『壹』 鋁殼電池在激光焊接過程中的幾個難題如何解決
新能源電池越來越多的出現在我們生活的周邊!電池外觀,電池容量,電池耐久性都在不斷的貼合我們的需求。激光焊接自然是電池廠商首選生產設備之一!下面精焊激光為您分享一下對於電池激光焊接的一些技術難點:電池的厚度參數: 常規電池殼體厚度都要求達到1.0毫米以下,目前根據電池容量不同殼體材料厚度以0.6mm和0.8mm兩種規格主流廠家使用較多。在激光焊接方式上,主要有2種:側焊和頂焊。首先,側焊技術優點是對電芯內部的影響較小,飛濺物不會輕易進入殼蓋內側。缺點是:焊接後可能會導致凸起,這對後續工藝的裝配會有些微影響,因此側焊工藝對激光器 的穩定性、材料的潔凈度和頂蓋與殼體的配合間隙有較高的要求。其次是頂焊,頂焊工藝由於焊接在一個面上,可採用更高效的振鏡掃描焊接方式,但對前道工序入殼及定位要 求很高,對設備的自動化要求高。效果精美!
高效精密的激光焊接可以大大提高汽車動力電池的安全性、可靠性和使用壽命,將為今後的汽車動力技術帶來革命化進步。動力電池的激光焊接部位多,有耐壓和漏液測試要求,材料多數為鋁材,因此焊接難度大,對焊接工藝的要求更高。
一般來講,動力電池殼體的焊接主要為側焊和頂焊兩種方式,它們各有優勢和缺點,而鋁殼電池因為其材料的特殊性,容易出現凸起、氣孔、詐或等問題,方形電池焊接在拐角處容易出現問題。
一般殼體厚度都要求達到1.0毫米以下,主流廠家目前根據電池容量不同殼體材料厚度以0.6mm和0.8mm兩種為主。焊接方式主要分為側焊和頂焊,其中側焊的主要好處是對電芯內部的影響較小,飛濺物不會輕易進入殼蓋內側。由於焊接後可能會導致凸起,這對後續工藝的裝配會有些微影響,因此側焊工藝對激光器的穩定性、材料的潔凈度和頂蓋與殼體的配合間隙有較高的要求。而頂焊工藝由於焊接在一個面上,可採用更高效的振鏡掃描焊接方式,但對前道工序入殼及定位要求很高,對設備的自動化要求高。
激光焊接是以激光束作為能量源,利用聚焦裝置使激光聚集成高功率密度的光束照射在工件表面進行加熱,在金屬材料的熱傳導作用下材料內部溶化形成特定的溶池。激光焊接是一種新型的焊接方式,目前還處在高速發展階段。採用激光焊接時,工件的熱影響區較小;焊點小,焊接尺寸精度高;其焊接方式屬於非接觸性焊接,無需加外力,產品變形小;焊接質量高;效率高,易於實現自動化生產。
『貳』 如何把鋁合金零件焊接在一起
鋁合金焊接的幾種先進工藝:攪拌摩擦焊、激光焊、激光- 電弧復合焊、電子束焊。針對於焊接性不好和曾認為不可焊接的合金提出了有效的解決方法,幾種工藝均具有優越性,並可對厚板鋁合金進行焊接。
關鍵詞: 鋁合金 攪拌摩擦焊 激光焊 激光- 電弧復合焊 電子束焊
1 鋁合金焊接的特點
鋁合金由於重量輕、比強度高、耐腐蝕性能好、無磁性、成形性好及低溫性能好等特點而被廣泛地應用於各種焊接結構產品中,採用鋁合金代替鋼板材料焊接,結構重量可減輕50 %以上。
鋁合金焊接有幾大難點:
①鋁合金焊接接頭軟化嚴重,強度系數低,這也是阻礙鋁合金應用的最大障礙;
②鋁合金錶面易產生難熔的氧化膜(Al2O3 其熔點為2060 ℃) ,這就需要採用大功率密度的焊接工藝;
③鋁合金焊接容易產生氣孔;
④鋁合金焊接易產生熱裂紋;
⑤線膨脹系數大,易產生焊接變形;
⑥鋁合金熱導率大(約為鋼的4 倍) ,相同焊接速度下,熱輸入要比焊接鋼材大2~4 倍。
因此,鋁合金的焊接要求採用能量密度大、焊接熱輸入小、焊接速度高的高效焊接方法。
2 鋁合金的先進焊接工藝
針對鋁合金焊接的難點,近些年來提出了幾種新工藝,在交通、航天、航空等行業得到了一定應用,幾種新工藝可以很好地解決鋁合金焊接的難點,焊後接頭性能良好,並可以對以前焊接性不好或不可焊的鋁合金進行焊接。
2. 1 鋁合金的攪拌摩擦焊接
攪拌摩擦焊FSW( Friction Stir Welding) 是由英國焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固態塑性連接工藝[1~2 ] 。圖1為攪拌摩擦焊接示意圖[3 ] 。其工作原理是用一種特殊形式的攪拌頭插入工件待焊部位,通過攪拌頭高速旋轉與工件間的攪拌摩擦,摩擦產生熱使該部位金屬處於熱塑性狀態,並在攪拌頭的壓力作用下從其前端向後部塑性流動,從而使焊件壓焊在一起。圖2 為攪拌摩擦焊接過程[4 ] 。由於攪拌摩擦焊過程中不存在金屬的熔化,是一種固態連接過程,故焊接時不存在熔焊的各種缺陷,可以焊接用熔焊方法難以焊接的有色金屬材料,如鋁及高強鋁合金、銅合金、鈦合金以及異種材料、復合材料焊接等。目前攪拌摩擦焊在鋁合金的焊接方面研究應用較多。已經成功地進行了攪拌摩擦焊接的鋁合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。國外已經.進入工業化生產階段,在挪威已經應用此技術焊接快艇上長為20 m 的結構件,美國洛克希德·馬丁航空航天公司用該項技術焊接了鋁合金儲存液氧的低溫容器火箭結構件。
鋁合金攪拌摩擦焊焊縫是經過塑性變形和動態再結晶而形成,焊縫區晶粒細化,無熔焊的樹枝晶,組織細密,熱影響區較熔化焊時窄,無合金元素燒損、裂紋和氣孔等缺陷,綜合性能良好。與傳統熔焊方法相比,它無飛濺、煙塵,不需要添加焊絲和保護氣體,接頭性能良好。由於是固相焊接工藝,加熱溫度低,焊接熱影響區顯微組織變化小,如亞穩定相基本保持不變,這對於熱處理強化鋁合金及沉澱強化鋁合金非常有利。焊後的殘余應力和變形非常小,對於薄板鋁合金焊後基本不變形。與普通摩擦焊相比,它可不受軸類零件的限制,可焊接直焊縫、角焊縫。傳統焊接工藝焊接鋁合金要求對表面進行去除氧化膜,並在48 h 內進行加工,而攪拌摩擦焊工藝只要在焊前去除油污即可,並對裝配要求不高。並且攪拌摩擦焊比熔化焊節省能源、污染小。
攪拌摩擦焊鋁合金也存在一定的缺點:
①鋁合金攪拌摩擦焊接時速度低於熔化焊;
②焊件夾持要求高,焊接過程中對焊件要求加一定的壓力,反面要求有墊板;
③焊後端頭形成一個攪拌頭殘留的孔洞,一般需要補焊上或機械切除;
④攪拌頭適應性差,不同厚度鋁合金板材要求不同結構的攪拌頭,且攪拌頭磨損快;
⑤工藝還不成熟,目前限於結構簡單的構件,如平直的結構、圓形結構。攪拌摩擦焊工藝參數簡單,主要有攪拌頭的旋轉速度、攪拌頭的移動速度、對焊件的壓力及攪拌頭的尺寸等。
2.2 鋁合金的激光焊接
鋁及鋁合金激光焊接技術(Laser Welding) 是近十幾年來發展起來的一項新技術,與傳統焊接工藝相比,它具有功能強、可靠性高、無需真空條件及效率高等特點。其功率密度大、熱輸入總量低、同等熱輸入量熔深大、熱影響區小、焊接變形小、速度高、易於工業自動化等優點,特別對熱處理鋁合金有較大的應用優勢。可提高加工速度並極大地降低熱輸入,從而可提高生產效率,改善焊接質量。在焊接高強度大厚度鋁合金時,傳統的焊接方法根本不可能單道焊透,而激光深熔焊時形成大深度的匙孔,發生匙孔效應,則可以得到實現。
激光焊接鋁合金有以下優點:
①能量密度高,熱輸入低,熱變形量小,熔化區和熱影響區窄而熔深大;
②冷卻速度高而得到微細焊縫組織,接頭性能良好;
③與接觸焊相比,激光焊不用電極,所以減少了工時和成本;
④不需要電子束焊時的真空氣氛,且保護氣和壓力可選擇,被焊工件的形狀不受電磁影響,不產生X 射線;
⑤可對密閉透明物體內部金屬材料進行焊接;
⑥激光可用光導纖維進行遠距離的傳輸,從而使工藝適應性好,配合計算機和機械手,可實現焊接過程的自動化與精密控制。
現在應用的激光器主要是CO2 和YAG 激光器,CO2 激光器功率大,對於要求大功率的厚板焊接比較適合。但鋁合金錶面對CO2 激光束的吸收率比較小,在焊接過程中造成大量的能量損失。YAG激光一般功率比較小,鋁合金錶面對YAG激光束的吸收率相對CO2激光較大,可用光導纖維傳導,適應性強,工藝安排簡單等。
在焊接大厚度鋁合金時,傳統的焊接方法根本不可能單道焊透,而激光深熔焊時形成大深度的匙孔,發生匙孔效應,則可以得到實現。圖3 為激光焊接時的小孔形狀。圖4 為激光深熔焊示意圖[5 ] 。
鋁及鋁合金的激光焊接難點在於鋁及鋁合金對輻射能的吸收很弱,對CO2 激光束(波長為10. 6μm) 表面初始吸收率1. 7 %;對YAG激光束(波長為1. 06 μm)吸收率接近5 %。圖5 為不同金屬對激光的吸收率。比較復雜,高頻引弧時引起電極燒損和電弧擺動,起弧後穩定性不強,同時在電弧的高溫狀態下,電極迅速燒損。但激光與等離子弧復合可明顯提高熔深和焊接速度
『叄』 激光復合焊接的技術要領
一,概述
激光(Laser)是利用輻射激發光放大原理而產生一種單色、方向性強、光亮度大的光束經透射或反射鏡聚焦後獲得高密度功率的能束。它可用於焊接、切割和材料表面處理的熱源。激光焊(LW)是利用高能量密度的激光束作為熱源的一種高效精密的焊接方法。按照激光發生器工作性質的不同激光分為固體、液體、氣體、半導體等激光;按照激光對工件的作用和激光器輸出能量的不同激光焊可分為連續激光焊和脈沖激光焊;按照激光聚焦後光斑作用在工件上的功率密度激光焊可分為傳熱焊(熔透焊)和深熔焊(鎖孔焊、穿孔焊、小孔焊)。
激光焊機主要由激光器(核心部分,目前主要是YAG固體激光器和CO2氣體激光器)、光束傳輸和聚焦系統、焊炬、工作台、電源和控制裝置、氣源、水源、操作盤數控裝置等組成。目前常見激光焊機的型號有:HH200~500、XHY-LF200~3000、NJH-30、JKg、DH-WM01、GD-10-1等等。主要應用在航空、電子議表、機械、汽車、醫療、食品、核能等領域。
激光焊有其顯著的優點:具有很高功率密度(10³W/cm²),可小孔焊和高速焊;激光能發射、透射,能通過光纖、棱鏡等光學方法彎曲傳輸、偏轉、聚焦,特別適於微型另件、難以接近的部位或遠距離的焊接;一台激光器可供多個工作台進行不同的工作(焊接、切割、合金化、熱處理等);激光可穿過玻璃等透明物體,適於在玻璃製成的密封容器內焊接鈹合金等劇毒材料;激光不受電磁場影響,沒有X射線;激光在大氣中損耗不大,也不需要真空保護;除了能焊接碳鋼、低合金鋼、不銹鋼、硅鋼、鋁、鈦等有色金屬,在一定條件下,銅-鎳、鎳-鈦、銅-鈦、鈦-鉬、黃銅-銅、低碳鋼-銅、不銹鋼-銅等異種金屬材料可進行激光焊,也可以焊接金屬與陶瓷、玻璃、復合材料等非金屬,對於高熔點金屬、非金屬材料(陶瓷、有機玻璃等)、對熱輸入敏感的材料進行激光焊,焊後無需熱處理。激光焊沒有得到廣泛應用主要是:價格太貴;對焊件加工、組裝、定位要求高;光能轉換率低(10~20%)。
二,激光復合焊介紹
為了擴大激光焊的應用范圍、提高激光焊的質量、增加焊件厚度以及避免單純激光焊的局限性,便出現了新的焊接工藝:激光復合焊,這里要注意激光復焊的優點不單單是兩種焊接方法的疊加!特別是能量的利用率遠遠大於兩種熱源的簡單相加。激光復合焊的優點在於:能量利用率提高,母材處於固態時對激光的吸收率很低,而熔化後對激光的吸收率提高到50~100%;熔深增加很多,在電弧的作用下,母材熔化形成熔池,而激光又作用在電弧形成的底部,加上液態金屬對激光束的吸收率高,因此激光復合焊要比單純激光焊熔深要大;電弧很穩定,比如單獨用TIG或MIG焊接時,焊接電弧有時不穩定特別是在小電流情況下,當焊接速度提高到一定值時會引起電弧漂移,而採用激光復合焊時,激光產生的等離子體有助於穩定電弧;提高激光焊接時對接接頭間隙的適應性,降低激光焊的裝配精度從而實現高效率。
1,激光焊的工藝參數,脈沖激光焊有四個主要參數:脈沖能量、脈沖寬度、功率密度和離焦量;連續激光焊的參數主要有:激光功率、焊接速度、光斑直徑、離焦量、保護氣體的種類和流量等;雙光束激光焊的參數有:光束排布方式、間距、兩光束角度、聚焦位置、兩光束的能量比等。激光復合焊種類有:激光-電弧復合焊、激光-高頻焊、激光-壓焊、激光-釺焊等;其中激光-電弧焊最為常見,如激光-氬弧焊(TIG)、激光-氣保焊(MIG)等。按照激光與電弧的相對位置不同有:同軸復合式、交叉復合式、偏離復合式。
2,應用在大厚板深熔焊接,由於單純激光焊嚴格的裝配要求和大功率激光器成本高限制了厚板焊接。採用激光-電弧復合焊可進行厚板深熔焊接,並且提高對焊接坡口的制備、光束對中性和接頭裝配間隙的適應性。在造船業得到很好的應用,對於低合金高強度鋼可不預熱焊接,用激光-電弧復合焊單道焊熔深可達15mm,雙道焊熔深達30mm焊接變形量僅為雙絲焊的1/10,焊接厚度16mm的T形接頭焊接速度可達3m/min。
3,應用在鋁合金的激光焊接,激光焊接鋁合金存在反射率大,易產生氣孔、裂紋、成分變化等問題。採用激光-電弧復合焊,由於電弧的作用,激光束能夠直接照射到液態熔池表面,增大吸收率,提高熔深。採用交流TIG或直流反接,可在激光焊前面清理氧化膜,同時電弧形成的熔池在激光束前方移動,增大熔池與固態金屬之間的潤濕性,防止咬邊。
4,應用在搭接接頭,搭接焊縫廣泛應用於汽車的框架和底板結構中,目前汽車殼體焊接中很多都採用了鍍鋅鋼板搭接焊和鋁板焊接。採用激光-電弧復合焊可以減小焊接部件的變形量、消除下凹、咬邊等缺陷,並大大提高焊接速度。比如:採用10kW的CO2激光與MIG電弧復合熱源焊接低碳鋼板的搭接接頭,可實現間隙為0.5~1.5mm的搭接焊,熔深可達地板厚度的40%。又如:採用2.7kW的YAG激光-MIG電弧復合高速焊接的鋁合金搭接接頭,焊接速度可達8m/min。
5,應用在薄板高速焊上,激光高速焊接薄板的主要問題是焊縫成形連續性差,焊道表面易出現隆起等缺陷。採用等離子弧輔助YAG或CO2激光進行薄板(0.14mm)復合焊接,焊接速度為單獨激光焊提高1倍,即使焊接速度達到100m/min電弧也很穩定,可獲得較寬的焊道和光滑的焊縫表面。
三,焊後處理
一般地講激光焊焊後不處理,但對於像馬氏體、鐵素體不銹鋼等有淬火傾響的材料要進行焊後熱處理。
『肆』 激光焊接原理
激光焊接原理是激光輻射加熱待加工表面,表面熱量通過熱傳導向內部擴散,通過控制激光脈沖的寬度、能量、峰功率和重復頻率等激光參數,使工件熔化,形成特定的熔池。
激光深熔焊接一般採用連續激光光束完成材料的連接,其冶金物理過程與電子束焊接極為相似,即能量轉換機制是通過「小孔」(Key-hole)結構來完成的。在足夠高的功率密度激光照射下,材料產生蒸發並形成小孔。
這個充滿蒸氣的小孔猶如一個黑體,幾乎吸收全部的入射光束能量,孔腔內平衡溫度達2500 0C左右,熱量從這個高溫孔腔外壁傳遞出來,使包圍著這個孔腔四周的金屬熔化。小孔內充滿在光束照射下壁體材料連續蒸發產生的高溫蒸汽,小孔四壁包圍著熔融金屬,液態金屬四周包圍著固體材料。
而在大多數常規焊接過程和激光傳導焊接中,能量首先沉積於工件表面,然後靠傳遞輸送到內部。孔壁外液體流動和壁層表面張力與孔腔內連續產生的蒸汽壓力相持並保持著動態平衡。
(4)鋁殼激光焊接是怎麼焊接的擴展閱讀
工藝參數:
(1)功率密度。 功率密度是激光加工中最關鍵的參數之一。採用較高的功率密度,在微秒時間范圍內,表層即可加熱至沸點,產生大量汽化。
因此,高功率密度對於材料去除加工,如打孔、切割、雕刻有利。對於較低功率密度,表層溫度達到沸點需要經歷數毫秒,在表層汽化前,底層達到熔點,易形成良好的熔融焊接。因此,在傳導型激光焊接中,功率密度在范圍在10^4~10^6W/CM^2。
(2)激光脈沖波形。 激光脈沖波形在激光焊接中是一個重要問題,尤其對於薄片焊接更為重要。當高強度激光束射至材料表面,金屬表面將會有60~98%的激光能量反射而損失掉,且反射率隨表面溫度變化。在一個激光脈沖作用期間內,金屬反射率的變化很大。
(3)激光脈沖寬度。 脈寬是脈沖激光焊接的重要參數之一,它既是區別於材料去除和材料熔化的重要參數,也是決定加工設備造價及體積的關鍵參數。
『伍』 鋁合金焊接方法
鋁合金的氣焊
氧-乙炔氣焊的熱效率低,焊接熱輸入不集中,焊接鋁及鋁合金時需採用熔劑,焊後又需清除殘渣,接頭質量及性能也不高。因為氣焊設備簡單,無需電源,操作方便靈活,常用於焊接對質量要求不高的鋁合金構件,如厚度較薄的薄板及小零件,以及補焊鋁合金構件和鋁鑄件。
(1)氣焊的接頭形式
氣焊鋁合金時,不宜採用搭接接頭和T形接頭,這種接頭難以清理流入縫隙中的殘留熔劑和焊渣,應盡可能採用對接接頭。為保證焊件焊接時既焊透又不塌陷和燒穿,可以採用帶槽的墊板,墊板一般用不銹鋼或純銅等製成,帶墊板焊接可獲得良好的反面成形,提高焊接生產率。
(2)氣焊熔劑的選用
鋁合金氣焊時,為了使焊接過程順利進行,保證焊縫質量,氣焊時需要加熔劑來去除鋁表面的氧化膜及其他雜質。
氣焊熔劑(又稱氣劑)是氣焊時的助熔劑,主要作用是去除氣焊過程中生成在鋁表面的氧化膜,改善母材的潤濕性能,促使獲得緻密的焊縫組織等。氣焊鋁合金必須採用熔劑,一般是在焊前熔劑直接撒在被焊工件坡口上,或者沾在焊絲上加入熔池內。
鋁合金熔劑是鉀、鈉、鈣、鋰等元素的氯人鹽,是粉碎後過篩並按一定比例配製的粉狀化合物。例如鋁冰晶石(Na3AlF6)在1000℃進可以熔解氧化鋁,又如氯化鉀等可使難熔的氧化鋁轉變為易熔的氯化鋁。這種熔劑的熔點低,流動性好,還能改善熔化金屬的流動性,使焊縫成形良好。
(3)焊嘴和火焰的選擇
鋁合金有強烈的氧化性和吸氣性。氣焊時,為使鋁不被氧化,應採用中性焰或微弱碳化焰(乙炔既過剩的碳化焰),使鋁熔池置於還原性氣氛的保護下而不被氧化。嚴禁採用氧化焰,因為用氧化性較強的氧化焰會使鋁強烈氧化,阻礙焊接過程進行;而乙炔過多,游離的氫可能溶入熔池,會促使縫產生氣孔,使焊縫疏鬆。
(4)定位焊縫
為防止焊件在焊接中產生尺寸和相對位置的變化,焊件焊前需要點固焊。由於鋁的線膨脹系數大、導熱速度快、氣焊加熱面積大,因此,定位焊縫較鋼件應密一些。
定位焊用的填充焊絲與產品焊接時相同,定位焊接前應在焊縫間隙內塗一層氣劑。定位焊的火焰功率比氣焊時稍大。
(5)氣焊操作
焊接鋼鐵材料時,可以從鋼材的顏色變化判斷加熱的溫度。但焊鋁時,卻沒有這個方便條件。因為鋁合金從室溫加熱到熔化的過程中沒有顏色的明顯變化,給操作者帶來控制焊接溫度困難。但可根據以下現象掌握施焊時機:
1)當被加熱的工件表面由光亮白色變成暗淡的銀白色,表面氧化膜起皺,加熱處金屬有波動現象時,表明即將達到熔化溫度,可以施焊;
2)用蘸有熔劑的焊絲端頭及被加熱處,焊絲與母材能熔合時,即達到熔化溫度,可以施焊;
3)母材邊棱有倒下現象時,母材達到熔化溫度,可以施焊。
氣焊薄板可採用左焊法,焊絲位於焊接火焰之前,這種焊法因火焰指向未焊的冷金屬,熱量散失一部分,有利於防止熔池過熱、熱影響區金屬晶粒長大和燒穿。母材厚度大於5㎜可採用右焊法,此法焊絲在焊炬後面,火焰指向焊縫,熱量損失小,熔深大,加熱效率高。
氣焊厚度小於3㎜的薄件時,焊炬傾角為20~40°;氣焊厚件時,焊炬傾角為40~80°,焊絲與焊炬夾角為80~100°。鋁合金氣焊應盡量將接頭一次焊成,不堆敷第二層,因為堆敷第二層時會造成焊縫夾渣等。