導航:首頁 > 模具設計 > cnc系統模具包是什麼

cnc系統模具包是什麼

發布時間:2023-01-09 02:32:42

❶ cnc是什麼意思

一、cnc是什麼意思
1、 CNC(一種由程序控制的自動化機床)一般指計算機數字控制機床。計算機數字控制機床是一種裝有程序控制系統的自動化機床。該控制系統能夠邏輯地處理具有控制編碼或其他符號指令規定的程序,並將其解碼,從而使機床動作並加工零件。英文簡稱CNC,又稱數控機床、數控車床,香港和廣東珠三角一帶稱為電腦鑼。

2、 計算機數控就是利用一個專用的可存儲程序的計算機執行一些或全部的基本數字控制功能的NC系統。早期的數控系統是由硬體電路構成的稱為硬體數控(Hard NC),1970年代以後,硬體電路元件逐步由專用的計算機代替而稱為計算機數控系統,一般是採用專用計算機並配有介面電路,可實現多台數控設備動作的控制。因此現在的數控一般都是CNC(計算機數控),很少再用NC這個概念了。

3、 計算機數控一般也稱為數控,要了解計算機數控應該從理解數控開始。數控是數字控制的簡稱,數控技術是利用數字化信息對機械運動及加工過程進行控制的一種方法。早期時有兩個版本:NC(Numerical Control):代表舊版的、最初的數控技術。CNC(Computerized Numerical Control):計算機數控技術–新版,數控的首選縮寫形式。NC可能是CNC,但CNC絕不是指老的數控技術。

4、 「CNC」是英文Computerized Numerical Control(計算機數字化控制)的縮寫。數控機床是按照事先編制好的加工程序,自動地對被加工零件進行加工。我們把零件的加工工藝路線、工藝參數、刀具的運動軌跡、位移量、切削參數(主軸轉數、進給量、背吃刀量等)以及輔助功能(換刀、主軸正轉、反轉、切削液開、關等),按照數控機床規定的指令代碼及程序格式編寫成加工程序單,再把這程序單中的內容記錄在控制介質上(如穿孔紙帶、磁帶、磁碟、磁泡存儲器),然後輸入到數控機床的數控裝置中,從而指揮機床加工零件。

5、 傳統的機械加工都是用手工操作普通機床作業的,加工時用手搖動機械刀具切削金屬,靠眼睛用卡尺等工具測量產品的精度的。現代工業早已使用電腦數字化控制的機床進行作業了,數控機床可以按照技術人員事先編好的程序自動對任何產品和零部件直接進行加工了。這就是我們說的「數控加工」。數控加工廣泛應用在所有機械加工的任何領域,更是模具加工的發展趨勢和重要和必要的技術手段。

二、數控功能
1、坐標軸控制
能同時聯動控制3,4和5個坐標軸。能達到較高的切削速度和加工質量。

2、刀具偏置補償
現代數控系統往往具有三維空間直線的刀具半徑補償功能。

3、編程功能
系統提供某些編程功能。通常可以使用系統的彩色圖形顯示終端,人工編制由直線和圓弧組成的平面輪廓件的加工程序,系統配有軟體自動計算輪廓的交點與切點。

4、平行作業
系統可以平行地實現兩種工作模式:機床受控模式和編程模式。
當機床正在受系統控制進行某零件的加工時,操作人員可以同時用鍵盤完成上述手工編程工作,或通過數據傳輸介面進行外部程序的輸入或對已有程序進行編輯修改作業。當機床正在加工時,圖形顯示終端可以同時模擬另一加工程序的執行,以便檢查與編輯。

5、刀具管理和監控
現代數控機床朝加工中心方向發展。通常銑鏜類機床帶有幾十把刀具的刀庫,車削中心往往也有刀具庫。數控系統具有控制和管理刀庫的功能。刀具的更換在加工機床上是由數控系統按程序控制換刀機構自動換刀的。

6、高、低速進給控制
系統對機床運動部件的進給速度控制性能是數控系統的一個重要性能指標。現代數控系統能在很短距離內以相當高的進給速度控制機床切削運動。這對曲面加工是十分有利的,可以大大縮短加工時間,尤其對曲率變化較大的過渡區加工,仍可獲得好的加工質量。

三、發展趨勢
1、高速、高精加工技術及裝備的新趨勢
效率、質量是先進製造技術的主體。高速、高精加工技術可極大地提高效率,提高產品的質量和檔次,縮短生產周期和提高市場競爭能力。為此日本先端技術研究會將其列為5大現代製造技術之一,國際生產工程學會(CIRP)將其確定為21世紀的中心研究方向之一。在轎車工業領域,年產30萬輛的生產節拍是40秒/輛,而且多品種加工是轎車裝備必須解決的重點問題之一;在航空和宇航工業領域,其加工的零部件多為薄壁和薄筋,剛度很差,材料為鋁或鋁合金,只有在高切削速度和切削力很小的情況下,才能對這些筋、壁進行加工。

2、五軸聯動加工和復合加工機床快速發展
數控技術採用5軸聯動對三維曲面零件的加工,可用刀具最佳幾何形狀進行切削,不僅光潔度高,而且效率也大幅度提高。一般認為,1台5軸聯動機床的效率可以等於2台3軸聯動機床,特別是使用立方氮化硼等超硬材料銑刀進行高速銑削淬硬鋼零件時,5軸聯動加工可比3軸聯動加工發揮更高的效益。但過去因5軸聯動數控系統、主機結構復雜等原因,其價格要比3軸聯動數控機床高出數倍,加之編程技術難度較大,制約了5軸聯動機床的發展。

3、智能化、開放式、網路化成為當代數控系統發展的主要趨勢
21世紀的數控裝備將是具有一定智能化的系統,智能化的內容包括在數控系統中的各個方面:為追求加工效率和加工質量方面的智能化,如加工過程的自適應控制,工藝參數自動生成;為提高驅動性能及使用連接方便的智能化,如前饋控制、電機參數的自適應運算、自動識別負載自動選定模型、自整定等;簡化編程、簡化操作方面的智能化,如智能化的自動編程、智能化的人機界面等;還有智能診斷、智能監控方面的內容、方便系統的診斷及維修等。

4、重視新技術標准、規范的建立
如前所述,開放式數控系統有更好的通用性、柔性、適應性、擴展性,美國、歐共體和日本等國紛紛實施戰略發展計劃,並進行開放式體系結構數控系統規范(OMAC、OSACA、OSEC)的研究和制定,世界3個最大的經濟體在短期內進行了幾乎相同的科學計劃和規范的制定,預示了數控技術的一個新的變革時期的來臨。我國在2000年也開始進行中國的ONC數控系統的規范框架的研究和制定。

5、實時操作系統進入CNC
嚴格意義上說,數控控制軟體中包含著實時操作系統的思想,例如任務調度、存儲器管理、中斷處理等,但這種技術是隱含的,是和數控應用程序比如插補,伺服、解碼等混合的。每一個數控系統都是獨特的,不透明的。這種情況對於最終用戶和系統集成商而言帶來諸多不便。在開放式數控呼聲日益高漲的今天,研究實時操作系統在CNC軟體中的應用是順理成章的事。特別是最近嵌入式實時操作系統的技術發展迅猛,這對於數控控制軟體的開發將產生革命性的影響。

❷ 模具中CNC是什麼意思啊

cnc是數控系統的意思,在模具的加工製造過程中間,大部分的已經採用計算機輔助設計,造型,並且自動生成加工程序,進行加工。當然加工的設備就是數控機床,也叫cnc機床!

❸ fanuc開模具包有什麼好處

答:發那科系統帶模具包有哪些功能:

有以下57種功能:

1、控制軌跡數(ControlledPath)

CNC控制的進給伺服軸(進給)的組數。加工時每組形成一條刀具軌跡,各組可單獨運動,也可同時協調運動。

2、控制軸數(ControlledAxes)

CNC控制的進給伺服軸總數/每一軌跡。

3、聯動控制軸數(SimultaneouslyControlledAxes)

每一軌跡同時插補的進給伺服軸數。

4、PMC控制軸(AxiscontrolbyPMC)

由PMC(可編程機床控制器)控制的進給伺服軸。控制指令編在PMC的程序(梯形圖)中,因此修改不便,故這種方法通常只用於移動量固定的進給軸控制。

5、Cf軸控制(CfAxisControl)(T系列)

車床系統中,主軸的回轉位置(轉角)控制和其它進給軸一樣由進給伺服電動機實現。該軸與其它進給軸聯動進行插補,加工任意曲線。

6、Cs輪廓控制(Cscontouringcontrol)(T系列)

車床系統中,主軸的回轉位置(轉角)控制不是用進給伺服電動機而由FANUC主軸電動機實現。主軸的位置(角度)由裝於主軸(不是主軸電動機)上的高解析度編碼器檢測,此時主軸是作為進給伺服軸工作,運動速度為:度/分,並可與其它進給軸一起插補,加工出輪廓曲線。

7、回轉軸控制(Rotaryaxiscontrol)

將進給軸設定為回轉軸作角度位置控制。回轉一周的角度,可用參數設為任意值。FANUC系統通常只是基本軸以外的進給軸才能設為回轉軸。

8、控制軸脫開(ControlledAxisDetach)

指定某一進給伺服軸脫離CNC的控制而無系統報警。通常用於轉台控制,機床不用轉台時執行該功能將轉台電動機的插頭拔下,卸掉轉台。

9、伺服關斷(ServoOff)

用PMC信號將進給伺服軸的電源關斷,使其脫離CNC的控制用手可以自由移動,但是CNC仍然實時地監視該軸的實際位置。該功能可用於在CNC機床上用機械手輪控制工作台的移動,或工作台、轉台被機械夾緊時以避免進給電動機發生過流。

10、位置跟蹤(Follow-up)

當伺服關斷、急停或伺服報警時若工作台發生機械位置移動,在CNC的位置誤差寄存器中就會有位置誤差。位置跟蹤功能就是修改CNC控制器監測的機床位置,使位置誤差寄存器中的誤差變為零。當然,是否執行位置跟蹤應該根據實際控制的需要而定。

11、增量編碼器(Incrementpulsecoder)

回轉式(角度)位置測量元件,裝於電動機軸或滾珠絲杠上,回轉時發出等間隔脈沖表示位移量。由於碼盤上沒有零點,故不能表示機床的位置。只有在機床回零,建立了機床坐標系的零點後,才能表示出工作台或刀具的位置。使用時應該注意的是,增量編碼器的信號輸出有兩種方式:串列和並行。CNC單元與此對應有串列介面和並行介面。

12、絕對值編碼器(Absolutepulsecoder)

回轉式(角度)位置測量元件,用途與增量編碼器相同,不同點是這種編碼器的碼盤上有絕對零點,該點作為脈沖的計數基準。因此計數值既可以映位移量,也可以實時地反映機床的實際位置。另外,關機後機床的位置也不會丟失,開機後不用回零點,即可立即投入加工運行。與增量編碼器一樣,使用時應注意脈沖信號的串列輸出與並行輸出,以便與CNC單元的介面相配。(早期的CNC系統無串列口。)

13、FSSB(FANUC串列伺服匯流排)

FANUC串列伺服匯流排(FANUCSerialServoBus)是CNC單元與伺服放大器間的信號高速傳輸匯流排,使用一條光纜可以傳遞4—8個軸的控制信號,因此,為了區分各個軸,必須設定有關參數。

14、簡易同步控制(Simplesynchronouscontrol)

兩個進給軸一個是主動軸,另一個是從動軸,主動軸接收CNC的運動指令,從動軸跟隨主動軸運動,從而實現兩個軸的同步移動。CNC隨時監視兩個軸的移動位置,但是並不對兩者的誤差進行補償,如果兩軸的移動位置超過參數的設定值,CNC即發出報警,同時停止各軸的運動。該功能用於大工作台的雙軸驅動。

15、雙驅動控制(Tandemcontrol)

對於大工作台,一個電動機的力矩不足以驅動時,可以用兩個電動機,這就是本功能的含義。兩個軸中一個是主動軸,另一個為從動軸。主動軸接收CNC的控制指令,從動軸增加驅動力矩。

16、同步控制(Synchrohouuscontrol)(T系列的雙跡系統)

雙軌跡的車床系統,可以實現一個軌跡的兩個軸的同步,也可以實現兩個軌跡的兩個軸的同步。同步控制方法與上述「簡易同步控制」相同。

17、混合控制(Compositecontrol)(T系列的雙跡系統)

雙軌跡的車床系統,可以實現兩個軌跡的軸移動指令的互換,即第一軌跡的程序可以控制第二軌跡的軸運動;第二軌跡的程序可以控制第一軌跡的軸運動。

18、重疊控制(Superimposedcontrol)(T系列的雙跡系統)

雙軌跡的車床系統,可以實現兩個軌跡的軸移動指令同時執行。與同步控制的不同點是:同步控制中只能給主動軸送運動指令,而重疊控制既可給主動軸送指令,也可給從動軸送指令。從動軸的移動量為本身的移動量與主動軸的移動量之和。

19、B軸控制(B-Axiscontrol)(T系列)

B軸是車床系統的基本軸(X,Z)以外增加的一個獨立軸,用於車削中心。其上裝有動力主軸,因此可以實現鑽孔、鏜孔或與基本軸同時工作實現復雜零件的加工。

20、卡盤/尾架的屏障(Chuck/TailstockBarrier)(T系列)

該功能是在CNC的顯示屏上有一設定畫面,操作員根據卡盤和尾架的形狀設定一個刀具禁入區,以防止刀尖與卡盤和尾架碰撞。

21、刀架碰撞檢查(Toolpostinterferencecheck)(T系列)

雙跡車床系統中,當用兩個刀架加工一個工件時,為避免兩個刀架的碰撞可以使用該功能。其原理是用參數設定兩刀架的最小距離,加工中時時進行檢查。在發生碰撞之前停止刀架的進給。

22、異常負載檢測(Abnormalloaddetection)

機械碰撞、刀具磨損或斷裂會對伺服電動機及主軸電動機造成大的負載力矩,可能會損害電動機及驅動器。該功能就是監測電動機的負載力矩,當超過參數的設定值時提前使電動機停止並反轉退回。

23、手輪中斷(Manualhandleinterruption)

在自動運行期間搖動手輪,可以增加運動軸的移動距離。用於行程或尺寸的修正。

24、手動干預及返回(Manualinterventionandreturn)

在自動運行期間,用進給暫停使進給軸停止,然後用手動將該軸移動到某一位置做一些必要的操作(如換刀),操作結束後按下自動加工啟動按鈕即可返回原來的坐標位置

25、手動絕對值開/關(ManualabsoluteON/OFF)

該功能用來決定在自動運行時,進給暫停後用手動移動的坐標值是否加到自動運行的當前位置值上。

26、手搖輪同步進給(Handlesynchronousfeed)

在自動運行時,刀具的進給速度不是由加工程序指定的速度,而是與手搖脈沖發生器的轉動速度同步。

27、手動方式數字指令(Manualnumericcommand)

CNC系統設計了專用的MDI畫面,通過該畫面用MDI鍵盤輸入運動指令(G00,G01等)和坐標軸的移動量,由JOG(手動連續)進給方式執行這些指令。

28、主軸串列輸出/主軸模擬輸出(Spindleserialoutput/Spindleanalogoutput)

主軸控制有兩種介面:一種是按串列方式傳送數據(CNC給主軸電動機的指令)的介面稱為串列輸出;另一種是輸出模擬電壓量做為主軸電動機指令的介面。前一種必須使用FANUC的主軸驅動單元和電動機,後一種用模擬量控制的主軸驅動單元(如變頻器)和電動機。

29、主軸定位(Spindlepositioning)(T系統)

這是車床主軸的一種工作方式(位置控制方式),用FANUC主軸電動機和裝在主軸上的位置編碼器實現固定角度間隔的圓周上的定位或主軸任意角度的定位。

30、主軸定向(Orientation)

為了執行主軸定位或者換刀,必須將機床主軸在回轉的圓周方向定位與於某一轉角上,作為動作的基準點。CNC的這一功能就稱為主軸定向。FANUC系統提供了以下3種方法:用位置編碼器定向、用磁性感測器定向、用外部一轉信號(如接近開關)定向。

31、Cs軸輪廓控制(CsContourcontrol)

Cs輪廓控制是將車床的主軸控制變為位置控制實現主軸按回轉角度的定位,並可與其它進給軸插補以加工出形狀復雜的工件。Cs軸控制必須使用FANUC的串列主軸電動機,在主軸上要安裝高解析度的脈沖編碼器,因此,用Cs軸進行主軸的定位要比上述的主軸定位精度要高。

32、多主軸控制(Multi-spindlecontrol)

CNC除了控制第一個主軸外,還可以控制其它的主軸,最多可控制4個(取決於系統),通常是兩個串列主軸和一個模擬主軸。主軸的控制命令S由PMC(梯形圖)確定。

33、剛性攻絲(Rigidtapping)

攻絲操作不使用浮動卡頭而是由主軸的回轉與攻絲進給軸的同步運行實現。主軸回轉一轉,攻絲軸的進給量等於絲錐的螺距,這樣可提高精度和效率。欲實現剛性攻絲,主軸上必須裝有位置編碼器(通常是1024脈沖/每轉),並要求編制相應的梯形圖,設定有關的系統參數。銑床,車床(車削中心)都可實現剛性攻絲。但車床不能像銑床一樣實現反攻絲。

34、主軸同步控制(Spindlesynchronouscontrol)

該功能可實現兩個主軸(串列)的同步運行,除速度同步回轉外,還可實現回轉相位的同步。利用相位同步,在車床上可用兩個主軸夾持一個形狀不規則的工件。根據CNC系統的不同,可實現一個軌跡內的兩個主軸的同步,也可實現兩個軌跡中的兩個主軸的同步。接受CNC指令的主軸稱為主主軸,跟隨主主軸同步回轉的稱為從主軸。

35、主軸簡易同步控制()

兩個串列主軸同步運行,接受CNC指令的主軸為主主軸,跟隨主主軸運轉的為從主軸。兩個主軸可同時以相同轉速回轉,可同時進行剛性攻絲、定位或Cs軸輪廓插補等操作。與上述的主軸同步不同,簡易主軸同步不能保證兩個主軸的同步化。進入簡易同步狀態由PMC信號控制,因此必須在PMC程序中編制相應的控制語句。

36、主軸輸出的切換(Spindleoutputswitch)(T)

這是主軸驅動器的控制功能,使用特殊的主軸電動機,這種電動機的定子有兩個繞組:高速繞組和低速繞組,用該功能切換兩個繞組,以實現寬的恆功率調速范圍。繞組的切換用繼電器。切換控制由梯形圖實現。

37、刀具補償存儲器A,B,C(ToolcompensationmemoryA,B,C)

刀具補償存儲器可用參數設為A型、B型或C型的任意一種。A型不區分刀具的幾何形狀補償量和磨損補償量。B型是把幾何形狀補償與磨損補償分開。通常,幾何補償量是測量刀具尺寸的差值;磨損補償量是測量加工工件尺寸的差值。C型不但將幾何形狀補償與磨損補償分開,將刀具長度補償代碼與半徑補償代碼也分開。長度補償代碼為H,半徑補償代碼為D。

38、刀尖半徑補償(Toolnoseradiuscompensation)(T)

車刀的刀尖都有圓弧,為了精確車削,根據加工時的走刀方向和刀具與工件間的相對方位對刀尖圓弧半徑進行補償。

39、三維刀具補償(Three-dimensiontoolcompensation)(M)

在多坐標聯動加工中,刀具移動過程中可在三個坐標方向對刀具進行偏移補償。可實現用刀具側面加工的補償,也可實現用刀具端面加工的補償。

40、刀具壽命管理(Toollifemanagement)

使用多把刀具時,將刀具按其壽命分組,並在CNC的刀具管理表上預先設定好刀具的使用順序。加工中使用的刀具到達壽命值時可自動或人工更換上同一組的下一把刀具,同一組的刀具用完後就使用下一組的刀具。刀具的更換無論是自動還是人工,都必須編制梯形圖。刀具壽命的單位可用參數設定為「分」或「使用次數」。

41、自動刀具長度測量()

在機床上安裝接觸式感測器,和加工程序一樣編制刀具長度的測量程序(用G36,G37),在程序中要指定刀具使用的偏置號。在自動方式下執行該程序,使刀具與感測器接觸,從而測出其與基準刀具的長度差值,並自動將該值填入程序指定的偏置號中。

42、極坐標插補(Polarcoordinateinterpolation)(T)

極坐標編程就是把兩個直線軸的笛卡爾坐標系變為橫軸為直線軸,縱軸為回轉軸的坐標系,用該坐標系編制非圓型輪廓的加工程序。通常用於車削直線槽,或在磨床上磨削凸輪。

43、圓柱插補(Cylindricalinterpolation)

在圓柱體的外表面上進行加工操作時(如加工滑塊槽),為了編程簡單,將兩個直線軸的笛卡爾坐標系變為橫軸為回轉軸(C),縱軸為直線軸(Z)的坐標系,用該坐標系編制外表面上的加工輪廓。

44、虛擬軸插補(Hypotheticalinterpolation)(M)

在圓弧插補時將其中的一個軸定為虛擬插補軸,即插補運算仍然按正常的圓弧插補,但插補出的虛擬軸的移動量並不輸出,因此虛擬軸也就無任何運動。這樣使得另一軸的運動呈正弦函數規律。可用於正弦曲線運動。

45、NURBS插補(NURBSInterpolation)(M)

汽車和飛機等工業用的模具多數用CAD設計,為了確保精度,設計中採用了非均勻有理化B-樣條函數(NURBS)描述雕刻(Sculpture)曲面和曲線。因此,CNC系統設計了相應的插補功能,這樣,NURBS曲線的表示式就可以直接指令CNC,避免了用微小的直線線段逼近的方法加工復雜輪廓的曲面或曲線。

46、返回浮動參考點()

為了換刀快速或其它加工目的,可在機床上設定不固定的參考點稱之為浮動參考點。該點可在任意時候設在機床的任意位置,程序中用G30.1指令使刀具回到該點。

47、極坐標指令編程(Polarcoordinatecommand)(M)

編程時工件尺寸的幾何點用極坐標的極徑和角度定義。按規定,坐標系的第一軸為直線軸(即極徑),第二軸為角度軸。

48、提前預測控制(Advancedpreviewcontrol)(M)

該功能是提前讀入多個程序段,對運行軌跡插補和進行速度及加速度的預處理。這樣可以減小由於加減速和伺服滯後引起的跟隨誤差,刀具在高速下比較精確地跟隨程序指令的零件輪廓,使加工精度提高。預讀控制包括以下功能:插補前的直線加減速;拐角自動降速等功能。預讀控制的編程指令為G08P1。不同的系統預讀的程序段數量不同,16i最多可預讀600段。

49、高精度輪廓控制(High-precisioncontourcontrol)(M)High-precisioncontourcontrol縮寫為HPCC。

有些加工誤差是由CNC引起的,其中包括插補後的加減速造成的誤差。為了減小這些誤差,系統中使用了輔助處理器RISC,增加了高速,高精度加工功能,這些功能包括:①.多段預讀的插補前直線加減速。該功能減小了由於加減速引起的加工誤差。②.多段預讀的速度自動控制功能。該功能是考慮工件的形狀,機床允許的速度和加速度的變化,使執行機構平滑的進行加/減速。高精度輪廓控制的編程指令為G05P10000。

50、AI輪廓控制/AI納米輪廓控制功能(AIContourcontrol/AInanoContourcontrol)(M)

這兩個功能用於高速、高精度、小程序段、多坐標聯動的加工。可減小由於加減速引起的位置滯後和由於伺服的延時引起的而且隨著進給速度增加而增加的位置滯後,從而減小輪廓加工誤差。這兩種控制中有多段預讀功能,並進行插補前的直線加減速或鈴型加減速處理,從而保證加工中平滑地加減速,並可減小加工誤差。在納米輪廓控制中,輸入的指令值為微米,但內部有納米插補器。經納米插補器後給伺服的指令是納米,這樣,工作台移動非常平滑,加工精度和表面質量能大大改善。程序中這兩個功能的編程指令為:G05.1Q1。

51、AI高精度輪廓控制/AI納米高精度輪廓控制功能(AIhighprecisioncontourcontrol/)(M)

該功能用於微小直線或NURBS線段的高速高精度輪廓加工。可確保刀具在高速下嚴格地跟隨指令值,因此可以大大減小輪廓加工誤差,實現高速、高精度加工。與上述HPCC相比,AIHPCC中加減速更精確,因此可以提高切削速度。AInanoHPCC與AIHPCC的不同點是AInanoHPCC中有納米插補器,其它均與AIHPCC相同。在這兩種控制中有以下一些CNC和伺服的功能:插補前的直線或鈴形加減速;加工拐角時根據進給速度差的降速功能;提前前饋功能;根據各軸的加速度確定進給速度的功能;根據Z軸的下落角度修改進給速度的功能;200個程序段的緩沖。

程序中的編程指令為:G05P10000。

52、DNC運行(DNCOperation)

是自動運行的一種工作方式。用RS-232C或RS-422口將CNC系統或計算機連接,加工程序存在計算機的硬碟或軟盤上,一段段地輸入到CNC,每輸入一段程序即加工一段,這樣可解決CNC內存容量的限制。這種運行方式由PMC信號DNCI控制。

53、遠程緩沖器(Remotebuffer)

是實現DNC運行的一種介面,由一獨立的CPU控制,其上有RS-232C和RS-422口。用它比一般的RS-232C口(主板上的)加工速度要快。

54、DNC1

是實現CNC系統與主計算機之間傳送數據信息的一種通訊協議及通訊指令庫。DNC1是由FANUC公司開發的,用於FMS中加工單元的控制。可實現的功能有:加工設備的運行監視;加工與輔助設備的控制;加工數據(包括參數)與檢測數據的上下傳送;故障的診斷等。硬體的連接是一點對多點。一台計算機可連16台CNC機床。

55、DNC2

其功能與DNC2基本相同,只是通訊協議不同,DNC2用的是歐洲常用的LSV2協議。另外硬體連接為點對點式連接,一台計算機可連8台CNC機床。通訊速率最快為19Kb/秒。

56、高速串列匯流排(Highspeedserialbus)(HSSB)

是CNC系統與主計算機的連接介面,用於兩者間的數據傳送,傳送的數據種類除了DNC1和DNC2傳送的數據外,還可傳送CNC的各種顯示畫面的顯示數據。因此可用計算機的顯示器和鍵盤操作機床。

57、乙太網口(Ethernet)

是CNC系統與乙太網的介面。FANUC提供了兩種乙太網口:PCMCIA卡口和內埋的乙太網板。用PCMCIA卡可以臨時傳送一些數據,用完後即可將卡拔下。乙太網板是裝在CNC系統內部的,因此用於長期與主機連結,實施加工單元的實時控制.

❹ 模具CNC是什麼

CNC是計算機數字控制機床,是一種裝有程序控制系統的自動化機床。

該控制系統能夠邏輯地處理具有控制編碼或其他符號指令規定的程序,並將其解碼,從而使機床動作並加工零件。英文簡稱CNC,又稱數控機床、數控車床,香港和廣東珠三角一帶稱為電腦鑼。

(4)cnc系統模具包是什麼擴展閱讀

與普通機床相比,數控機床有如下特點:

1、加工精度高,具有穩定的加工質量;

2、可進行多坐標的聯動,能加工形狀復雜的零件;

3、加工零件改變時,一般只需要更改數控程序,可節省生產准備時間;

4、機床本身的精度高、剛性大,可選擇有利的加工用量,生產率高(一般為普通機床的3~5倍);

5、機床自動化程度高,可以減輕勞動強度;

6、對操作人員的素質要求較高,對維修人員的技術要求更高。

參考資料來源:網路-計算機數字控制機床

❺ 模具分幾種cnc也是模具嗎數控也是嗎想學做cnc編程,望前輩給點意見!

模具主要是分五金和塑料模具的,當然在鑄造件方法可能會用沙或者是其它材料做為模具的原型的,比如說做餅或者是做其它產品也會用到模具的,模具就是可以使產品定型並且同一個模具做出的產品形狀是一樣的,可以大規模生產的就叫模具,模具決定產品的外觀形狀大小等。而五金和塑料模具可以細分幾種,比如沖壓模擠壓模注塑模吹塑模等等,只不過是工藝有些不同而已。你說的CNC實際是英文名稱的縮寫,CNC是指通過計算機編寫數字和指令控制機床運動的簡稱,實際上是自動化生產的設備,當然還是要人工生成刀路才能加工的,負責生成刀路的人就叫做CNC編程,現在做五金和塑料模具離不開CNC,而CNC不是只為了加工模具,一般的CNC機床有CNC加工中心、CNC雕刻機、CNC車床、CNC火花機、線切割機床等等,現在的3D列印也是CNC的一種,不過和傳統的去除材料加工不同的是3D列印是通過累積材料而完成產品的,就和注塑一樣,只不過是3D列印不需要模具生產而已。總的來說數控和模具還是不同的概念,不過現在是兩者都離不開誰。

❻ 數控機床cnc是什麼

CNC」是英文Computerized Numerical Control(計算機數字化控制)的縮寫。CNC是 Computerized(電腦) Numerical(數值) Control(控制) 這三個單詞的縮寫,即CNC,電腦數值控制,簡稱:數控,可以用 電腦寫出機械語言(即編程)輸入CNC機器中,可以用機械語言來控制機器的工作,一般CNC用來對模具的銑(沉頭,避位等),鑽(線割穿線孔等)等工作的。可以大大的節省人力,擔高工作效率。

CNC計算機數字控制機床是一種裝有程序控制系統的自動化機床。該控制系統能夠邏輯地處理具有控制編碼或其他符號指令規定的程序,並將其解碼,從而使機床動作並加工零件。

是目前在製造業中廣泛使用的的種加工技術,也可以說是現在製造業的標志,用CNC能輕松的實現多軸聯動加工,比如說曲面的加工,如果離開CNC,用普通機床來加工,幾乎是不可能完成的,另外,CNC可以很容易的實現柔性製造系統,其實如果學習CNC也不是難事,可以說,只要你會玩手機,就會用CNC,只不過,在學習CNC之前,最好先學習一下普通機床的加工原理,還有制圖與公差什麼的基本的機械製造知識,然後再說效果才好,簡單的說,普通機床是人直接控制機床來加工,而CNC是人通過控制CNC系統,來控制機床加工,從而實現更復雜的更高速的加工而已.

數控技術,簡稱數控(Numerical Control),是利用數字化的信息對機床運動及加工過程進行控制的一種方法。用數控技術實施加工控制的機床,或者說裝備了數控系統的機床稱為數控(NC)機床。數控系統包括:數控裝置、可編程式控制制器、主軸驅動器及進給裝置等部分.數控機床是機、電、液、氣、光高度一體化的產品。要實現對機床的控制,需要用幾何信息描述刀具和工件間的相對運動以及用工藝信息來描述機床加工必須具備的一些工藝參數。例如:進給速度、主軸轉速、主軸正反轉、換刀、冷卻液的開關等。這些信息按一定的格式形成加工文件(即正常說的數控加工程序)存放在信息載體上(如磁碟、穿孔紙帶、磁帶等),然後由機床上的數控系統讀入(或直接通過數控系統的鍵盤輸入,或通過通信方式輸入),通過對其解碼,從而使機床動作和加工零件.現代數控機床是機電一體化的典型產品,是新一代生產技術、計算機集成製造系統等的技術基礎。

現代數控機床的發展趨向是高速化、高精度化、高可靠性、多功能、復合化、智能化和開放式結構。主要發展動向是研製開發軟、硬體都具有開放式結構的智能化全功能通用數控裝置。數控技術是機械加工自動化的基礎,是數控機床的核心技術,其水平高低關繫到國家戰略地位和體現國家綜合實力的水平. 它隨著信息技術、微電子技術、自動化技術和檢測技術的發展而發展。數控加工中心是一種帶有刀庫並能自動更換刀具,對工件能夠在一定的范圍內進行多種加工操作的數控機床。在加工中心上加工零件的特點是:被加工零件經過一次裝夾後,數控系統能控制機床按不同的工序自動選擇和更換刀具;自動改變機床主軸轉速、進給量和刀具相對工件的運動軌跡及其它輔助功能,連續地對工件各加工面自動地進行鑽孔、鍃孔、鉸孔、鏜孔、攻螺紋、銑削等多工序加工。由於加工中心能集中地、自動地完成多種工序,避免了人為的操作誤差、減少了工件裝夾、測量和機床的調整時間及工件周轉、搬運和存放時間,大大提高了加工效率和加工精度,所以具有良好的經濟效益。加工中心按主軸在空間的位置可分為立式加工中心與卧式加工中心。
CNC系統是一個專用的實時多任務計算機系統,在它的控制軟體中融合了當今計算機軟體技術中的許多先進技術,其中最突出的是多任務並行處理和多重實時中斷。下面分別加以介紹。

(1)CNC系統的多任務性。CNC系統通常作為一個獨立的過程式控制制單元用於工業自動化生產中,因此它的系統軟體必須完成管理和控制兩大任務。系統的管理部分包括輸入、I/O處理、顯示和診斷。系統的控制部分包括解碼、刀具補償、速度處理、插補和位置控制。在許多情況下,管理和控制的某些工作必須同時進行。例如,當CNC系統工作在加工控制狀態時,為了使操作人員能及時地了解CNC系統的工作狀態,管理軟體中的顯示模塊必須與控制軟體同時運行。當CNC系統工作在NC加工方式時,管理軟體中的零件程序輸入模塊必須與控制軟體同時運行。而當控制軟體運行時,其本身的一些處理模塊也必須同時運行。例如,為了保證加工過程的連續性,即刀具在各程序段之間不停刀,解碼、刀具補償和速度處理模塊必須與插補模塊同時運行,而插補又必須與位置控制同時進行。

❼ 數控模具是什麼

兩者是不一樣的,數控是用於加工模具的手段。

一、什麼是數控:
數控是加工方式
數控技術是指用數字、文字和符號組成的數字指令來實現一台或多台機械設備動作控制的技術。它所控制的通常是位置、角度、速度等機械量和與機械能量流向有關的開關量。數控的產生依賴於數據載體和二進制形式數據運算的出現。1908年,穿孔的金屬薄片互換式數據載體問世;19世紀末,以紙為數據載體並具有輔助功能的控制系統被發明;1938年,香農在美國麻省理工學院進行了數據快速運算和傳輸,奠定了現代計算機,包括計算機數字控制系統的基礎。數控技術是與機床控制密切結合發展起來的。1952年,第一台數控機床問世,成為世界機械工業史上一件劃時代的事件,推動了自動化的發展。
現在,數控技術也叫計算機數控技術,目前它是採用計算機實現數字程序控制的技術。這種技術用計算機按事先存貯的控製程序來執行對設備的控制功能。由於採用計算機替代原先用硬體邏輯電路組成的數控裝置,使輸入數據的存貯、處理、運算、邏輯判斷等各種控制機能的實現,均可通過計算機軟體來完成。

二、什麼是模具:
模具是在沖裁、成形沖壓、模鍛、冷鐓、擠壓、粉末冶金件壓制、壓力鑄造,以及工程塑料、橡膠、陶瓷等製品的壓塑或注塑的成形加工中,用以在外力作用下使坯料成為有特定形狀和尺寸的製件的工具。

❽ 在數控模具行業:NC、DNC、CNC分別是什麼,請給我個詳細的介紹,我會追加分的。

NC
(Numerical Control,數字控制,簡稱數控),指用離散的數字信息控制機械等裝置的運行,只能由操作者自己編程
DNC
直接數字控制系統(DNC)
用一台通用計算機直接控制和管理一群數控機床進行零件加工或裝配的系統
CNC
CNC技術應用

CNC技術的發展相當迅速,這大大提高了模具加工的生產率,其中運算速度更快捷的CPU是CNC技術發展的核心。CPU的改進不僅僅是運算速度的提高,而且速度本身也涉及到了其它方面CNC技術的改進。正因為近幾年CNC技術發生了如此大的變化,才值得我們對當前CNC技術在模具製造業的應用情況作一個綜述。

程序塊處理時間及其它由於CPU處理速度的提高,以及CNC製造商將高速度CPU應用到高度集成化的CNC系統中, CNC的性能有了顯著的改善。反應更快、更靈敏的系統實現的不僅僅是更高的程序處理速度。事實上,一個能夠以相當高的速度處理零件加工程序的系統在運行過程中也有可能象一個低速處理系統,因為即使是功能完備的CNC系統也存在著一些潛在的問題,這些問題有可能成為限制加工速度的瓶頸。

目前大多數模具廠都意識到高速加工需要的不僅僅是較短的加工程序處理時間。在很多方面,這種情況和賽車的駕駛很相似。速度最快的賽車就一定能贏得比賽嗎?即使是一個偶爾才觀看車賽的觀眾都知道除速度以外,還有許多因素影響著比賽的結果。

首先,車手對於賽道的了解程度很重要:他必須知道何處有急轉彎,以便能恰如其分地減速,從而安全高效地通過彎道。在採用高進給速度加工模具的過程中,CNC中的待加工軌跡監控技術可預先獲取銳曲線出現的信息,這一功能起著同樣的作用。

同樣的,車手對其他車手動作以及不可確定因素的反應靈敏程度與CNC中的伺服反饋的次數類似。CNC中伺服反饋主要包括位置反饋、速度反饋和電流反饋。

當車手駕車繞賽道行駛時,動作的連貫性,能否熟練地剎車、加速等對車手的臨場表現有著非常重要的影響。同樣地,CNC系統的鍾形加速/減速和待加工軌跡監控功能利用緩慢加速/減速來代替突然變速,以保證機床的平穩加速。

除此以外,賽車和CNC系統還有其它相似的地方。賽車發動機的功率類似於CNC的驅動裝置和電機,賽車的重量可以和機床中運動構件的重量相提並論,賽車的剛度和強度則類似於機床的強度和剛度。CNC修正特定路徑誤差的能力與車手具備的將賽車控制在車道內的能力極其相似。

另一個與目前CNC相似的情況是,那些速度不是最快的賽車往往需要技術全面的車手。過去只有高檔的CNC才能在高速切削的同時保證較高的加工精度。如今,中、低檔的CNC所具備的功能也有可能令人滿意地完成工作。雖然高檔CNC具備目前所能獲得的最佳性能,但也存在著這種可能,即你所使用的低檔CNC具有與同類產品中高檔CNC一樣的加工特性。過去,限制模具加工最高進給速度的因素是CNC,今天則是機床的機械結構。在機床已處於性能極限的情況下,更好的CNC也不會使性能再提高。

CNC系統的內在特性

以下是目前模具加工過程中的一些基本的CNC特性:

1. 曲線曲面的非均勻有理B樣條(NURBS)插補

該項技術採用沿曲線插補的方式,而不是採用一系列短直線來擬合曲線。這一技術的應用已經相當普遍。許多模具行業目前使用的CAM軟體都提供了一個選項,即生成NURBS插補格式的零件程序。同時,功能強大的CNC還提供了五軸插補功能以及與此相關的特性。這些性能提高了表面精加工的質量,改善了電機運行的平穩度,提高了切削速度,並使零件加工程序更小。

2. 更小的指令單位

大多數的CNC系統向機床主軸傳遞運動和定位指令的單位不小於1微米。在充分利用CPU處理能力提高這一優勢後,一些CNC系統的最小指令單位甚至可達到1納米(0.000001mm)。在指令單位縮小1000倍後,可獲得更高的加工精度,可使電機運行得更平穩。電機運行的平穩使得一些機床能夠在床身振動不加大的前提下,以更高的加速度運行。

3. 鍾形曲線加速/減速

也稱作為S曲線加速/減速,或爬行控制。與使用直線加速方式相比,這種方式可使機床獲得更好的加速效果。與其它加速方式相比,也包括直線方式和指數方式,採用鍾形曲線方式可獲得更小的定位誤差。

4. 待加工軌跡監控

這一技術已被廣泛使用,該技術具有眾多性能差異,使其在低檔控制系統中的工作方式與高檔控制系統中的工作方式得以區別開來。總的來講, CNC就是通過加工軌跡監控來實現對程序的預處理,以此來確保能獲得更優異的加速/減速控制。根據不同的CNC的性能,待加工軌跡監控所需的程序塊數量從兩個到上百個不等,這主要取決於零件程序的最短加工時間和加速/減速的時間常數。一般而言,要想滿足加工要求,至少需要十五個待加工軌跡監控程序塊。

5. 數字伺服控制

數字伺服系統的發展如此迅速,以至於大多數機床製造商都選擇該系統作為機床的伺服控制系統。使用該系統後,CNC能夠更及時地控制伺服系統,而且CNC對機床的控制也變得更精確。

數字伺服系統的作用如下:

1) 將提高電流環路的采樣速度,再加上電流環控制的改善,從而降低電機溫升。這樣,不僅可以延長電機的壽命,還可以減少傳遞到滾珠絲杠的熱量,從而提高絲杠的精度。除此之外,采樣速度的加快還可以提高速度迴路的增益,這些都有助於提高機床的整體性能。
2) 由於許多新的CNC使用高速序列與伺服迴路相連,因此通過通訊鏈路,CNC可獲得更多的電機和驅動裝置的工作信息。這可提高機床的維護性能。
3) 連續的位置反饋允許在高速進給的情況下進行高精度的加工。CNC運算速度的加快使得位置反饋的速率成為制約機床運行速度的瓶頸。在傳統的反饋方式中,隨著CNC和電子設備的外部編碼器的采樣速度的變化,反饋速度受到信號類型的制約。採用串列反饋,這一問題將得到很好的解決。即使機床以很高的速度運行,也可達到精密的反饋精度。

6. 直線電機

近幾年來,直線電機的工作性能和歡迎度有了顯著的提高,所以很多加工中心採用了這一裝置。至今,Fanuc公司至少已經安裝了1000台直線電機。GE Fanuc的一些先進技術使得機床上的直線電機的最大輸出力為15,500N,最大加速度為30g。另一些先進技術的應用使機床的尺寸得以減小,重量得以減輕,冷卻效率大為提高。所有這些技術上的進步使直線電機在與旋轉電機相比時,優勢更強:更高的加/減速率;更准確的定位控制,更高的剛度;更高的可靠性;內部的動態制動。

外部附加特性:開放式CNC系統

採用開放式 CNC系統的機床發展非常迅速。目前可供選擇的通訊系統的通訊速度都較高,因而出現多種類型的開放式CNC結構。絕大多數的開放式系統將標準的PC機的開放性與傳統CNC的功能相結合。這樣做最大的好處在於:即使機床的硬體已經過時,開放式的CNC仍然允許其性能隨現有技術和加工要求改變。藉助於其它軟體,還可以向開放式CNC中添加其它功能。這些性能可以是與模具加工密切相關的,也可以是與模具加工關系不大的。通常情況下,模具車間使用的開放式CNC系統具有以下這些常用的功能選擇:

價格低廉的網路通訊;
乙太網;
自適應控制功能;
可供連接條形碼閱讀器、刀具序列號閱讀器和/或托盤序列號系統的介面;
保存和編輯大量零件程序的功能;
存儲程序控制信息的採集;
文件處理功能;
CAD/CAM技術的集成和車間規劃;
通用的操作界面。

最後一點極為重要。因為模具加工對操作簡單的CNC 的需求越來越大。在這個概念中,最重要就是不同的CNC具有相同的操作界面。就一般情況而言,不同機床的操作人員必須分開培訓,因為不同類型的機床,以及不同製造商生產的機床使用的CNC界面都不相同。開放式CNC系統為整個車間使用同一個CNC控制界面創造了機會。

現在,機床的所有者即使不懂C語言,也可以為CNC操作設計自己的界面了。此外,開放式系統的控制器允許根據個人的需要,設定不同的機器運轉方式。這樣操作者、編程人員和維修者可按自己的要求進行設置。在使用時,屏幕上只出現他們需要的特定信息。採用這樣的方式可減少不必要的頁面顯示,有助於簡化CNC操作。

五軸加工

在製造復雜模具的過程中,五軸加工的應用變得越來越廣。使用五軸加工,可以減少加工一個零件所需的工裝或/和機床的數量,加工過程所需的設備數量將被減至最低,與此同時也降低了總的加工時間。CNC的功能越來越強,這使得CNC製造商能夠提供更多的五軸特性。

從前只有高檔CNC才具備的功能,如今也被用在中檔產品上。對於那些從未使用過五軸加工技術的廠家而言,這些特性的應用使得五軸加工變得更簡單。將目前的CNC技術用於五軸加工,使得五軸加工具備以下優勢:

減少專用工具的需求;
允許在完成零件程序後再設定刀具的偏置;
支持通用程序的設計,這樣經過後處理的程序可以在不同機床之間互換使用;
提高精加工的質量;
可用於不同結構的機床,這樣就不必在程序中說明是主軸還是工件在繞中心點轉動。因為這將由CNC 的參數來解決。

我們可以用球形銑刀的補償的例子來說明為何五軸特別適用於模具加工。在零件和刀具繞中樞軸旋轉時,為了准確地補償球形銑刀的偏置,CNC必須能夠在X、Y、Z三個方向動態地調整刀具的補償量。保證刀具切觸點的連續,有利於提高精加工的質量。

此外,五軸CNC的用途還表現在:與繞主軸旋轉刀具相關的特性,與繞主軸旋轉零件相關的特性,以及允許操作者採用手動方式改變刀具矢量的特性。

當採用刀具的中軸線作為回轉軸線時,原來Z軸方向的刀具長度偏置將被分成X、Y、Z三個方向的分量。另外,原來X、Y軸方向的工具直徑偏置也被分為X、Y、Z軸三個方向的分量。 由於在切削工程中,刀具可以沿旋轉軸方向做進給運動,所有這些偏置必須動態更新,以便說明連續變化的刀具的方位。

CNC另一項被稱為「刀具中心點編程」的特性,允許編程人員定義刀具的路徑和中心點速度,CNC通過旋轉軸和直線軸方向的命令來保證刀具按照程序運動。這一特性使得刀具的中心點不再隨刀具的變化而變化,這也意味著:在五軸加工中可以象三軸加工一樣直接輸入刀具的偏置,還可以通過再一次後置程序來說明刀具長度的改變。這種通過使主軸旋轉來實現轉軸的運動特性簡化了刀具的編程後置處理。

利用同樣的功能,使工件繞中樞軸旋,機床也可以獲得旋轉運動。新研製的CNC能夠通過動態地調整固定偏置和旋轉坐標軸來配合零件的運動。當操作人員採用手動方式來實現機床的慢速進給時,CNC系統同樣起著重要的作用。新研製的CNC系統同樣允許軸沿著刀具向量的方向緩慢進給,在沒有刀尖位置變化的前提下,還允許改變刀尖向量的方向(參看上面的插圖)。

這些特性使得操作人員在使用五軸加工機床的過程中,能夠很容易地使用目前在模具業廣泛使用的3+2編程法。然而,隨著新的五軸加工功能的逐漸發展和這種功能逐浙被接受,真正的五軸模具加工機床可能會更普遍

❾ 模具CNC是什麼 新人會難學嗎

兩種東西都是那麼難學,都是靠經驗的,沒說難不難學的。編程也分兩種,一種下車間,別開車床邊編程,另一種就在辦公室編程。但後者路有點難走,起碼要在車間打雜一段時間才能去辦公室做,干這行,都是從低做起的!一做,就是那麼2-3年,或者更久。總之,前期都是苦力活,你一個女孩能在車間挨過去嗎? 你還是去學會計吧。

❿ CNC裝置由哪幾部分組成各有什麼作用

1、主機,它是數控機床的主體,包括機床身、立柱、主軸、進給機構等機械部件。它是用於完成各種切削加工的機械部件。

2、數控裝置,是數控機床的核心,包括硬體(印刷電路板、CRT顯示器、鍵盒、紙帶閱讀機等)以及相應的軟體,用於輸入數字化的零件程序,並完成輸入信息的存儲、數據的變換、插補運算以及實現各種控制功能。

3、驅動裝置,它是數控機床執行機構的驅動部件,包括主軸驅動單元、進給單元、主軸電機及進給電機等。

它在數控裝置的控制下通過電氣或電液伺服系統實現主軸和進給驅動。當幾個進給聯動時,可以完成定位、直線、平面曲線和空間曲線的加工。

4、輔助裝置,指數控機床的一些必要的配套部件,用以保證數控機床的運行,如冷卻、排屑、潤滑、照明、監測等。它包括液壓和氣動裝置、排屑裝置、交換工作台、數控轉台和數控分度頭,還包括刀具及監控檢測裝置等。

5、編程及其他附屬設備,可用來在機外進行零件的程序編制、存儲等。

(10)cnc系統模具包是什麼擴展閱讀

由於採用計算機替代原先用硬體邏輯電路組成的數控裝置,使輸入操作指令的存儲、處理、運算、邏輯判斷等各種控制機能的實現,均可通過計算機軟體來完成,處理生成的微觀指令傳送給伺服驅動裝置驅動電機或液壓執行元件帶動設備運行。

傳統的機械加工都是用手工操作普通機床作業的,加工時用手搖動機械刀具切削金屬,靠眼睛用卡尺等工具測量產品的精度的。

現代工業早已使用電腦數字化控制的機床進行作業了,數控機床可以按照技術人員事先編好的程序自動對任何產品和零部件直接進行加工了。這就是說的數控加工。數控加工廣泛應用在所有機械加工的任何領域,更是模具加工的發展趨勢和重要和必要的技術手段。

對於大批量生產的零件,使用自動化和半自動化的車床已能實現生產過程的自動化。但是,對於單件、小批量生產的零件,實現自動化一直是個難題。

在過去相當長的一段時間內,總是無法圓滿解決。尤其是在加工形狀復雜的、加工精度要求高的零件,一直在自動化的道路上處於停頓狀態。雖然有些應用仿形裝置解決了一部分,但是實踐證明,仿形車床還是不能徹底地解決這一問題。

數控車床(機床)的出現,為從根本上解決這一問題開辟了廣闊的道路,所以成為機械加工中的一個重要發展方向。

閱讀全文

與cnc系統模具包是什麼相關的資料

熱點內容
不銹鋼和銅哪個更吸熱 瀏覽:273
200w蕊片如何焊接 瀏覽:351
鋼筋擠壓連接技術有什麼和什麼區別 瀏覽:890
為什麼說中國人民解放軍是鋼鐵長城 瀏覽:241
75鋼管理論重量是多少 瀏覽:362
兩用電焊機燒不銹鋼是什麼氣 瀏覽:931
直銷市政護欄需要多少錢 瀏覽:406
氧焊混合閥管斷了 瀏覽:169
鋼板什麼切割切面最平 瀏覽:326
鋼材復合板是指什麼 瀏覽:818
網紅麵包模具哪裡買 瀏覽:935
鋼材索氏體怎麼做 瀏覽:508
工藝管道焊接管台如何計算工作量 瀏覽:681
藤椅鋼管彎了怎麼恢復 瀏覽:829
ysl方管206號色 瀏覽:429
東吳證券三方存管銀行有哪些 瀏覽:167
取鋼板多久康復治療 瀏覽:273
經常用水清洗的鋼板用什麼漆 瀏覽:959
鋁合金成品變形縫多少錢 瀏覽:253
數控模具平底刀怎麼磨好看又耐用 瀏覽:143