A. 焊接的基本方法是哪些
你好 1、焊條電弧焊:原理——用手工操作焊條進行焊接的電弧焊方法。利用焊條與焊件之間建立起來的穩定燃燒的電弧,使焊條和焊件熔化,從而獲得牢固的焊接接頭。屬氣-渣聯合保護。2、埋弧焊(自動焊):原理——電弧在焊劑層下燃燒。利用焊絲和焊件之間燃燒的電弧產生的熱量,熔化焊絲、焊劑和母材(焊件)而形成焊縫。屬渣保護。3、二氧化碳氣體保護焊(自動或半自動焊):原理:利用二氧化碳作為保護氣體的熔化極電弧焊方法。屬氣保護。主要特點——焊接生產率高;焊接成本低;焊接變形小(電弧加熱集中);焊接質量高;操作簡單;飛濺率大;很難用交流電源焊接;抗風能力差;不能焊接易氧化的有色金屬。
B. 提高焊接件質量的方法 工藝方面
有點長,兄弟耐心看吧,不過我勸你再去找本書研究下,我的資料也是來自於網路。沒書來得透徹
對焊件饋電進行電焊時,應遵循下列原則:①盡量縮短二次迴路長度及減小迴路所包含的空間面積,以節省能耗;②盡量減少伸入二次迴路的鐵磁體體積,特別是避免在焊接不同焊點時伸入體積有較大的變化,以減小焊接電流的波動,保證各點質量衡定(在使用工頻交流時)。
1.雙面單點焊 所有的通用焊機均採用這個方案。從焊件兩側饋電,適用於小型零件和大型零件周邊各焊點的焊接。
2.單面單點焊 當零件的一側電極可達性很差或零件較大、二次迴路過長時,可採用這個方案。從焊件單側饋電,需考慮另一側加銅墊以減小分流並作為反作用力支點(圖1d)。圖1c為一個特例。
3.單面雙點焊 從一側饋電時盡可能同時焊兩點以提高生產率。單面饋電往往存在無效分流現象(圖1f及g),浪費電能,當點距過小時將無法焊接。在某些場合,如設計允許,在上板二點之間沖一窄長缺口(圖1f)可使分流電流大幅下降。
4.雙面雙點焊 圖1b及j為雙面雙點的方案示意。圖2-12b方案雖可在通用焊機上實施,但兩點間電流難以均勻分配,較難保證兩點質量一致。而圖1j由於採用推挽式饋電方式,使分流和上下板不均勻加熱現象大為改善,而且焊點可布置在任意位置。其唯一不足之處是須製作二個變壓器,分別置於焊件兩側,這種方案亦稱推挽式點焊。兩變壓器的通電需按極性進行。
5.多點焊 當零件上焊點數較多,大規模生產時,常採用多點焊方案以提高生產率。多點焊機均為專用設備,大部分採用單側饋電方式見圖1h、i,以i方式較靈活,二次迴路不受焊件尺寸牽制,在要求較高的情況下,亦可採用推挽式點焊方案。目前一般採用一組變壓器同時焊二或四點(後者有二組二次迴路)。一台多點焊機可由多個變壓器組成。可採用同時加壓同時通電、同時加壓分組通電和分組加壓分組通電三種方案。可根據生產率、電網容量來選擇合適方案。
二、點焊循環
點焊過程由預壓、焊接、維持和休止四個基本程序組成焊接循環,必要時可增附加程序,其基本參數為電流和電極力隨時間變化的規律。
1.預壓(F>0,I=0) 這個階段包括電極壓力的上升和恆定兩部分。為保證在通電時電極壓力恆定,預壓時間必須保證,尤其當需連續點焊時,須充分考慮焊機運動機構動作所需時間,不能無限縮短。
預壓的目的是建立穩定的電流通道,以保證焊接過程獲得重復性好的電流密度。對厚板或剛度大的沖壓零件,有條件時可在此期間先加大預壓力,而後再回復到焊接時的電極力,使接觸電阻恆定而又不太小,以提高熱效率。
2.焊接(F=Fω,I=Iω) 這個階段是焊件加熱熔化形成熔核的階段。焊接電流可基本不變(指有效值),亦可為漸升或階躍上升。在此期間焊件焊接區的溫度分布經歷復雜的變化後趨向穩定。起初輸入熱量大於散失熱量,溫度上升,形成高溫塑性狀態的連接區,並使中心與大氣隔絕,保證隨後熔化的金屬不氧化,而後在中心部位首先出現熔化區。隨著加熱的進行熔化區擴大,而其外圍的塑性殼(在金相試片上呈環狀故稱塑性環)亦向外擴大,最後當輸入熱量與散失熱量平衡時達到穩定狀態。當焊接參數適當時,可獲得尺寸波動小於15%的熔化核心。在此期間可產生下列現象:
⑴ 液態金屬的攪拌作用 液態金屬通電時受電磁力作用產生漩渦狀流動,當把熔核視作地球狀且電極端處為二極,其運動方向為——赤道部分由周圍向球心流動而後流經兩極再沿外表向赤道呈封閉狀流動。對於同種金屬點焊,攪拌僅需將焊件表面的氧化膜攪碎即可,但異種金屬點焊時,必須充分攪拌以獲得均質的熔化核心。如通電時間太短,攪拌不充分將產生漩渦狀的非均質熔核。
⑵ 飛濺 飛濺按產生時期可分為前期和後期兩種;按產生部位可分為內飛濺(處於兩焊件間)和外飛濺(焊件與電極接觸側)兩種。
前期飛濺產生的原因大致是:焊件表面清理不佳或接觸面上壓強分布嚴重不勻,造成局部電流密度過高引起早期熔化,此時因無塑性環保護必發生飛濺。
防止前期飛濺的措施有:加強焊件清理質量,注意預壓前的對中。有條件時可採用漸升電流或增加預熱電流來減慢加熱速度,避免早期熔化而引起飛濺。
後期飛濺產生的原因是:熔化核心長大過度,超出電極壓力有效作用范圍,從而沖破塑性環在徑向造成內飛濺,在軸向沖破板表面造成外飛濺。這種情況一般產生在電流較大、通電時間過長的場合。可用縮短通電時間及減小電流的方法來防止。
飛濺在外表面首先影響外觀,其次產生的疤痕影響耐腐蝕及疲勞性能。內部飛濺的殘跡有可能在運行時脫落,如進入管路(如油管)將造成堵塞等嚴重事故。
⑶ 胡須 在加熱到半熔化溫度的熔核邊緣,當某些材料(如高溫合金)中低熔點夾雜物較多聚集在晶界處時,這部分雜質首先熔化並在電極壓力的作用下被擠出呈空隙。在隨後的過程中,空間有時能被液態金屬充填滿,但亦可能未充填滿,這種組織形貌在金相試樣上稱為胡須,而未充填滿的胡須猶如裂紋是一種危險缺陷。
3.維持(F>0,I=0) 此階段不再輸入熱量,熔核快速散熱、冷卻結晶。結晶過程遵循凝固理論。由於熔核體積小,且夾持在水冷電極間,冷卻速度甚高,一般在幾周內凝固結束。由於液態金屬處於封閉的塑性殼內,如無外力,冷卻收縮時將產生三維拉應力,極易產生縮孔、裂紋等缺陷,故在冷卻時必須保持足夠的電極壓力來壓縮熔核體積,補償收縮。對厚板、鋁合金和高溫合金等零件希望增加頂鍛力來達到防止縮孔、裂紋。這時必須精確控制加頂鍛力的時刻。過早將因液態金屬因壓強突然升高使塑性環被沖破,產生飛濺;過晚則因凝固缺陷已形成而無效。此外加後熱緩冷電流,降低凝固速度,亦有利於防止縮孔和裂紋的產生。
4.休止(F>0,I=0) 此階段僅在焊接淬硬鋼時採用,一般插在維持時間內,當焊接電流結束,熔核完全凝固且冷卻到完成馬氏體轉變之後再插入,其目的是改善金相組織。
三、點焊焊接參數
當採用工頻交流電源時,點焊參數主要有焊接電流、焊接(通電)時間、電極壓力和電極尺寸。
1.焊接電流Iω 析出熱量與電流的平方成正比,所以焊接電流對焊點性能影響最敏感。在其它參數不變時,當電流小於某值熔核不能形成,超過此值後,隨電流增加熔核快速增大,焊點強度上升(圖3中AB段),而後因散熱量的增大而熔核增長速度減緩,焊點強度增加緩慢(圖3中BC段),如進一步提高電流則導致產生飛濺,焊點強度反而下降。所以一般建議選用對熔核直徑變化不敏感的適中電流(BC段)來焊接。
在實際生產中,焊接電流的波動有時甚大,其原因有:
①電網電壓本身波動或多台焊機同時通電;②鐵磁體焊件伸入焊接迴路的變化;③前點對後點的分流等。除選擇對焊接電流變化較不敏感的參數外,解決上述問題的方法是反饋控制。目前最常用的有網壓補償法、恆流法與群控法。網壓補償法可用於所有各種情況,恆流法主要用於第②種情況,不能用於第③種情況,群控法僅用於第①種情況。
2.焊接時間tω 通電時間的長短直接影響輸入熱量的大小,在目前廣為採用的同期控制點焊機上,通電時間是周(我國一周為20ms)的整倍數。在其它參數固定的情況下,只有通電時間超過某最小值時才開始出現熔核,而後隨通電時間的增長,熔核先快速增大,拉剪力亦提高。當選用的電流適中時,進一步增加通電時間熔核增長變慢,漸趨恆定。但由於加熱時間過長,組織變差,正拉力下降,會使塑性指標(延性比Fσ/Fτ)下降(圖4)。當選用的電流較大時,則熔核長大到一定極限後會產生飛濺。
3.電極壓力F 電極壓力的大小一方面影響電阻的數值,從而影響析熱量的多少,另一方面影響焊件向電極的散熱情況。過小的電極壓力將導致電阻增大、析熱量過多且散熱較差,引起前期飛濺;過大的電極壓力將導致電阻減小、析熱量少、散熱良好、熔核尺寸縮小,尤其是焊透率顯著下降。因此從節能角度來考慮,應選擇不產生飛濺的最小電極壓力。此值與電流值有關,可參照文獻中廣為推薦的臨界飛濺曲線見圖5。目前均建議選用臨界飛濺曲線附近無飛濺區內的工作點。
4.電極工作面尺寸 其工作面尺寸參見下表。目前點焊時主要採用錐台形和球面形兩種電極。錐台形的端面直徑d或球面形的端部圓弧半徑R的大小,決定了電極與焊件接觸面積的多少,在同等電流時,它決定了電流密度大小和電極壓強分布范圍。一般應選用比期望獲得熔核直徑大20%左右的工作面直徑所需的端部尺寸。其次由於電極是內水冷卻的,電極上散失的熱量往往高達50%的輸入總熱量,因此端部工作面的波動或水冷孔端到電極表面的距離變化均將嚴重影響散熱量的多少,從而引起熔核尺寸的波動。因此要求錐台形電極工作面直徑在工作期間每增大15%左右必須修復。而水冷孔端至表面距離在耗損至僅存3~4mm時即應更換新電極。
點焊時各參數是相互影響的,對大多數場合均可選取多種各參數的組合。
目前常用材料的點焊參數均可在資料中以表格或計算圖形式找到,但採用前應根據具體條件作調整試焊。
由於材料表面狀態及清理情況每批不盡相同,生產車間網壓有波動、設備狀況有變化,為保證焊接質量,避免批量次品,往往希望事先取得焊接參數允許波動的區間。所以大批量生產的場合,對每批材料、每台剛大修後的設備須作點焊時允許參數波動區間的試驗,其試驗步驟如下:
1)確定質量指標,例如熔核直徑或單點拉剪力的上下限。
2)固定其它參數,作某參數(例如電流)與質量指標的關系曲線,而後改變固定參數中之一(例如通電時間),再作焊接電流與質量的關系曲線,如此獲得關系曲線族。
3)再把質量指標中合格部分用作圖法形成此二參數(例如電流與時間)允許波動區間的葉狀曲線。
可同樣獲得例如焊接電流與電極壓力等的葉狀曲線。在生產中把參數控制在葉狀曲線內的工作點上即可。
參考資料:http://www.china-weldnet.com/chinese/hanjiejishu/onews108.htm
C. 焊接的基礎知識
在我國,電焊操作需要持證上崗,焊工是屬於准入類的工種,在技能人員職業資格中,81項工種里准入類的只有五項,焊工就是其中一項,而實際情況確實大部分的行業從業人士都是無證操作。隨著技術的不斷規范以及行業的相關要求,越來越多的人都想考一個電焊證,考證的優勢還是非常大的,首先持證和非持證的薪資待遇相差很大,往往能夠達到多出一倍或者更高的級別。因此,關於短期焊工培訓的問題自然而然地成為了從業人員都比較關心的問題。
焊接作為工業「裁縫」是工業生產中非常重要的加工手段,焊接質量的好壞對產品質量起著決定性的影響,那麼,焊接技術未來的發展究竟如何呢?
行業前景
隨著生產的發展,焊接廣泛應用於宇航、航空、核工業、造船、建築及機械製造等工業部門,在中國的經濟發展中,焊接技術是一種不可缺少的加工手段。進入二十一世紀後,焊接是製造業中的一個重要組成部分,並且發展迅速,因此給焊接產業帶來了前所未有的發展機遇,水電焊、氬弧焊、數控等技術類工種在就業日趨艱難的大形勢下仍是一枝獨秀。
目前我國每年消耗鋼材3億噸(焊接結構約1.2噸),需要焊機約75萬台,焊接行業將在今後8~10年會持續保持增長,市場上很多優秀的焊工月薪都過萬,薪資也十分可觀。
D. 焊接中熔核是什麼意思
電阻點焊中通過預加壓力、通電加熱、頂端壓力三個過程,形成接頭。其中在通電加熱過程中,接觸材料熔化金屬,形成熔化核心,外圍的冷金屬包裹這熔化金屬,熔化核心簡稱熔核。電阻電焊的性能與熔核密切相關。
E. 焊接是怎麼固定板件啊
用工字鋼做個工作台,大件壓板壓上就行,看要求了,焊後如不會有多大變形,平板工作台夠用了。
F. 焊接參數如何選取
當採用工頻交流電源時,點焊機點焊參數主要有焊接電流,焊接(通電)時間,電極壓力和電極尺寸。
①焊接電流iw:焊件析出熱量與電流的平方成正比,所以焊接電流對焊點性能影響最敏感。在其它參數不變時,當電流小於相應的值時,熔核不能形成,造成脫焊。超過此值時後,隨電流增加熔核快速增大,焊點強度上升,而後因散熱量的增大而熔核增長速度減緩,焊點強度增加緩慢。如進一步提高電流則導致產生飛濺,焊點強度反而下降。所以一般建議選用對熔核直徑變化不敏感的適中電流來焊接。在實際生產中,焊接電流的波動有時甚大,其原因有:a、是網電壓本身波動或多台焊機同時通電;b、鐵磁體焊件伸入焊接迴路的變化;c、前點對後點的分流等;d、導電性焊接工裝同焊機電極接觸導致分流。
②焊接時間tw:通電時間的長短直接影響輸入熱量的大小,在目前廣為採用的同期控制點焊機上,通電時間是以周波數為計量單位(我國一個周波為0.02s,有的焊機廠家如採用計算機控制器,通電時間用半個周波數為計量單位)的整倍數。在其它參數固定的情況下,只有通電時間超過某一最小值時才開始出現熔核,從而實現工件的焊接聯結。隨通電時間的增長,熔核先快速增大,拉剪力亦提高。當選用的電流較大時,則熔核長大到一定極限後會產生飛濺。
選取盡可能短的焊接時間是焊接過程優先考慮的工藝,但是,根據不同的焊機功率,焊接工件形式,焊接工件材質,焊點數量等因素,焊接時間必需滿足熔核的形成條件。
③電極壓力f:電極壓力的大小一方面影響工件接觸電阻的數值,從面影響析熱量的多少,另一方面影響焊件向電極的散熱情況。從節能的角度來考慮,應選擇不產生飛濺的最小電極壓力。
在多台焊機連續焊接時,要特別注意氣源的壓縮空氣流量和壓力輸出的穩定性。當流量和壓力輸出不穩定時,極易產生飛濺或脫焊。
④電極工作面尺寸:焊接電流一定時,較小的電極工作尺寸使得電流密度增加,增強了焊接能力。因此,必須在焊接一定的時間後,對焊機電極進行及時的修理,以保證焊接電流密度的一致性,從而保證焊接質量的穩定性。
電極工作面尺寸對焊件表面美觀,焊核尺寸的穩定都有重要影響,要特別注意。
需要說明的是,點(排)焊時各參數是相互影響的,針對不同的焊接材料和工作條件,對大多數場合均可選取多種各參數的組合。
G. 什麼是焊核
這是加壓焊(如點焊、縫焊等)的名詞,也叫熔核。
焊核是指點焊、凸焊或縫焊時,在焊件貼合面上熔化金屬凝固後形成的金屬核。
相當於電焊的熔池,凝固後叫焊縫 。
H. 焊接的核心技術是什麼
1、直線形運條法。採用這種運條法焊接時,焊條不做橫向擺動,沿焊接方向做直線移動。它常用於Ⅰ形坡口的對接平焊,多層焊的第一層焊或多層多道焊。
2、直線往復運條法。採用這種運條方法焊接時,焊條末端沿焊縫的縱向做來回擺動。它的特點是焊接速度快,焊縫窄,散熱快。它適用於薄板和接頭間隙較大的多層焊的第一層焊。
3、鋸齒形運條法。採用這種運條方法焊接時,焊條末端做鋸齒形連續擺動及向前移動,並在兩邊稍停片刻。擺動的目的是為了控制熔化金屬的流動和得到必要的焊縫寬度,以獲得較好的焊縫成形。
這種運條方法在生產中應用較廣,多用於厚鋼板的焊接,平焊、仰焊、立焊的對接接頭和立焊的角接接頭。
4、月牙形運條法。採用這種運條方法焊接時,焊條的末端沿著焊接方向做月牙形的左右擺動。擺動的速度要根據焊縫的位置、接頭形式、焊縫寬度和焊接電流值來決定。同時需在接頭兩邊停留片刻,這是為了使焊縫邊緣有足夠的熔深,防止咬邊。
這種運條方法的特點是金屬熔化良好,有較長的保溫時間,氣體容易析出,熔渣也易於浮到焊縫表面上來,焊縫質量較高,但焊出來的焊縫余溫較高。這種運條方法的應用范圍和鋸齒形運條法基本相同。
5、三角形運條法。採用這種運條方法焊接時,焊條末端做連續三角形運動,並不斷向前移動。按照擺動形式的不同,可分為斜三角形和正三角形兩種,斜三角形運條法適用於焊接平焊和仰焊位置的T形接頭焊縫和有坡口的橫焊縫,其優點是能夠借焊條的擺動來控制熔化金屬,促使焊縫成形良好。
正三角形運條法只適用於開坡口的對接接頭和T形接頭焊縫的立焊,特點是能一次焊出較厚的焊縫斷面,焊縫不易產生夾渣等缺陷,有利於提高生產效率。
6、圓圈形運條法。採用這種運條方法焊接時.焊條末端連續做正圓圈或斜圓圈形運動,並不斷前移。正圓圈形運條法適用於焊接較厚焊件的平焊縫,其優點是熔池存在時間長,熔池金屬溫度高,有利於溶解在熔池中的氧、氮等氣體的析出,便於熔渣上浮。
斜圓圈形運條法適用於平、仰位置T形接頭焊縫和對接接頭的橫焊縫,其優點是利於控制熔化金屬不受重力影響而產生下淌現象,有利於焊縫成形。
I. 焊接的技術要求
技術要求:
1、焊接時焊縫要求平滑,不得有氣孔夾渣等焊接缺陷,發現缺陷及時修補。焊縫高度一般與鋼板接近,採用斷續焊時,焊縫長度及間隔應均勻一致。
2、製作件要求密封連續焊接時,要求焊縫處不得出現氣孔沙眼現象。
3、焊接時要求焊縫高度不能小於母材(焊件)的厚度。不同厚度的母材(焊件)焊接時,焊縫高度不能小於最薄母材(焊件)厚度。
焊接通過下列三種途徑達成接合的目的:
1、熔焊——加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助,它是適合各種金屬和合金的焊接加工,不需壓力。
2、壓焊——焊接過程必須對焊件施加壓力,屬於各種金屬材料和部分金屬材料的加工。
3、釺焊——採用比母材熔點低的金屬材料做釺料,利用液態釺料潤濕母材,填充接頭間隙,並與母材互相擴散實現鏈接焊件。適合於各種材料的焊接加工,也適合於不同金屬或異類材料的焊接加工。
(9)焊接件怎麼核擴展閱讀:
焊接原理:
1 預熱
預熱能降低焊後冷卻速度,有利於降低中碳鋼熱影響區的最高硬度,防止產生冷裂紋,這是焊接中碳鋼的主要工藝措施。預熱還能改善接頭塑性,減小焊後殘余應力。
通常,35和45鋼的預熱溫度為150~250℃。含碳量再高或者因厚度和剛度很大,裂紋傾向大時,可將預熱溫度提高至250~400℃。
若焊件太大,整體預熱有困難時,可進行局部預熱,局部預熱的加熱范圍為焊口兩側各150~200mm。
2 焊條條件:許可時優先選用酸性焊條。
3 坡口形式:將焊件盡量開成U形坡口式進行焊接。如果是鑄件缺陷,鏟挖出的坡口外形應圓滑,其目的是減少母材熔入焊縫金屬中的比例,以降低焊縫中的含碳量,防止裂紋產生。
4 工藝參數:由於母材熔化到第一層焊縫金屬中的比例最高達30%左右,所以第一層焊縫焊接時,應盡量採用小電流、慢焊接速度,以減小母材的熔深,也就是我們通常說的灼傷(電流過大時母材被燒傷)。
5 熱處理:焊後應在200-350℃下保溫2-6小時,進一步減緩冷卻速度,增加塑性、韌性,並減小淬硬傾向,消除接頭內的擴散氫。所以,焊接時不能在過冷的環境或雨中進行。
焊後最好對焊件立即進行消除應力熱處理,特別是對於大厚度焊件、高剛性結構件以及嚴厲條件下(動載荷或沖擊載荷)工作的焊件更應如此。焊後消除應力的回火溫度為600~650℃,保溫1-2h,然後隨爐冷卻。