知:變薄拉伸工藝能否順利進行主要取決於拉伸凸模圓角部位的金屬所受拉應力的大小,當拉應力超過材料強度極限時就會引起斷裂,否則拉伸工藝可以順利進行。因此,減小拉伸過程中的拉應力成為保證拉伸順利進行的關鍵。變薄拉伸拉伸比的選擇為:再拉伸:25.7%,第1次變薄拉伸:20%~25%,第2次變薄拉伸:23%~28%,第3次變薄拉伸:35%~40%。 在成形過程中,影響金屬內部所受拉應力大小的因素很多,其中凹模錐角。的取值直接關繫到變形區金屬的流動特性,進而影響拉伸所需成形力的大小,所以,其數值合理與否對工藝的實施有著重要影響。當α較小時,變形區的范圍比較大,金屬易於流動,網格的畸變小。隨著α的增大,變形區的范圍減小,金屬的變形集中,流動阻力增大,網格歧變嚴重。而且,隨著凹模錐角的增大,變形區材料的應變相應增加,這說明凹模錐角較大時,不僅金屬的變形范圍集中,而且變形量迅速上升,因而使得變形區金屬的加工硬化現象加劇,導致金屬內部的應力上升,從而對拉伸產生不利影響。另一方面,在α過於大或過小時都會引起拉伸力的增加,其原因在於:當α過大時,金屬流動急劇,材料的加工硬化效應顯著,並且隨著錐角的增大,凹模錐面部分產生的阻礙金屬流動的分力加大,因而所需拉伸力增加;當。過小時,雖然金屬流動的轉折小,但由於變形區金屬與凹面的接觸錐面長,錐面上總摩擦阻力大,因此網格畸變雖小,總拉伸力卻增大。 由此可見,凹模錐角的合理確定應同時考慮變形區材料的變形特點以及模具與工件間的摩擦狀況,凹模錐角合理范圍的確定對拉伸工藝有著直接的影響。工藝試驗表明,對於CCB-1A型罐用鋁材3104H19,其凹模錐角合理取值在α=5°-8°為宜。 底部成形工藝分析。罐底部成形發生在凸模行程的終點,採用的是反向再拉伸工藝。圖4為罐底成形受力狀況示意圖,底部成形力主要取決於摩擦力的性質以及壓邊力的大小。通常,材料的厚度和強度是一對矛盾,材料愈薄,強度愈低,因此輕量化技術要求減少罐底直徑及設計特殊的罐底形狀。工藝試驗
www.1wenok.com
❾ 如拉伸模具中鑲合金後母材可以變薄嗎
拉深是利用模具將平板毛坯或半成品毛坯拉深成開口空心件的一種冷沖壓工藝。拉深工藝可製成的製品外形有:圓筒形、門路形、球形、錐形、矩形及其它各種不規則的開口空心零件。
拉深工藝與其它沖壓工藝結合,可製造外形復雜的零件,如落料工藝與拉深工藝組合在一起的落料拉深復合模。