導航:首頁 > 焊接工藝 > 焊接加工中為什麼會硬化

焊接加工中為什麼會硬化

發布時間:2022-03-01 02:21:22

Ⅰ 什麼是加工硬化現象

金屬隨著變形量的增加,其強度硬度增加,而塑性韌性下降,這種現象稱為「形變強化」或「加工強化」。

Ⅱ 加工硬化是什麼原理

加工硬化是塑性變形時,金屬出現一種現象,金屬硬化被彎曲過的部位變得非常硬,這就是加強硬被彎曲或加工的金屬硬化而造成的強度的增加

Ⅲ 何謂加工硬化,產生的原因是什麼,有何利弊

加工硬化就是隨著冷變形程度的增加,金屬材料強度和硬度指標都有所提高,但塑性、韌性有所下降。

產生的原因:金屬在塑性變形時,晶粒發生滑移,出現位錯的纏結,使晶粒拉長、破碎和纖維化,金屬內部產生了殘余應力等。加工硬化的程度通常用加工後與加工前表面層顯微硬度的比值和硬化層深度來表示。

好處:加工硬化是強化金屬(提高強度)的方法之一,對純金屬以及不能用熱處理方法強化的金屬來說尤其重要。例如可以用冷拉、滾壓和噴丸等工藝,提高金屬材料、零件和構件的表面強度;

或者零件受力後,某些部位局部應力常超過材料的屈服極限,引起塑性變形,由於加工硬化限制了塑性變形的繼續發展,可提高零件和構件的安全度;

壞處:加工硬化提高了變形抗力,給金屬的繼續加工帶來困難。如冷拉鋼絲,由於加工硬化使進一步拉拔耗能大,甚至被拉斷,因此必須經中間退火,消除加工硬化後再拉拔。又如在切削加工中會使工件表層脆而硬,在切削時增加切削力,加速刀具磨損等。

影響表面層加工硬化的因素如下:

1、切削力。切削力越大,塑性變形越大,硬化程度也越大,硬化層深度也越大。因此,增大進給量切削深度和減小前角,都會增丈切削力,使加工硬化嚴重。

2、切削溫度。切削時產生的熱最會對工件的表面層硬化產生軟化作用,因此切削溫度越高,表面層的加工硬化回復程度就越大。

3、變形速度(切削速度)。變形速度很快時,工件接觸時間短,塑性變形不充分,因此硬化程度將降低。

4、工件材料硬度低、塑性大時切削加工的表面層加工硬化現象嚴重。

Ⅳ 為什麼鐵淬火後會變硬

※均質退火處理
簡稱均質化處理(Homogenization),系利用在高溫進行長時間加熱,使內部的化學成分充分擴散,因此又稱為『擴散退火』。加熱溫度會因鋼材種類有所差異,大鋼錠通常在1200℃至1300℃之間進行均質化處理,高碳鋼在1100℃至1200℃之間,而一般鍛造或軋延之鋼材則在1000℃至1200℃間進行此項熱處理。

※完全退火處理
完全退火處理系將亞共析鋼加熱至Ac3溫度以上30~50℃、過共析鋼加熱至Ac1溫度以上50℃左右的溫度范圍,在該溫度保持足夠時間,使成為沃斯田體單相組織(亞共析鋼)或沃斯田體加上雪明碳體混合組織後,在進行爐冷使鋼材軟化,以得到鋼材最佳之延展性及微細晶粒組織。

※球化退火處理
球化退火主要的目的,是希望藉由熱處理使鋼鐵材料內部的層狀或網狀碳化物凝聚成為球狀,使改善鋼材之切削性能及加工塑性,特別是高碳的工具鋼更是需要此種退火處理。常見的球化退火處理包括:(1)在鋼材A1溫度的上方、下方反復加熱、冷卻數次,使A1變態所析出的雪明碳鐵,繼續附著成長在上述球化的碳化物上;(2)加熱至鋼材A3或Acm溫度上方,始碳化物完全固溶於沃斯田體後急冷,再依上述方法進行球化處理。使碳化物球化,尚可增加鋼材的淬火後韌性、防止淬裂,亦可改善鋼材的淬火回火後機械性質、提高鋼材的使用壽命。

※軟化退火處理
軟化退火熱處理的熱處理程序是將工件加熱到600℃至650℃范圍內(A1溫度下方),維持一段時間之後空冷,其主要目的在於使以加工硬化的工件再度軟化、回復原先之韌性,以便能再進一步加工。此種熱處理方法常在冷加工過程反復實施,故又稱之為製程退火。大部分金屬在冷加工後,材料強度、硬度會隨著加工量漸增而變大,也因此導致材料延性降低、材質變脆,若需要再進一步加工時,須先經軟化退火熱處理才能繼續加工。

※弛力退火處理
弛力退火熱處理主要的目的,在於清除因鍛造、鑄造、機械加工或焊接所產生的殘留應力,這種殘存應力常導致工件強度降低、經久變形,並對材料韌性、延展性有不良影響,因此弛力退火熱處理對於尺寸經度要求嚴格的工件、有安全顧慮的機械構件事非常重要的。弛力退火的熱處理程序系將工件加熱到A1點以下的適當溫度,保持一段時間(不需像軟化退火熱處理那麼久)後,徐緩冷卻至室溫。特別需要注意的是,加熱時的速度要緩慢,尤其是大型對象或形狀復雜的工件更要特別注意,否則弛力退火的成效會大打折扣。

※正常化處理
正常化熱處理有兩個重要的功用,一是使工件結晶粒微細化而改善材料機械性質;另一個目的是調節軋延或鑄造組織中碳化物的大小或分布狀態,以利後續熱處理時碳化物容易固溶於材質,以便提升材料切削性,並使材質均勻化。正常化熱處理的熱處理程序,系將工件加熱至A3(亞共析鋼)或Acm(過共析鋼)點溫度以上30℃至60℃的高溫(此即為正常化溫度)保持一段時間,材質成為均勻沃斯田體後,靜置於空氣中使之冷卻。正常化時間的估算,可以每25mm厚度持溫30分鍾來估算需持溫時間。正常化熱處理又可分為二段正常化、恆溫正常化及二次正常化等多種改良式正常化熱處理。

※淬火處理
淬火處理的主要目的是將鋼材急速冷卻以便獲得硬度極大的麻田散體組織。鋼的淬火處理有三個要件,缺一不可,分別是:(1)在沃斯田體區域內加熱一段時間(即沃斯田體化);(2)冷卻時要能避開Ar』(波來體)變態;及(3)使鋼材產生麻田散體或變韌體而硬化。

淬火處理可分為兩個程序來實施,一是加熱;一是冷卻。通常加熱溫度又稱為淬火溫度或沃斯田體化溫度,依熱處理鋼材的不同而有所差異。亞共析鋼的淬火溫度在Ac3溫度以上30℃至60℃范圍內,共析鋼及過共析鋼的淬火溫度則是加熱至Ac1溫度以上30℃至60℃溫度范圍內。冷卻時要分兩個階段來冷卻,鋼從加熱爐取出的鋼件,一直冷卻到Ar』』變態前的臨界區域,要盡量迅速冷卻;在Ar』』以下的溫度區域則需采緩慢冷卻的方式,否則易造成鋼材的淬裂或淬火變形,此溫度區域又稱為危險區域。

※回火處理
一般回火處理常繼在淬火處理之後實施,以便消除淬火處理之不良影響而保留並發揮淬火之功效,其主要目的是使淬火生成的組織變態或析出更加安定(使形成回火麻田散體),減少殘留應力並改善相關機械性質(提升材料延展性)。回火溫度不同,會產生不同的機械強度與延展性組合,一般回火溫度大多在600℃以下,因為更高的回火溫度,任何鋼材都會呈現急速軟化的趨勢,此時碳化物逐漸凝聚而球化、肥粒體會再結晶而成長為連續基地,是軟化的主要原因。

※回火脆性
回火處理要避開幾個會產生回火脆性的溫度范圍,這些脆化溫度范圍視鋼材種類而有所不同,包括:(1)270℃至350℃脆化(又稱低溫回火脆性或A脆性),大多數的碳鋼及低合金鋼,都在此溫度范圍內發生脆化現象;(2)400℃至550℃脆化,通常構造用合金鋼在此溫度范圍內會產生脆化現象;(3)475℃脆化(特別指Cr含量超過13%的肥粒體系不銹鋼);(4)500℃至570℃脆化,針對工具鋼或高速鋼在此溫度范圍加熱,會析出分布均勻的碳化物,產生二次硬化效果,但也易導致脆性。

※麻淬火處理
麻淬火處理的主要目的,在降低淬火時工件內外溫度的巨大差異,並使於較低溫度時工件內外一起產生麻田散體變態,可避免淬火破裂,並使淬火變形量降至最低而無損任何淬火硬度。其主要操作程序系將鋼材淬入至溫度在Ms點微上之熱浴中,短暫持溫使工件內外溫度相同後,再提出空冷,使工件形成麻田散體變態的熱處理方法。

※麻回火處理
麻回火處理是將鋼材淬入Ms與Mf溫度范圍之間的熱浴,經過長時間持溫後,使過冷合金沃斯田體一部分變態成麻田散體,一部分變態成下變韌體。此種熱處理後,可不必再行回火處理,且可降低一般淬火回火之急劇程度;其最終組織為回火麻田散體及變韌體之混合,因此擁有高硬度和高韌性的組合。主要的缺點是需要保持恆溫的時間甚久,在工業應用上較不經濟。

※沃斯回火處理
沃斯回火處理是一種較為特殊的熱處理方法,主要程序是將鋼材淬入溫度介於S曲線鼻部與Ar』』(Ms點)溫度之間的熱浴,直到過冷沃斯田體完全變態成變韌體才取出空冷的一種熱處理方法,亦稱為變韌淬火,它不需要再行回火處理。沃斯回火的最大特色是可得高硬度、高韌性兼具的材質,一般而言,變態溫度愈高,強硬度愈低,但可增進低溫韌性;變態溫度愈接近Ms溫度,所得之強度、硬度皆大增,且伸長率及斷面收縮率亦大增,頗適合小型工件之大量生產。

Ⅳ 為什麼電焊焊完的地方比較硬

一般用於焊接的鋼材都是退火態,其硬度是很低的。焊接後,由於加熱區的溫度很高,且回因鋼材導熱答性好,使焊接加熱區被快速冷卻,也就形成了正火態的組織,所以,焊接處的硬度高。用氣焊加熱後,再用保溫棉包裹緩慢降溫,即可降低硬度。與焊接方式無太大關系。

Ⅵ 什麼是加工硬化在生產中有什麼實際意義

金屬材料經壓力加工(如軋制、鍛造、擠壓、拉絲和沖壓等)變形後,不僅改變了其外形尺寸,而且也使內部組織和性能發生變化。例如,經冷塑性變形後,金屬的強度、硬度顯著提高而塑性、韌性下降,也就是常稱的加工硬化或形變強化。

經熱塑性變形後,強度提高不明顯,但塑性和韌性會有所改善。不過,若壓力加工工藝不當,在變形量超過金屬的塑性值後,將會產生裂紋或斷裂。

實際意義:加工硬化是強化金屬(提高強度)的方法之一,對純金屬以及不能用熱處理方法強化的金屬來說尤其重要。

例如可以用冷拉、滾壓和噴丸等工藝,提高金屬材料、零件和構件的表面強度;或者零件受力後,某些部位局部應力常超過材料的屈服極限,引起塑性變形,由於加工硬化限制了塑性變形的繼續發展,可提高零件和構件的安全度。

(6)焊接加工中為什麼會硬化擴展閱讀

如果材料在屈服後一定的塑性變形處卸載,隨後立即再拉伸,則屈服平台不再出現,即下圖中的BAC。

若卸載後在室溫停留較長時間,或在較高溫度下停留一定時間後,再進行拉伸,又出現屈服現象,即曲線將沿BDC進行,這種現象稱為應變時效。顯然,應變時效也是一種加工硬化現象。應變時效也會導致材料的強度與硬度升高,而塑性、韌性的下降。

在塑性變形超過一定比例後,如果即進行再結晶退火,已經消除了加工硬化引起的強度增加、韌性下降,通常也無需要考慮再次載入後還有沒有屈服現象了另。

通常以鋼材應變時效前後其沖擊韌性降低的百分比,來衡量鋼材對應變時效的敏感程度,稱為應變時效敏感性系數。有專門的國標,GB/T 4160-2004《鋼的應變時效敏感性試驗方法(夏比沖擊法)》。

但由於已經有其他韌性指標,包括GB/T 150、GB/T 713等標准都沒有提到這個應變時效敏感性系數。

Ⅶ 為什麼切削加工中一般都會產生冷作硬化現象

【切削加工中產生冷作硬化現象的原因】機械加工過程中產生的塑性變形,使晶格扭曲、畸變,晶粒間產生滑移,晶粒被拉長和纖維化,甚至破碎,進一步變形受到阻礙,這些都會使表面金屬的硬度和強度提高,所以切削加工中一般都會產生冷作硬化現象。
【冷作硬化】
1、金屬材料在常溫或再結晶溫度以下的加工產生強烈的塑性變形,使晶格扭曲、畸變,晶粒產生剪切、滑移,晶粒被拉長,這些都會使表面層金屬的硬度增加,減少表面層金屬變形的塑性,稱為冷作硬化。
2、金屬在冷態塑性變形中,使金屬的強化指標,如屈服點、硬度等提高,塑性指標如伸長率降低的現象稱為冷作硬化。

Ⅷ 產生加工硬化的主要原因是

產生原因是,金屬在塑性變形時,晶粒發生滑移,出現位錯的纏結,使晶粒拉長、破碎和纖維化,金屬內部產生了殘余應力等。加工硬化的程度通常用加工後與加工前表面層顯微硬度的比值和硬化層深度來表示。

加工硬化也是GB 150.4中要求進行恢復性能熱處理的情形之一。對於金屬再結晶溫度以上進行的加工,即熱加工,因塑性變形引起的硬化過程和回復結晶引起的軟化過程幾乎同時存在,所以熱加工不存在加工硬化現象,但熱加工是有可能會改變材料供貨(熱處理)狀態的。

但對於加工溫度介於冷成形、熱成形之間的溫成形,是可能存在加工硬化,也可能會改變材料的供貨狀態。

(8)焊接加工中為什麼會硬化擴展閱讀

對於用熱處理方法不能強化的材料來說,可以用加工硬化方法來提高期強度,如塑性很好而強度較低的奧氏體不銹鋼(所以GB 24511有Rp0.2、Rp1.0)、鋁、銅等。(因為材料的塑性好,不擔心加工硬化引起的塑性降低。)

但對於一些金屬來說,金屬經加工硬化後,金屬的塑性大為降低、並引起殘余應力等,繼續變形就會導致開裂,為了消除這種硬化現象、消除殘余應力,保證材料的韌性、構件形狀的穩定性,中間需要進行再結晶退火。

Ⅸ 加工硬化的原理是什麼

加工硬化的原理:
①經過冷拉、滾壓和噴丸(見表面強化)等工藝,能顯著提高金屬材料、零件和構件的表面強度;
②零件受力後,某些部位局部應力常超過材料的屈服極限,引起塑性變形,由於加工硬化限制了塑性變形的繼續發展,可提高零件和構件的安全度;
③金屬零件或構件在沖壓時,其塑性變形處伴隨著強化,使變形轉移到其周圍未加工硬化部分。經過這樣反復交替作用可得到截面變形均勻一致的冷沖壓件;
④可以改進低碳鋼的切削性能,使切屑易於分離。但加工硬化也給金屬件進一步加工帶來困難。如冷拉鋼絲,由於加工硬化使進一步拉拔耗能大,甚至被拉斷,因此必須經中間退火,消除加工硬化後再拉拔。又如在切削加工中為使工件表層脆而硬,再切削時增加切削力,加速刀具磨損等。

閱讀全文

與焊接加工中為什麼會硬化相關的資料

熱點內容
鋼筋籠加密區5d是什麼意思 瀏覽:186
768鋼材硬度多少 瀏覽:727
鋼材和木材怎麼處理 瀏覽:701
截面是正方形的鋼材是什麼鋼 瀏覽:147
不銹鋼304是什麼型號 瀏覽:23
湖北哪些鋼鐵集團 瀏覽:399
南京201和301不銹鋼哪個重 瀏覽:279
華泰證券的第三方存管銀行 瀏覽:448
怎麼看不銹鋼045 瀏覽:314
朱赫來說的鋼鐵是什麼意思 瀏覽:962
保溫杯全鋼和不銹鋼哪個好 瀏覽:217
四川的鋼筋多少錢一噸 瀏覽:288
防護欄給台風吹下來了怎麼辦 瀏覽:242
項目經理如何控制鋼筋 瀏覽:955
鋼管焊接汽車沒剎車怎麼辦 瀏覽:326
建築工程什麼是抗震鋼筋 瀏覽:717
公明模具基地在哪裡 瀏覽:417
鋁方管一般用來幹嘛 瀏覽:378
流放之路預言鋼鐵之舞怎麼做 瀏覽:893
鋼管采購在哪裡 瀏覽:611