A. 塑料模具中鑲塊進行淬火,壓條進行氮化是為什麼
經氮化處理的製品具有優異的耐磨性、耐疲勞性、耐蝕性及耐高溫的特性壓條主要是需要耐磨性,且不需要二次加工,淬火主要提高強度,也能提高一定的耐磨性,但是需要二次加工,壓條沒必要那麼麻煩。
B. 塑膠模具表面氮化有什麼作用
塑膠模具表面氮化作用:能顯著地提高工件的疲勞強度、耐磨性和耐腐蝕性。在干摩擦條件下還具有抗擦傷和抗咬合等性能。由於軟氮化層不存在脆性,氮化層硬而具有一定的韌性,不容易剝落。
氮化處理是指一種在一定溫度下一定介質中使氮原子滲入工件表層的化學熱處理工藝。經氮化處理的製品具有優異的耐磨性、耐疲勞性、耐蝕性及耐高溫的特性。
C. 鋁型材擠壓模具的氮化工藝流程是怎樣的
氮化的工藝:
氣體軟氮化的主要工藝參數為氮化溫度,氮化時間,以及氮化氣氛。
氣體軟氮化溫度常用560-570℃,因該溫度下氮化層硬度最高。氮化時間通常為3-4小時,因為化合物層的硬度在共滲2-3小時達到最高,而隨時間的延長,氮化層深度增加緩慢。氮化氣氛由氨氣分解率和含碳滲劑的滴量速度所決定。
氮化的原理:
氣體軟氮化,即氣體氮碳共滲,是指以氣體滲氮為主,滲碳為輔的的低溫氮碳共滲。常用介質有50%氨氣+50%吸熱式氣體(Nitemper法);35%-50%氨氣+50-60%放熱式氣體(Nitroc法)和通氨氣時滴注乙醇或甲醯胺等數種。在軟氮化時,由於碳原子在ε相中的溶解度高,軟氮化的表層是碳、氮共同的化合物,這種化合物韌性好且耐磨。
在氣體軟氮化過程中,由於碳原子的溶解度極低,所以很快達到飽和狀態,析出許多超顯微的滲碳體質點。這些滲碳體質點,作為氮化物結晶的核心,促使氮化物的形成。而當表層氮濃度達到一定時便形成ε相,而ε相的碳溶解能力很高,反過來又能加速碳的溶解。
氣體軟氮化後,其組織由ε相,γ′相和含氮的滲碳體Fe3(C,N)所組成,碳會降低氮的擴散速度,所以熱應力和組織應力較硬氮化大,滲層更薄。但同時,由於軟氮化層不存在ξ相,故氮化層韌性比硬氮化後更佳
D. 模具為什麼要精選淬火處理
模具淬火處理是為了提高模具成型零件的耐磨性一般都要進行淬火處理,並且要求達到H RC52 - 57 0 在結構用途的零件中,型芯墊板,頂桿墊板等墊板一類零件在成型或者頂出塑料製件時.要承受較大的單位擠壓力,也要淬火處理。
模具(mú jù),工業生產上用以注塑、吹塑、擠出、壓鑄或鍛壓成型、冶煉、沖壓等方法得到所需產品的各種模子和工具。 簡而言之,模具是用來成型物品的工具,這種工具由各種零件構成,不同的模具由不同的零件構成。它主要通過所成型材料物理狀態的改變來實現物品外形的加工。素有「工業之母」的稱號。
E. 氮化技術是什麼技術。請問
一、氮化的機理
氮化是將工件放入大量活性氮原子的介質中,在一定溫度與壓力下,把氮原子滲入鋼件表面,形成富氮硬化層的熱處理。
二、氮化的作用
1、氮化能使零件表面有更高的硬度和耐磨性。例如用38CrMoAlA鋼製作的零件經氮化處理後表面的硬度可達HV=950—1200,相當於HRC=65—72,而且氮化後的高強度和高耐磨性保持到500—600℃,不會發生顯著的改變。
2、能提高抗疲勞能力。由於氮化層內形成了更大的壓應力,因此在交變載荷作用下,零件表現出具有更高的疲勞極限和較低的缺口敏感性,氮化後工件的疲勞極限可提高15—35%。
3、提高工件抗腐蝕能力,由於氮化使工件表面形成一層緻密的、化學穩定性較高的ε相層,在水蒸氣中及鹼性溶液中具有高的抗腐蝕性,此種氮化法又簡單又經濟,可以代替鍍鋅、發藍,以及其它化學鍍層處理。此外,有些模具經過氮化,不但可以提高耐磨性和抗腐性,還能減少模具與零件的粘合現象,延長模具的工作壽命。
二、氮化的實現方法
1、氣體氮化
氣體氮化是將工件放入一個密封空間內,通入氨氣,加熱到500-580℃保溫幾個小時到幾十個小時。氨氣在400℃以上將發生如下分解反應:2NH3—→3H2+2[N],從而爐內就有大量活性氮原子,活性氮原子[N]被鋼表面吸收,並向內部擴散,從而形成了氮化層。
以提高硬度和耐磨性的氮化通常滲氮溫度為500—520℃。停留時間取決於滲氮層所需要的厚度,一般以0.01mm/h計算。因此為獲得0.25—0.65mm的厚度,所需要的時間約為20—60h。提高滲氮溫度,雖然可以加速滲氮過程,但會使氮化物聚集、粗化,從而使零件表面層的硬度降低。
對於提高硬度和耐磨性的氮化,在氮化時必須採用含Mo、A、V等元素的合金鋼,如38CrMoAlA、38CrMoAA等鋼。這些鋼經氮很後,在氮化層中含有各種合金氮化物,如:AlN、CrN、MoN、VN等。這些氮化物具有很高的硬度和穩定性,並且均勻彌散地分布於鋼中,使鋼的氮化層具有很高的硬度和耐磨性。Cr還能提高鋼的淬透性,使大型零件在氮化前調質時能得到均勻的機械性能。Mo還能細化晶粒,並降低鋼的第二類回火脆性。如果用普通碳鋼,在氮化層中形成純氮化鐵,當加熱到較高溫度時,易於分解聚集粗化,不能獲得高硬度和高耐磨性。
抗腐蝕氮化溫度一般在600—700℃之間,分解率大致在40—70%范圍,停留時間由15分鍾到4小時不等,深度一般不超過0.05m m。對於抗腐蝕的氮化用鋼,可應用任何鋼種,都能獲得良好的效果。
2、液體氮化
液體氮化它是一種較新的化學熱處理工藝,溫度不超過570℃,處理時間短,僅1—3h;而且不要專用鋼材,試驗表明:40Cr經液體氮化處理比一般淬火回火後的抗磨能力提高50%;鑄鐵經液體氮化處理其抗磨能力提高更多。不僅如此,實踐證明:經過液體氮化處理的零件,在耐疲勞性、耐腐蝕性等方面都有不同程度的提高;高速鋼刀具經液體氮化處理,一般能提高使用壽命20—200%;3Cr2W8V壓鑄模經液體氮化處理後,可提高使用壽命3—5倍。液體氮化表層硬而不脆,並且具有一定的韌性,不容易發生剝落現象。
但是,液體氮化也有缺點:如它的氮化表層中的氮鐵化合物層厚度比較薄,僅僅只有0.01—0.02mm。國外多採用氰化鹽作原料液體氮化,國內已改用無毒原料液體氮化。我國無毒液體氮化的配方是:尿素40%,碳酸鈉30%、氯化鉀20%,氫氧化鉀10%(混合鹽溶點為340℃左右)。液體氮化雖然有很多優點,但由於溶鹽反應有毒性,影響操作人員身體健康,廢鹽也不好處理。因此,與用越來越受到限制。
3、離子氮化
離子氮化又叫「輝光離子氮化」是最近起來的一種熱處理工藝,它具有生產周期短,零件表面硬度高,能控制氮化層脆性等優點。因而,近幾年來國內發展迅速,使用范圍很廣。
輝光離子氮化的基本原理:
輝光離子氮化是將零件放到離子氮化的真空室內,氮化的零件接高壓直流電源的陰極(負極),電爐外殼接直流高壓電源的陽極(正極),當向真空容器內充入氨氣,但容器內壓強保持200-1000PA之間,在陰極和陽極間加800—1000伏直流電壓,氨氣就會電離,這種氣體經電離作用後,產生帶正電的氮陽離子[N+]和帶負電的陰離子[N-],形成了一個等離子區。在等離子區內,氮的正離子在高壓電場加速下,快速沖向陰極,轟擊清洗需氮化的零件表面,將動能轉變為熱能,還由於氮離子轉變成氮原子時,又放出大量的熱能並發出很亮的淡紫色光,另外電壓降落在工件附近時也產生熱量,這三種熱量將零件加熱到需要氮化溫度。
在這種溫度下,氮離子與零件金屬表面發生化學反應,氮原子滲入到零件表面並擴散到內部,形成了氮化層。
輝光離子氮化的特點:
(1)、表面加熱速度快,可縮短加熱及冷卻時間,到十分之一至十二分之一。而且除處理表面加熱外其餘部分均處在低溫(100℃左右)狀態,既節約了加熱功率又減少零件的變形。
(2)、擴散過程快,在高壓電場作用下,由於氮化原子的運動速度比氣體氮化快許多倍,滲入速度更快,一般只需要3—10h。
(3)、氮化層韌性好,具有高抗疲勞和高抗磨性能,氮化層脆性白色ε相(Fe2N)控制在0—0.2mm范圍,從而免去氮化零件的磨削加工。
表面硬度高達HV900(HRC64),氮化層深度可掌握在0.09—0.87mm。
四、各種氮化法的成本分析
1、鹽浴氮化爐結構簡單,價格低,操作工藝很容易掌握,氮化成本也低,但氮化質量不高,廢棄物有污染,通常很少採用。
2、氣體氮化爐構復雜,價格稍高,操作相比而言稍有難度,但氮化質量好,可以達到很深的滲層與較高的硬度,但需要較長的時間,氨氣的用量也很高
3、離子氮化爐生產製造工藝要求很高,所用材料也很講究,電氣控制技術含量很高,對操作人員的整體要求高,但氮化質量最好,滲入速度快,氮化成本低於氣體氮化,是很好的發展趨勢。
以一次性裝爐量在400公斤為例:初步投資別如下
鹽浴氮化爐投資在貳萬元左右
氣體氮化爐在肆萬元左右
離子氮化要在玖萬元左右
達到同樣的滲層,離子氮化的成本約為氣體氮化的60%(由於鹽浴氮化很難達到氣體氮化與離子氮化的滲層,所以不能比較它們的運行成本)
F. 模具鋼要淬火,回火,氮化處理各什麼意思如何進行能起到什麼作用
淬火是將工件加熱保溫後,在水、油或其它無機鹽、有機水溶液等淬冷介質中快速冷卻。淬火後鋼件變硬,但同時變脆。回火為了降低鋼件的脆性,將淬火後的鋼件在高於室溫而低於650℃的某一適當溫度進行長時間的保溫,再進行冷卻,這種工藝稱為回火。淬火不能最終熱處理,為了消除淬火鋼的殘余內應力,得到不同強度、硬度和韌性配合的性能,需要配以不同溫度的回火。鋼淬火後再經回火,是為了使工件獲得良好的使用性能,以充發揮材料的潛力氮化熱處理一般溫度大概700度左右(看鋼材)提高型腔型芯及運動件的表面硬度及耐磨性,防腐蝕性。模具一般採用軟氮化工藝 查看原帖>>
求採納
G. 通常模具中哪些零件需作熱處理,作哪類熱處理其作用是什麼
壓鑄模零件的熱處理:
1、淬火設備為高壓高流率真空氣淬爐。
(1)淬火前:採用熱平衡法,提高模具加熱和冷卻的整體一致性。對凡是影響到這一點的薄壁孔、溝槽、型腔等,都要進行填充、封堵,盡量做到模具能均衡加熱和冷卻;同時,注意裝爐方式,防止壓鑄模在高溫時因自重而引起的變形。
(2)模具的加熱:在加熱過程中要緩慢加熱(用200℃/h升溫),並採用兩級預熱方式,防止快速升溫造成模具內、外溫差過大,引起過大的熱應力,同時減小相變應力。
(3)淬火溫度與保溫時間:要採用下限淬火加熱溫度,均熱時間不宜過短或過長,一般由壁厚和硬度來確定均熱時間。
(4)淬火冷卻:採用預冷方式,並通過調節氣壓與風速,有效的控製冷卻速度,使之最大限度地實現理想冷卻。即:預冷到850℃後,增大冷卻速度,快速通過「C」曲線鼻部,模溫在500℃以下則逐漸降低冷卻速度,到Ms點以下則採用近似等溫轉變的冷卻方式,以最大限度地減少淬火變形。模具冷卻到約150℃時,關閉冷卻風機,讓模具自然冷卻。
2、退火包括鍛造後的球化退火和模具製作過程中的去應力退火兩部分。其主要目的:在原材料階段進行結晶組織的改良;方便加工而降低硬度;防止加工後變形和淬火裂紋而去除內應力。
(1)球化退火。模具鋼經鍛造後,鋼的內部組織變成不穩定的結晶,硬度高切削困難,且此種狀態的鋼,內應力大,加工後容易變形和淬裂,機械性能差,為使碳化物結晶變成球化穩定組織須進行球化退火。
(2)去應力退火。對有殘留應力的模具鋼進行機械加工,加工後會產生變形,如果機械加工後仍留有應力,則在淬火時會發生很大的變形或淬火裂紋。為防止這些問題發生,必須進行去應力退火。
模具製作過程中一般進行三次去應力退火:
(1)在切削掉原材料體積的1/3以上形狀或對原材料厚度1/2深度加工時,加工餘量留有5~10mm,進行第一次去應力退火。
(2)在精加工留有餘量(2~5mm)時,進行第二次去應力退火。
(3)在試模後,淬火前進行第三次去應力退火。
3、回火淬火的模具冷卻到約100℃時,就要立即進行回火,以防止繼續產生變形,甚至開裂。回火溫度由工作硬度來確定,一般要進行三次回火。
4、氮化處理一般壓鑄模經淬火、回火(45~47HRC)後就能使用,但為了提高模具的耐磨性、抗蝕性和抗氧化性,防止粘模,延長模具的壽命,必須進行氮化處理。氮化層深度一般為0.15~0.2mm。氮化後需要打光,磨去白亮層(厚約0.01mm左右)。
5、幾點說明
(1)模具的熱處理變形是由於相變應力、熱應力的共同作用引起的,受多種因素影響。因此,在正確選材的前提下,還要注意毛坯的鍛造,要採用六面鍛造的方法,反復鐓拔。同時,在模具的設計階段就必須注意,使壁厚盡量均勻(壁厚不均勻時要開工藝孔);對形狀復雜的模具,要採用鑲拼結構,而不採用整體結構;對有薄壁、尖角的模具,要採用圓角過渡和增大圓角半徑。在熱處理時要作好數據記錄,長、寬、厚各方向上的變形量,熱處理條件(裝爐方式、加熱溫度、冷卻速度、硬度等),為日後模具的熱處理積累經驗。
(2)壓鑄模的加工一般有兩種工藝流程,都是根據實際情況確定的。第一種:一般壓鑄模。鍛打→球化退火→粗加工→第一次去應力退火(留有餘量5~10mm)→粗加工→第二次去應力退火(留有餘量2~5mm)→精加工→第三次去應力退火(試模後、淬火前)→淬火→回火→鉗修→氮化。第二種:特別復雜的及淬火很易變形的模具。鍛打→球化退火→粗加工→第一次去應力退火(留有餘量5~10mm)→淬火→回火→機、電加工→第二次去應力退火(留有餘量2~5mm)→機、電加工→第三次去應力退火(試模後)→鉗修→氮化。
H. 模具氮化和不氮化在性能上有多大差異
模具進行氮化處理可顯著提高模具表面的硬度、耐磨性、抗咬合性、抗腐蝕性能和疲勞性能。由於滲氮溫度較低,一般在500-650~范圍內進行,滲氮時模具芯部沒有發生相變,因此模具滲氮後變形較小。一般熱作模具鋼(凡回火溫度在550-650~的合金工具鋼)都可以在淬火、回火後在低於回火溫度的溫度區內進行滲氮;一般碳鋼和低合金鋼在製作塑料模時也可在調質後的回火溫度下滲氮;一些特殊要求的冷作模具鋼也可在氮化後再進行淬火、回火熱處理。
實踐證明,經氮化處理後的模具使用壽命顯著提高,因此模具氮化處理已經在生產中得到廣泛應用。但是,由於工藝不正確或操作不當,往往造成模具滲氮硬度低、深度淺、硬度不均勻、表面有氧化色、滲氮層不緻密、表面出現網狀和針狀氮化物等缺陷,嚴重影響了模具使用壽命。因此研究模具滲氮層缺陷、分析其產生的原因、探討減少和防止滲氮缺陷產生的工藝措施,對提高模具的產品質量,延長使用壽命具有十分重要的意義。
一、 模具滲氮層硬度偏低
模具滲氮表層硬度偏低將會降低模具的耐磨性能,大大減少滲氮模具的使用壽命。
(1)滲氮模具表層含氮量低。
這是由於滲氮時爐溫偏高或者在滲氮第一階段的氨分解率過高,即爐內氮氣氛過低。
(2)模具預先熱處理後基體硬度太低。
(3)滲氮爐密封不良、漏氣或初用新的滲氮罐。
預防措施
(1)適當降低滲氮溫度,對控溫儀表要經常校正,保持適當的滲氮溫度。
(2)模具裝爐後應緩慢加熱,在滲氮第一階段應適當降低氨分解率。
(3)滲氮爐要密封,對漏氣的馬弗罐應及時更換。新滲氮罐要進行預滲氮,使爐內氨分解率達到平穩。
(4)對因滲氮層含氮量較低的模具可進行一次補充滲氮,其滲氨工藝為:滲氮溫度520℃ ,滲氮時間8~10h,氨分解率控制在20%-30%。
(5)在模具預先熱處理時要適當降低淬火後的火溫度,提高模具的基體硬度。
二、 模具滲氮層淺
模具滲氮層淺將會縮短模具硬化層耐磨壽命。
滲氮模具表面硬度偏低的原因
(1)模具滲氮時間太短、滲氮溫度偏低、滲氮爐有效加熱區的溫度分布不均勻、滲氮過程第一階段氮濃度控制不當(氨分解率過高或過低)等。
(2)模具裝爐前未清除掉油污及裝爐量過多、模具間距太近。
預防措施
(1)要嚴格控制裝爐前模具表面質量、裝爐量、爐內溫差和氮氣氛、滲氮時間和溫度。
(2)加強滲氮爐密封,保證爐內氮氣氛循環正常。並按工藝要求控制氨分解率。
(3)對已經出現滲氮層不足的模具可進行二次滲氮,嚴格按照滲氮第二階段工藝補充滲氮。
硬度不均勻或有軟點的原因
模具滲氮層硬度不均勻或有軟點模具滲氮層不均勻或有軟點將會使模具在使用時性能不穩定,薄弱區域首先磨損較多,造成整個模具的早期損壞失效,嚴重影響模具的使用壽命。
(1)由於滲氮爐上、下不均衡加熱或氣流不通暢,爐內溫度不均勻。
(2)氨氣通入管道局部堵塞,影響爐內氮氣氛;爐內氮氣循環不良。
(3)模具裝前未很好清理表面油污。
(4)滲氮爐內模具裝載太多或爐內模具間距太小、部分有接觸。
預防措施
(1)嚴格控制滲氮爐內上、下區爐溫,使其始終保持在同一溫度區內。
(2)定期清理氨氣進氣管道,保持管道的通暢。
(3)模具裝爐前需用汽油或酒精等脫脂,經過清洗後的模具表面不能有油污或其它臟物。
(4)模具裝筐時,模具間要保持一定距離,嚴防模具工作面接觸和重疊。
(5)爐內氣氛循環要充分,滲氮爐要密封好,對漏氣的馬弗罐應及時更換。
模具滲氮後表面有氧化色
模具滲氮後發生表面氧化不僅影響模具外觀質量,而且影響模具表面的硬度和耐磨性,嚴重影響模具使用壽命。
模具滲氮後表面氧化的原因
(1)氣體滲氮罐漏氣或爐蓋密封不良。
(2)提供氨氣的乾燥裝置中的乾燥劑失效,通入爐中的氨氣含有水分。
(3)滲氮結束後隨爐冷卻時供氧不足造成罐內負壓,吸入空氣造成氧化色。
(4)模具氮化後出爐溫度過高在空氣中氧化。
預防措施
(1)要經常檢查設備,對漏氣的馬弗罐應及時更換,要保持爐蓋密封良好。
(2)氨氣乾燥裝置中的乾燥劑要定期更換。
(3)滲氮後的模具最好採用油冷。對要求嚴格控制變形的模具在滲氮結束冷卻時要繼續提供少量氨氣,避免爐內產生負壓。出爐溫度控制在200't2以下,避免滲氮模具在空氣中氧化。
(4)對已經產生氧化的滲氮模具可在低壓下噴細砂清除,並重新加熱到510'(2左右再進行4h滲氮,滲氮後爐冷至200't2以下出爐。
模具滲氮後變形
要求嚴格控制變形的模具,在滲氮後如產生超差變形將會影響模具的裝配使用,嚴重的會造成模具報廢。
模具滲氮後變形的原因
(1)模具結構設計不合理、形狀復雜等。模具在機械加工後的殘余應力未能很好消除。
(2)氣體滲氮爐內溫度不均勻,模具裝爐後加熱升溫過快或出爐時冷卻速度太快。
(3)因滲氮層比容大而產生的組織應力帶來形狀變化,滲層愈厚影響愈大。因此若工藝參數不當,滲氮溫度過高、時間過長、氮勢過高、產生過厚滲氮層等就會使變形增大。
(4)模具裝爐方法不合理,爐內溫度不均勻、氨氣流不穩不暢等。
預防措施
(1)設計製造模具時應該盡量使模具結構對稱合理,避免厚薄懸殊。
(2)對淬火後的模具應充分進行回火,對機械加工後的模具應進行退火消除應力。
(3)制定合理的滲氮工藝。盡量採用合理的裝爐維普資訊 http://www.cqvip.com,《模具製造》2003.No.6總第23期 65量、較低的滲氮溫度、合適的氮化層深度和氮氣氛。對變形要求較小和形狀復雜的模具應嚴格控制加熱和冷卻速度,升溫速度應低於50aI=/l1,300~C以上每升溫
10oaI=保溫lh;冷卻時要隨爐降溫,出爐溫度應低於2oo℃,並應檢查爐溫,嚴格控制滲氮爐上下區的溫差。
模具滲氮後表層出現網狀及波紋狀、針狀或魚骨狀
氮化物及厚的白色脆性層模具滲氮後表層出現網狀及波紋狀、針狀或魚骨狀氮化物及厚的白色脆性層將會導致模具韌性降低、脆性增加、耐沖擊性能減弱、產生疲勞剝落、耐磨性能降低,大大降低模具的使用壽命。
模具氮化層出現網狀、波紋狀、針狀或魚骨狀缺陷的原因
(1)一些熱處理廠家片面強調提高勞動生產率,在制定工藝文件和實際操作時滲氮溫度過高、升溫加熱和降溫冷卻速度過快;控溫儀表失靈、爐內實際溫度比儀表指示溫度高。如溫度過高時擴散層中的氮化物便聚集長大、彌散度下降、在晶界上形成高氮相的網狀或波紋狀組織。
(2)模具預備熱處理時淬火加熱溫度過高、模具基體晶粒過大。
(3)液氨含水量高,通入氣體滲氮爐中的氨氣含水分。
(4)模具設計製造不合理,有尖角銳邊。
(5)氣體滲氮爐中氨分解率太低即氮勢過高。
(6)預備熱處理時,淬火加熱未在保護氣氛中進行,模具表層脫碳嚴重,在滲氮後極易出現針狀、魚骨狀氮化物。
預防措施
(1)正確制定模具氮化處理工藝,氮化溫度選擇在500~580~C,一般不要超過580~C,並定期對控溫儀表進行校正,升溫加熱速度不宜過快。
(2)模具預備熱處理的淬火加熱溫度不宜過高,以免模具材料內部組織中馬氏體晶粒過大;加熱應在保護氣氛中進行,避免模具氧化脫碳;調質件應在機械加工中把脫碳層切除掉。
(3)氨氣要經過乾燥裝置再通入滲氮爐中,乾燥劑要定期更換。
(4)模具設計製造時應盡量避免銳角尖邊。
(5)嚴格控制滲氮爐中的氨分解率,不應使爐中氮勢過高。
(6)對已經產生網狀及波紋狀氮化物的模具可在540%左右的爐中進行10~15h的擴散處理, 以便有消除模具氮化層中的網狀及波紋狀氮化物。
模具滲氮層不緻密、抗蝕性差
模具如在潮濕或鹼性工作環境中工作,還應具有一定的抗蝕性。有抗蝕要求的模具如因滲氮層不緻密而導致抗蝕性差將會使模具在使用時發生銹蝕,使模具早期失效,影響模具的使用壽命。
模具滲氮層不緻密原因
(1)模具氮化前表面粗糙度大。
(2)模具裝爐前表面有銹蝕,影響滲氮層質量。
(3)氣體滲氮爐內氨分解率過高,模具滲氮層表面氮濃度太低。
(4)在一定的溫度下,滲氮時間太短,模具滲氮層滲氮不足。
預防措施
(1)為了保證抗蝕滲氮層的質量,零件應預先進行正火或調質處理,模具表面的粗糙度要小,其抗蝕性能才會愈好。
(2)模具滲氮裝爐前應仔細清理其表面,不得有銹蝕存在。
(3)模具滲氮時應採用合適的氨分解率,合理的滲氮時間,滲氮後應快冷。
(4)對滲氮層不緻密的模具把其表面清理干凈後嚴格按照氣體滲氮工藝規則再進行一次滲氮。