1. 銅焊機與電焊機有什麼不同
銅焊機與電焊機的不同點:
1、如採取同樣的工藝加工的話,銅材的焊機功率要大一些;
2、相同功率的變壓器,銅材的焊機負載持續率大一些(即10分鍾為一周期,銅材的機器如果可以焊6分鍾,鋁材的只能焊4分鍾左右);
3、相同的功率,銅材的發熱率要小一些,鋁材的發熱率大一些;
4、相同條件下,銅材焊機的損耗小一些,鋁材的損耗大一些(即:相同條件及工藝下,銅線的焊機更省電!)。
當然,以上的說法並不是絕對的,焊機的生產工藝同時也在左右著焊機的質量及焊接品質,例如銅材及鋁材的質量(有無過多雜質),製作變壓器的矽鋼片的質量,生產廠家的生產工藝等等,都可能影響到焊機的質量。所以生產廠家要選有品質保障的廠家才好,同一廠家的焊機銅材的要比鋁材的要稍好一些。
2. 有色金屬的焊接都有哪些特點
壓力容器設備中,除廣泛使用碳鋼、低合金鋼及不銹鋼外,有色金屬如鈦及鈦合金、鎳及鎳基合金、銅及銅合金、鋁及鋁合金的應用也日益增多。由於這些有色金屬具有不銹鋼所不能比的優點,所以在一些特殊的重要場合已佔有主導地位。
一、鎳基耐蝕合金的焊接
鎳及鎳基合金具有特殊的物理、力學及耐腐蝕性能,鎳基耐蝕合金在200℃~1090℃范圍內能耐各種腐蝕介質的侵蝕,同時具有良好的高溫和低溫力學性能。在一些苛刻腐蝕條件下是一般不銹鋼無法取代的優良材料。純鎳一般在工業中應用較少,但在鎳中添加入鉻、銅、鐵、鉬、鋁、鈦、鈮、鎢等元素後,通過固溶強化,不但改善其力學性能,而且可適應於各種腐蝕介質下侵蝕,使其具有優良的耐腐蝕性。
1、鎳基耐蝕合金的焊接特點
①易產生焊接熱裂紋
由於鎳基合金為單相奧氏體組織,所以與不銹鋼相比,具有高的焊接熱裂紋敏感性,特別是焊縫易產生多邊化晶間裂紋。這種裂紋一般為微裂紋,焊後對焊縫進行著色檢查時,短時間都發現不了,但經過一段時間後,才顯露出來。這說明裂紋非常微細,但有時也能發展為較寬的宏觀裂紋。如果在單相奧氏體焊縫中加人固溶強化的鉬、鎢、錳、鉻、鈮等元素,就可有效地抑制鎳基合金焊縫多邊化結晶的發展,從而顯著提高抗熱裂紋能力。限制線能量,避免採用大線能量焊接也有利於防止熱裂紋的產生。此時注意,如果線能量過小,會加速焊縫的凝固結晶速度,更易形成多邊化晶界,在一定應力下有助於多邊化裂紋的產生。
②液態金屬流動性差,焊縫熔深淺
這是鎳基合金的固有特性。靠加大焊接電流不是解決此問題的辦法,因為電流增加會引起裂紋和氣孔,降低接頭的耐蝕性能,所以為了獲得良好的焊縫成形,應採用小擺動工藝,另外要加大坡口角度,減小坡口鈍邊。
2、鎳基耐蝕合金的焊接要點
鎳基合金一般可採用與奧氏體不銹鋼相同的焊接方法進行焊接。這里就最常用的鎢極氣體保護焊和焊條電弧焊進行論述。無論是何種焊接方法,焊前一定要徹底清理焊接區表面,鎳基合金對污染物的危害極為敏感,母材應盡可能在固溶狀態下焊接。
①鎢極氣體保護焊是應用最廣泛的,幾乎適合於任何一種可熔焊的鎳基合金,特別適合於薄件和小截面構件。保護氣體最常用的是氬氣,它成本低,密度大,保護效果好。氬氣中加5%氫氣,有還原作用,一般只用於第一層焊道和單道焊,多層焊的其餘焊道可能要產生氣孔。氦氣保護焊應用較少,但有如下特點,氦氣導熱大,向熔池線能量比較大,能提高焊接速度,減少了氣孔的可能性,但氦弧焊,電流小於60A時,電弧不穩定。
鎢極氣體保護焊焊一般使用直流正接,採用高頻引弧以及電流衰減的收弧技術。在保證焊透的條件下,應採用較小的焊接線能量,多層焊時應控制層間溫度,焊接析出強化合金及熱裂紋敏感性大的合金時,更要注意控制層間溫度。弧長盡量短,薄件焊接時焊槍可不作擺動,但厚板多層焊時,為使熔敷金屬與母材及前道焊縫充分熔合,焊槍仍可適當的擺動。為保證單面焊完全焊透需要用帶凹形槽的銅襯墊,通以保護氣體進行反面保護。為加強焊接區的保護效果,也可在焊嘴後側加一輔助輸入保護氣體的拖罩。
②使用焊條電弧焊時焊接鎳基合金時,由於焊條含合金元素多,且要求防止熱裂紋,一般鎳基合金焊條的葯皮類型為鹼性葯皮,採用直流反接。為了防止合金元素的燒損和控制線能量,焊接時要求盡可能採用小規范,與同規格的不銹鋼焊條相比,電流可降低20%~30%。由於液態金屬的流動性差,為防止未熔合和氣孔等缺陷,一般要求在焊接過程中適當擺動,但不能過大。在焊縫介面再引弧時,應採用反向引弧技術,以利調整介面處焊縫平滑並且能有利於抑制氣孔的發生。採用逆向收弧,把弧坑填滿,防止弧坑裂紋,必要時要對弧坑進行打磨。
二、鈦及鈦合金的焊接
鈦及鈦合金具有良好的耐腐蝕性能,在氧化性、中性及有氯離子介質中,其耐腐蝕性優於不銹鋼,有時甚至為普通奧氏體不銹鋼1Cr18Ni9Ti的10倍。工業純鈦塑性好,但強度較低,具有良好的低溫性能,其線膨脹系數和熱導率都不大,這都不會給焊接帶來困難。鈦合金的比強度大,又具有良好的韌性和焊接性,在航天工業中應用最為廣泛。鈦及鈦合金在我國現行標准中按其退火態的組織分為α鈦合金、β鈦合金和α+β鈦合金三類,分別用TA、TB和TC表示。在石化行業中的壓力容器設備中,牌號為TA2這種工業純鈦使用為居多。
1、鈦及鈦合金的焊接特點
①雜質元素的沾污引起脆化
鈦是一種活性元素,特別是在焊接高溫下非常容易吸收氮、氫、氧,從而使焊縫的硬度、強度增加,塑性、韌性降低,引起脆化。碳也會與鈦形成硬而脆的TiC,易引起裂紋。因此,鈦及鈦合金焊接時必須進行有效的保護,防止空氣或其他因素的污染。因此鈦及鈦合金焊接不能採用氣焊或焊條電弧焊方法進行,否則接頭滿足不了焊接質量要求,一般只能採用氬氣保護或在真空下焊接。
②焊接相變引起的接頭塑性下降
常用的工業純鈦為α合金,焊接時由於鈦導熱差、比熱小、高溫停留時間長、冷卻速度慢,易形成粗大結晶;若採用加速冷卻,又易產生針狀α組織,也會使塑性下降。
③產生焊接裂紋
鈦合金焊接時產生的焊接熱裂紋的幾率極小,只有當焊絲或母材質量不問題時才可能產生熱裂紋。由氫引起的冷裂紋是鈦合金焊接時應注意防止的,焊接時熔池和低溫區母材中的氫向熱影響區擴散,引起熱影響區含氫量增加,造成熱影響區出現延遲裂紋。
④氣孔
鈦及鈦合金焊接時氣孔是最常見的焊接缺陷。焊絲或母材表面清理不幹凈或氬氣不純都會造成氣孔產生,因此保護氣-氬氣純度要求在99.99%以上,焊絲及工件表面要酸洗、凈水沖洗後烘乾。
2、鈦及鈦合金的鎢極氬弧焊
鈦及鈦合金焊接時採用最多的就是鎢極氬弧焊,對於較厚的工件也可採用熔化極氬弧焊,對於技術要求嚴格的航天工業中一些重要設備經常也採用真空電子束焊接。
①焊絲的選用。焊絲的選用應使在正常焊接工藝下的焊縫在焊後狀態的抗拉強度不低於母材退火狀態的標准抗拉強度下限值,焊縫焊後狀態的塑性和耐蝕性能不低於退火狀態下的母材或與母材相當,焊接性能良好,能滿足鈦容器製造和使用的要求。
焊絲中的氮、氧、碳、氫、鐵等雜質元素的標准含量上限值應大大低於母材中雜質元素的標准含量上限值。不允許從所焊母材上裁條充當焊絲,應採用JB/T4745-2002《鈦制焊接容器》中附錄D中的焊絲用作鈦容器用焊絲。雜質元素含量不高於JB/T4745-2002中附錄D的其他標準的焊絲也可使用。
一般情況下可按表根據所焊母材牌號來選擇相應的焊絲牌號,並通過JB/T4745-2002中附錄B的焊接工藝評定驗證。
不同牌號的鈦材相焊時,一般按耐蝕性能較好和強度級別較低的母材去選擇焊絲材料。
②保護氣體的選用。焊接用氬氣純度不應低於99.99%,露點不應高於-50℃,且符合GB4842-1984的規定。當瓶裝氬氣的壓力低於0.5MPa時不宜使用。
③鎢極。鎢極氬弧焊時推薦採用鈰鎢電極。電極直徑應根據焊接電流大小選擇,電極端部應為圓錐形。
鈦及鈦合金氬弧焊時,最關鍵的是要將焊接高溫區與空氣隔離開,為了有效地進行保護,焊炬噴嘴、拖罩和背面保護裝置通以適量流量的氬氣是極其重要的。焊縫及近縫區顏色是衡量保護效果的標志,銀白色、淺黃色表示保護效果好,深黃色為輕微氧化,一般情況下還是允許的,金紫色表示中度氧化,深藍色表示嚴重氧化,至於灰白色是不允許的,表示焊縫已經變質,必須報廢重焊。
三、鋁及鋁合金的焊接
壓力容器中常用純鋁、鋁-錳合金和鋁-鎂合金。鋁錳合金僅可變形強化,其強度比純鋁略高,成形工藝及耐蝕性、焊接性好。鋁鎂合金僅可變形強化,其ω(Mg)一般為0.5%~7.0%,與其他鋁合金相比,鋁鎂合金具有中等強度,其延性、焊接性能、耐蝕性良好。
鋁在空氣和氧化性水溶液介質中,表面產生緻密的氧化鋁鈍化膜,因而在氧化性介質中具有良好的耐蝕性。鋁在低溫下與鐵素體鋼不同,不存在脆性轉變,鋁容器的設計溫度可達-269℃。
1、鋁及鋁合金焊接特點
鋁極易氧化,在常溫空氣中即生成緻密的A12O3薄膜,焊接時造成夾渣,氧化鋁膜還會吸附水分,焊接時會促使焊縫生成氣孔。焊接時,對熔化金屬和高溫金屬應進行有效的保護。
鋁的線膨脹系數約為鋼的2倍,鋁凝固時的體積收縮率也比鋼大得多,鋁焊接時熔池容易產生縮孔、縮松、熱裂紋及較高的內應力。
鋁及鋁合金液體熔池易吸收氫等氣體,當焊後冷卻凝固過程中來不及析出,在焊縫中形成氣孔。
當母材為變形強化或固溶時效強化時,焊接熱影響區強度將下降。
2、焊接方法
鋁及鋁合金適用的方法很多,壓力容器上施焊時,經常採用鎢極氬弧焊和熔化極氣體保護焊,這兩種焊接方法熱量比較集中,電弧燃燒穩定,由於採用隋性氣體,保護良好,容易控制雜質和水分來源,減少熱裂紋和氣孔的發生,焊縫質量優良,鎢極氬弧焊一般用於薄板,熔化極氣體保護焊用於厚板。
3、焊絲材料
選用的焊絲應使焊縫金屬的抗拉強度不低於母材(非熱處理強化鋁為退火狀態,熱處理強化鋁為指定值)的標准抗拉強度下限值或指定值,並使焊縫金屬的塑性和耐蝕性不低於或接近於母材,或滿足圖樣要求。
為保證焊縫的耐蝕性,在焊接純鋁時宜用純度與母材相近或純度比母材稍高的焊絲。在焊接鋁鎂合金或鋁錳合金等耐蝕鋁合金時,宜採用含鎂量或含錳量與母材相近或比母材稍高的焊絲。
焊絲可從GB/T10858-1989《鋁及鋁合金焊絲》中選取,也可從化學成分與變形鋁及鋁合金相同(符合GB/T3190-1996《變形鋁及鋁合金化學成分》)的絲材中選取,如按(GB/T3197-2001《焊條用鋁合金線》。
常用的保護氣體有氬氣和氮氣,其氣體純度應大於99.9%。
由於鈰鎢極化學穩定性好,陰極斑點小,壓降低,燒損少,易於引弧,電弧穩定性好。宜選用鈰鎢極。
三、銅及銅合金的焊接
常用的銅及銅合金有四種:純銅,黃銅,青銅和白銅。在壓力容器中純銅與黃銅使用較多。
純銅是ω(Cu)不低於99.5%的工業純銅,具有良好的導電性、導熱性,良好的常溫和低溫塑性,以及對海水等的耐腐蝕性,純銅中的雜志如氧、硫、鉍等都不同程度地降低純銅的優良性能,增加材料的冷脆性和接頭中出現熱裂紋的傾向。黃銅系銅和鋅組成的二元合金,黃銅與純銅強度、硬度和耐腐蝕能力都高,且具有一定塑性,能很好承受熱加工和冷加工,ω(Zn)在<30%~40%的黃銅具有α相與少量的β相,因而提高了強度、塑性、耐蝕性、但對焊接性不利。
1、銅及銅合金焊接特點
銅及銅合金導熱率高,線脹系數和收縮率大,當焊接線能量不足時,則容易產生未熔合、未焊透,焊後變形也較嚴重,外觀成形差。焊接時,銅能與其中雜質生成多種低熔點共晶,在焊接應力作用下產生熱裂紋,雜質中以氧的危害性最大。
熔焊銅及銅合金時,由於溶解的氫和氧化還原反應引起氣孔,幾乎分布在焊縫的各個部位。同時,由於晶粒嚴重長大,雜質和合金元素的摻人,有用合金元素的氧化、蒸發,使焊接接頭性能發生很大的變化。
2、焊接方法
焊接銅及銅合金需要大功率、高能束的熔焊熱源,熱效率越高,能量越集中愈有利,不同厚度的材料對於不同焊接方法有其適應性,薄板焊接以鎢極氬弧焊、焊條電弧焊和氣焊為好,中板以熔化極氣體保護焊和電子束焊較合適,厚板則建議使用埋弧焊、MIG焊和電渣焊。
3、焊接材料
①焊條
焊條電弧焊用焊條分為純銅、青銅兩類,由於黃銅中的鋅容易蒸發,因而極少採用焊條電弧焊。純銅焊條型號ECu為低氫型葯皮,用於焊接脫氧或無氧銅結構件,在大氣及海水中具有良好的耐腐蝕性。
②埋弧焊用焊絲與焊劑
埋弧焊的特點是電熱效率高,對熔池的保護效果好。大、中厚度銅焊件的焊接工藝與鋼基本相同,可選用高硅高錳焊劑HJ431,但可能發生合金元素向焊縫過渡,對接頭性能要求高的焊件宜選用HJ260、HJ150。焊絲則選用純銅焊絲、青銅焊絲、焊接純銅和黃銅。
③氣體保護焊用焊絲
銅薄板和中板焊接,使用氣保焊逐漸取代氣焊、焊條電弧焊,電極一般採用釷鎢極(EWTh-2)。焊接純銅,一般選用含有ω(Si)0.5%,ω(P)0.15%或ω(Ti)0.3%~0.5%脫氧劑的無氧銅焊絲,如HSCu。焊接普通黃銅,採用無氧銅加脫氧劑的錫青銅焊絲,如HSCuSn。對高強度黃銅則採用青銅加脫氧劑的硅青銅焊絲或鋁青銅焊絲,如:HSCuAl、HSCuSi等。
保護氣體則選用氬氣(Ar)或Ar+He(Ar+He混合比50/50或30/70),採用Ar+He混合氣體的最大優點是可以改善焊縫金屬的潤濕性,提高焊接質量。由於氦氣保護時輸入熱量比氬氣保護時大,故可降低預熱溫度。
4、焊接工藝
①焊前要預熱或在焊接過程中採取同步加熱的措施。
②嚴格限制銅中的雜質含量,通過焊絲加人硅、錳、磷等合金元素,增加對焊縫的脫氧能力,選用能獲得α+β組織的焊絲等措施防止焊接接頭裂紋與減少氣孔。
③控制焊後冷卻速度,防止焊接變形。
3. 自行車銅焊優缺點
缺點就一個字 重!
4. 什麼是焊接它有哪些優點
焊接:是一種以加熱、加壓或二者並用辦法,填充或不填充焊接材料,使兩種或兩種以上同種或異種金屬通過原子之間的結合和擴散,達到連接成一體結構的一種加工方式。 焊接通過下列三種途徑達成接合的目的。
焊接分為三類:熔焊、壓焊、釺焊。
1、熔焊——加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助,它是適合各種金屬和合金的焊接加工,不需壓力。焊條手弧焊、二保焊、埋弧焊等都屬於熔焊。
2、壓焊——焊接過程必須對焊件施加壓力,屬於各種金屬材料和部分金屬材料的加工。電阻點焊、凸焊、縫焊等屬於壓焊。
3、釺焊——採用比母材熔點低的金屬材料做釺料,利用液態釺料潤濕母材,填充接頭間隙,並與母材互相擴散實現鏈接焊件。適合於各種材料的焊接加工,也適合於不同金屬或異類材料的焊接加工。電烙鐵釺焊、氧乙炔火焰釺焊等屬於釺焊。
焊接具有以下優點:
1、連接性能好。可以方便地將板材、型材或鑄鍛件根據需要進行組合焊接,因而對於製造大型、特大型結構(如機車、橋梁、輪船、火箭等)有重要意義。同時,焊接還可以將不同形狀及尺寸(板厚、直徑)甚至不同材料(異種材料)連接起來,從而達到降低重量,節約材料,資源優化等目的。
2、焊接結構剛度大,整體性好。同時又容易保證氣密性及水密性,所以特別適合製造高強度、大剛度的中空結構(如壓力容器、管道、鍋爐等)。
3、焊接方法種類多,焊接工藝適應性廣。焊接生產可適應不同要求及批量的生產。另外,由於焊接規范參數的電信號容易控制,所以焊接自動化比較容易實現(如汽車製造業中廣泛使用了點焊機械手、弧焊機器人)等。
5. 焊接的分類和特點主要介紹下焊接有何優缺點
一、焊接的常用主要種類
1)電焊;2)氣焊;3)激光焊;4)釺焊;5)熱熔焊;6)電子束焊;7)爆炸焊;
8)等離子焊;9)電渣焊;10)擴散焊;11)摩擦焊;12)高頻焊等。
二、常用焊接方法的基本原理及特點
1.手弧電焊
手弧電焊是各種電弧焊方法中發展最早、目前仍然應用最廣的一種焊接方法。它是以外部塗有塗料的焊條作電極和填充金屬,電弧是在焊條的端部和被焊工件表面之間燃燒。塗料在電弧熱作用下一方面可以產生氣體以保護電弧,另一方面可以產生熔渣覆蓋在熔池表面,防止熔化金屬與周圍氣體的相互作用。熔渣的更重要作用是與熔化金屬產生物理化學反應或添加合金元素,改善焊縫金屬性能。
手弧焊設備簡單、輕便,*作靈活。可以應用於維修及裝配中的短縫的焊接,特別是可以用於難以達到的部位的焊接。手弧焊配用相應的焊條可適用於大多數工業用碳鋼、不銹鋼、鑄鐵、銅、鋁、鎳及其合金。
2.鎢極氣體保護電弧焊
這是一種不熔化極氣體保護電弧焊,是利用鎢極和工件之間的電弧使金屬熔化而形成焊縫的。焊接過程中鎢極不熔化,只起電極的作用。同時由焊炬的噴嘴送進氬氣或氦氣作保護。還可根據需要另外添加金屬。在國際上通稱為TIG焊。
鎢極氣體保護電弧焊由於能很好地控制熱輸入,所以它是連接薄板金屬和打底焊的一種極好方法。這種方法幾乎可以用於所有金屬的連接,尤其適用於焊接鋁、鎂這些能形成難熔氧化物的金屬以及象鈦和鋯這些活潑金屬。這種焊接方法的焊縫質量高,但與其它電弧焊相比,其焊接速度較慢。
3.熔化極氣體保護電弧焊
這種焊接方法是利用連續送進的焊絲與工件之間燃燒的電弧作熱源,由焊炬噴嘴噴出的氣體保護電弧來進行焊接的。
熔化極氣體保護電弧焊通常用的保護氣體有:氬氣、氦氣、CO2氣或這些氣體的混合氣。以氬氣或氦氣為保護氣時稱為熔化極惰性氣體保護電弧焊(在國際上簡稱為MIG焊);以惰性氣體與氧化性氣體(O2,CO2)混合氣為保護氣體時,或以CO2氣體或CO2+O2混合氣為保護氣時,或以CO2氣體或CO2+O2混合氣為保護氣時,統稱為熔化極活性氣體保護電弧焊(在國際上簡稱為MAG焊)。
熔化極氣體保護電弧焊的主要優點是可以方便地進行各種位置的焊接,同時也具有焊接速度較快、熔敷率高等優點。熔化極活性氣體保護電弧焊可適用於大部分主要金屬,包括碳鋼、合金鋼。熔化極惰性氣體保護焊適用於不銹鋼、鋁、鎂、銅、鈦、鋯及鎳合金。利用這種焊接方法還可以進行電弧點焊。
4.等離子弧焊
等離子弧焊也是一種不熔化極電弧焊。它是利用電極和工件之間地壓縮電弧(叫轉發轉移電弧)實現焊接的。所用的電極通常是鎢極。產生等離子弧的等離子氣可用氬氣、氮氣、氦氣或其中二者之混合氣。同時還通過噴嘴用惰性氣體保護。焊接時可以外加填充金屬,也可以不加填充金屬。
等離子弧焊焊接時,由於其電弧挺直、能量密度大、因而電弧穿透能力強。等離子弧焊焊接時產生的小孔效應,對於一定厚度范圍內的大多數金屬可以進行不開坡口對接,並能保證熔透和焊縫均勻一致。因此,等離子弧焊的生產率高、焊縫質量好。但等離子弧焊設備(包括噴嘴)比較復雜,對焊接工藝參數的控制要求較高。
鎢極氣體保護電弧焊可焊接的絕大多數金屬,均可採用等離子弧焊接。與之相比,對於1mm以下的極薄的金屬的焊接,用等離子弧焊可較易進行。
5.電阻焊
這是以電阻熱為能源的一類焊接方法,包括以熔渣電阻熱為能源的電渣焊和以固體電阻熱為能源的電阻焊。由於電渣焊更具有獨特的特點,故放在後面介紹。這里主要介紹幾種固體電阻熱為能源的電阻焊,主要有點焊、縫焊、凸焊及對焊等。
電阻焊一般是使工件處在一定電極壓力作用下並利用電流通過工件時所產生的電阻熱將兩工件之間的接觸表面熔化而實現連接的焊接方法。通常使用較大的電流。為了防止在接觸面上發生電弧並且為了鍛壓焊縫金屬,焊接過程中始終要施加壓力。
進行這一類電阻焊時,被焊工件的表面善對於獲得穩定的焊接質量是頭等重要的。因此,焊前必須將電極與工件以及工件與工件間的接觸表面進行清理。
點焊、縫焊和凸焊的牾在於焊接電流(單相)大(幾千至幾萬安培),通電時間短(幾周波至幾秒),設備昂貴、復雜,生產率高,因此適於大批量生產。主要用於焊接厚度小於3mm的薄板組件。各類鋼材、鋁、鎂等有色金屬及其合金、不銹鋼等均可焊接。
6.電子束焊
電子束焊是以集中的高速電子束轟擊工件表面時所產生的熱能進行焊接的方法。
電子束焊接時,由電子槍產生電子束並加速。常用的電子束焊有:高真空電子束焊、低真空電子束焊和非真空電子束焊。前兩種方法都是在真空室內進行。焊接准備時間(主要是抽真空時間)較長,工件尺寸受真空室大小限制。
電子束焊與電弧焊相比,主要的特點是焊縫熔深大、熔寬小、焊縫金屬純度高。它既可以用在很薄材料的精密焊接,又可以用在很厚的(最厚達300mm)構件焊接。所有用其它焊接方法能進行熔化焊的金屬及合金都可以用電子束焊接。主要用於要求高質量的產品的焊接。還能解決異種金屬、易氧化金屬及難熔金屬的焊接。但不適於大批量產品。
7.激光焊
激光焊是利用大功率相干單色光子流聚焦而成的激光束為熱源進行的焊接。這種焊接方法通常有連續功率激光焊和脈沖功率激光焊。
激光焊優點是不需要在真空中進行,缺點則是穿透力不如電子束焊強。激光焊時能進行精確的能量控制,因而可以實現精密微型器件的焊接。它能應用於很多金屬,特別是能解決一些難焊金屬及異種金屬的焊接。
8.釺焊
釺焊的能源可以是化學反應熱,也可以是間接熱能。它是利用熔點比被焊材料的熔點低的金屬作釺料,經過加熱使釺料熔化,*毛細管作用將釺料及入到接頭接觸面的間隙內,潤濕被焊金屬表面,使液相與固相之間互擴散而形成釺焊接頭。因此,釺焊是一種固相兼液相的焊接方法。
釺焊加熱溫度較低,母材不熔化,而且也不需施加壓力。但焊前必須採取一定的措施清除被焊工件表面的油污、灰塵、氧化膜等。這是使工件潤濕性好、確保接頭質量的重要保證。
釺料的液相線濕度高於450℃而低於母材金屬的熔點時,稱為硬釺焊;低於450℃時,稱為軟釺焊。
根據熱源或加熱方法不同釺焊可分為:火焰釺焊、感應釺焊、爐中釺焊、浸沾釺焊、電阻釺焊等。目前感應釺焊應用范圍最廣,比如百銳思釺焊提供的感應釺焊設備,已廣泛用於空調製冷、電機、衛浴、眼鏡和汽車等行業。
釺焊時由於加熱溫度比較低,故對工件材料的性能影響較小,焊件的應力變形也較小。但釺焊接頭的強度一般比較低,耐熱能力較差。
釺焊可以用於焊接碳鋼、不銹鋼、高溫合金、鋁、銅等金屬材料,還可以連接異種金屬、金屬與非金屬。適於焊接受載不大或常溫下工作的接頭,對於精密的、微型的以及復雜的多釺縫的焊件尤其適用。
9.電渣焊
電渣焊是以熔渣的電阻熱為能源的焊接方法。焊接過程是在立焊位置、在由兩工件端面與兩側水冷銅滑塊形成的裝配間隙內進行。焊接時利用電流通過熔渣產生的電阻熱將工件端部熔化。
根據焊接時所用的電極形狀,電渣焊分為絲極電渣焊、板極電渣焊和熔嘴電渣焊。
電渣焊的優點是:可焊的工件厚度大(從30mm到大於1000mm),生產率高。主要用於在斷面對接接頭及丁字接頭的焊接。
電渣焊可用於各種鋼結構的焊接,也可用於鑄件的組焊。電渣焊接頭由於加熱及冷卻均較慢,熱影響區寬、顯微組織粗大、韌性、因此焊接以後一般須進行正火處理。
10.高頻焊
高頻焊是以固體電阻熱為能源。焊接時利用高頻電流在工件內產生的電阻熱使工件焊接區表層加熱到熔化或接近的塑性狀態,隨即施加(或不施加)頂鍛力而實現金屬的結合。因此它是一種固相電阻焊方法。
高頻焊根據高頻電流在工件中產生熱的方式可分為接觸高頻焊和感應高頻焊。接觸高頻焊時,高頻電流通過與工件機械接觸而傳入工件。感應高頻焊時,高頻電流通過工件外部感應圈的耦合作用而在工件內產生感應電流。
高頻焊是專業化較強的焊接方法,要根據產品配備專用設備。生產率高,焊接速度可達30m/min。主要用於製造管子時縱縫或螺旋縫的焊接。
11.氣焊
氣焊是用氣體火焰為熱源的一種焊接方法。應用最多的是以乙炔氣作燃料的氧-乙炔火焰。由於設備簡單使用方便,但氣焊加熱速度及生產率較低,熱影響區較大,且容易引起較大的變形。
氣焊可用於很多黑色金屬、有色金屬及合金的焊接。一般適用於維修及單件薄板焊接。
12.氣壓焊
氣壓焊和氣焊一樣,氣壓焊也是以氣體火焰為熱源。焊接時將兩對接的工件的端部加熱到一定溫度,後再施加足夠的壓力以獲得牢固的接頭。是一種固相焊接。
氣壓焊時不加填充金屬,常用於鐵軌焊接和鋼筋焊接。
13.爆炸焊
爆*炸焊也是以化學反應熱為能源的另一種固相焊接方法。但它是利用炸*葯爆*炸所產生的能量來實現金屬連接的。在爆*炸波作用下,兩件金屬在不到一秒的時間內即可被加速撞擊形成金屬的結合。
在各種焊接方法中,爆*炸焊可以焊接的異種金屬的組合的范圍最廣。可以用爆*炸焊將冶金上不相容的兩種金屬焊成為各種過渡接頭。爆*炸焊多用於表面積相當大的平板包覆,是製造復合板的高效方法。
14.摩擦焊
摩擦焊是以機械能為能源的固相焊接。它是利用兩表面間機械摩擦所產生的熱來實現金屬的連接的。
摩擦焊的熱量集中在接合面處,因此熱影響區窄。兩表面間須施加壓力,多數情況是在加熱終止時增大壓力,使熱態金屬受頂鍛而結合,一般結合面並不熔化。
摩擦焊生產率較高,原理上幾乎所有能進行熱鍛的金屬都能摩擦焊接。摩擦焊還可以用於異種金屬的焊接。要適用於橫斷面為圓形的最大直徑為100mm的工件。
15.超聲波焊
超聲波焊也是一種以機械能為能源的固相焊接方法。進行超聲波焊時,焊接工件在較低的靜壓力下,由聲極發出的高頻振動能使接合面產生強裂摩擦並加熱到焊接溫度而形成結合。
超聲波焊可以用於大多數金屬材料之間的焊接,能實現金屬、異種金屬及金屬與非金屬間的焊接。可適用於金屬絲、箔或2~3mm以下的薄板金屬接頭的重復生產。
16.擴散焊
擴散焊一般是以間接熱能為能源的固相焊接方法。通常是在真空或保護氣氛下進行。焊接時使兩被焊工件的表面在高溫和較大壓力下接觸並保溫一定時間,以達到原子間距離,經過原子樸素相互擴散而結合。焊前不僅需要清洗工件表面的氧化物等雜質,而且表面粗糙度要低於一定值才能保證焊接質量。
擴散焊對被焊材料的性能幾乎不產生有害作用。它可以焊接很多同種和異種金屬以及一些非金屬材料,如陶瓷等。
三、焊接的優點
與其它加工方法相比,焊接有如下主要優點:
工件變形小;
生產效率高;
能耗小;
能加工異種材質;
加工柔性高;
適應性強;
大部分的焊接設備投入少等。
四、焊接的缺點
與其它加工方法相比,焊接的主要缺點如下:
對員工操作技能要求高;
與鑄造和鍛壓等常規加工方法相比,焊接後的焊縫強度相對較小;
焊接部位母材性能會產生變化,影響母材性能。
6. 銅和同合金管焊接特點和方法是什麼
銅和銅合金管焊接特點和方法是什麼?
答:
一)銅合金分類和焊接特點
銅及銅合金的分類和焊接特點
1)純銅:純銅常被稱作紫銅。它具有良好的導電性、導熱性和耐蝕性。純銅用字母+T}}(銅)表示,如Tl,T2,T3等。氧的含量極低,不大於0. O1%的純銅稱為無氧銅,用TU(銅無)表示,如TU1、TU2等。
2)黃銅:以鋅為主要合金元素的銅合金稱為黃銅。黃銅用+H;(黃)表示如H80、H70,H68等。
3)青銅:以前把銅與錫的合金稱作青銅,現在則把除了黃銅以外的銅合金稱作青銅。常用的有錫青銅、鋁青銅和敏青銅等。
二)銅及銅合金的焊接特點:
銅和銅合金管焊接工藝:銅及銅合金焊接主要採用氣焊、惰性氣體保護焊、埋弧焊、釺焊等方法。
銅及銅合金導熱性能好,所以焊接前一般應預熱,並採用大線能量焊接。鎢極氫弧焊採用直流正接。氣焊時,紫銅採用中性焰或弱碳化焰,黃銅則採用弱氧化焰,以防止鋅的蒸發。