❶ 鈦管怎樣焊接
氬弧焊、埋弧焊、真空電子束焊等。3毫米以下厚度用鎢極氬弧焊,3毫米以上用熔化極氬弧焊。氬氣純度不低於99.99%,嚴格控制氬氣中空氣和水蒸氣的含量。焊前進行除油污、除氧化皮、除氧化膜表面處理。
由於鈦及鈦合金的化學活性大,易被氧氣、氮氣、氫氣污染,所以不能採用焊條電弧焊、氧乙炔(或氧丙烷等)氣焊、二氧化碳焊、原子氫焊等方式焊接。
(1)焊接方式tb是什麼意思擴展閱讀
鈦為同素異構體,熔點為1720℃,在低於882℃時呈密排六方晶格結構,稱為α鈦;在882℃以上呈體心立方品格結構,稱為β鈦。利用鈦的上述兩種結構的不同特點,添加適當的合金元素,使其相變溫度及相分含量逐漸改變而得到不同組織的鈦合金(titaniumalloys)。
室溫下,鈦合金有三種基體組織,鈦合金也就分為以下三類:α合金,(α+β)合金和β合金。中國分別以TA、TC、TB表示。
1、α鈦合金
它是α相固溶體組成的單相合金,不論是在一般溫度下還是在較高的實際應用溫度下,均是α相,組織穩定,耐磨性高於純鈦,抗氧化能力強。在500℃~600℃的溫度下,仍保持其強度和抗蠕變性能,但不能進行熱處理強化,室溫強度不高。
2、β鈦合金
它是β相固溶體組成的單相合金,未熱處理即具有較高的強度,淬火、時效後合金得到進一步強化,室溫強度可達1372~1666MPa;但熱穩定性較差,不宜在高溫下使用。
3、α+β鈦合金
它是雙相合金,具有良好的綜合性能,組織穩定性好,有良好的韌性、塑性和高溫變形性能,能較好地進行熱壓力加工,能進行淬火、時效使合金強化。熱處理後的強度約比退火狀態提高50%~100%;高溫強度高,可在400℃~500℃的溫度下長期工作,其熱穩定性次於α鈦合金。
三種鈦合金中最常用的是α鈦合金和α+β鈦合金;α鈦合金的切削加工性最好,α+β鈦合金次之,β鈦合金最差。α鈦合金代號為TA,β鈦合金代號為TB,α+β鈦合金代號為TC。
鈦合金按用途可分為耐熱合金、高強合金、耐蝕合金(鈦-鉬,鈦-鈀合金等)、低溫合金以及特殊功能合金(鈦-鐵貯氫材料和鈦-鎳記憶合金)等。典型合金的成分和性能見表。
熱處理:鈦合金通過調整熱處理工藝可以獲得不同的相組成和組織。一般認為細小等軸組織具有較好的塑性、熱穩定性和疲勞強度;針狀組織具有較高的持久強度、蠕變強度和斷裂韌性;等軸和針狀混合組織具有較好的綜合性能。
❷ 鈦合金(TA、TC、TB)闡述熱處理工藝
鈦的熱處理方法
一.鈦的基本熱處理:
工業純鈦是單相α 型組織,雖然在890℃以上有α-β 的多型體轉變,但由於
相變特點決定了它的強化效應比較弱,所以不能用調質等熱處理提高工業純鈦的
機械強度.工業純鈦唯一的熱處理就是退火.它的主要退火方法有三種:1 再結
晶退火 2 消應力退火 3 真空退火.前兩種的目的都是消除應力和加工硬化效應,
以恢復塑性和成型能力.
工業純鈦在材料生產過程中加工硬度效應很大.圖2-26 所示為經不同冷加
工後,TA2 屈服強度的升高,因此在鈦材生產過程中,經冷、熱加工後,為了恢
復塑性,得到穩定的細晶粒組織和均勻的機械性能,應進行再結晶退火.工業純
鈦的再結晶溫度為550-650℃,因此再結晶退火溫度應高於再結晶溫度,但低於
α-β 相的轉變溫度.在650-700℃退火可獲得最高的綜合機械性能(因高於700℃
的退火將引起晶粒粗大,導致機械性能下降).退火材料的冷加工硬化一般經
10-20 分鍾退火就能消除.這種熱處理一般在鈦材生產單位進行.為了減少高溫
熱處理的氣體污染並進一步脫除鈦材在熱加工過程中所吸收的氫氣,目前一般鈦
材生產廠家都要求真空氣氛下的退火處理.
為了消除鈦材在加工過程(如焊接、爆炸復合、製造過程中的輕度冷變形)
中的殘余應力,應進行消應力熱處理.
消應力退火一般不需要在真空或氬氣氣氛中進行,只要保持爐內氣氛為微氧
化性即可.
二.鈦及鈦合金的熱處理:
為了便於進行機械工業加並得到具有一定性能的鈦和鈦合金,以滿足各種
產品對材料性能的要求,需要對鈦及鈦合金進行熱處理.
1.工業純鈦(TA1、TA2、TA3)的熱處理
α-鈦合金從高溫冷卻到室溫時,金相組織幾乎全是α 相,不能起強化作用,
因此,目前對α-鈦只需要進行消應力退火、再結晶退火和真空退火處理.前
兩種是在微氧化爐中進行,而後者則應在真空爐中進行.
(一)消應力退火
為了消除鈦和鈦合金在熔鑄、冷加工、機械加工及焊接等工藝過程中所產生
的內應力,以便於以後加工,並避免在使用過程中由於內應力存在而引起開裂破
壞,對α-鈦應進行消除應力退火處理.消除應力退火溫度不能過高、過低,因為
過高引起晶粒粗化,產生不必要的相變而影響機械性能,過低又會使應力得不到
消除,所以,一般是選在再結晶溫度以下.對於工業純鈦來說,消除應力退火的
加熱溫度為500-600℃.加熱時間應根據工件的厚度及保溫時間來確定.為了提
高經濟效果並防止不必要的氧化,應選擇能消除大部分內應力的最短時間.工業
純鈦消除應力退火的保溫時間為15-60 分鍾,冷卻方式一般採用空冷.
(二)再結晶退火(完全退火)
α-鈦大部分在退火狀態下使用,退火可降低強度、提高塑性,得到較好的綜
合性能.為了盡可能減少在熱處理過程中氣體對鈦材表面污染,熱處理溫度盡可
能選得低些.工業純鈦的退火溫度高於再結晶溫度,但低於α 向β 相轉變的溫度
120-200℃,這時所得到的是細晶粒組織.加熱時間視工件厚度而定,冷卻方式
一般採用空冷.對於工業純鈦來說,再結晶退火的加熱溫度為680-700℃,保溫
時間為30-120 分鍾.規范的選取要根據實際情況來定,通常加熱溫度高時,保
溫時間要短些.
需要指出的是,退火溫度高於700℃時,而且保溫時間長時,將引起晶粒粗
化,導致機械性能下降,同時,晶粒一旦粗化,用現有的任何熱處理方法都難以
使之細化.為了避免晶粒粗化,可採取下列兩種措施:
1)盡可能將退火溫度選在700℃以下.
2) 退火溫度如果在700℃以上時,保溫時間盡可能短些,但在一般情況下,
每mm 厚度不得少於3 分鍾,對於所有工件來講,不能小於15 分鍾.
(三)真空退火
鈦中的氫雖無強化作用,但危害性很大,能引起氫脆.氫在α-鈦中的溶解
度很小,主要呈TiH2 化合物狀態存在,而TiH2 只在300℃以下才穩定.如將α-
鈦在真空中進行加熱,就能將氫降低至0.1%以下.當鈦中含氫量過多時需要除
氫,為了除氫或防止氧化,必須進行真空退火.真空退火的加熱溫度與保溫時間,
與再結晶退火基本相同.冷卻方式為在爐中緩冷卻到適當的溫度,然後才能開爐,
真空度不能低於5×10-4mmHg.
二.TC4(Ti-6Al-4V)的熱處理
在鈦合金中,TC4 是應用比較廣泛的一種鈦合金,通常它是在退火狀態下
使用.對TC4 可進行消除應力退火、再結晶退火和固溶時效處理,退火後的組織
是α 和β 兩相共存,但β 相含量較少,約佔有10%.TC4 再結晶溫度為750℃.
再結晶退火溫度一般選在再結晶溫度以上80~100℃(但在實際應用中,可視具
體情況而定,如表5-26),再結晶退火後TC4 的組織是等軸α 相+β 相,綜合性
能良好.但對TC4 的退火處理只是一種相穩定化處理,為了充分民掘其優良性
能的潛力,則應進行強化處理.TC4 合金的α+β/β 相轉變溫度為980~990℃,固
溶處理溫度一般選在α+β/β 轉變溫度以下40~100℃(視具體情況而定,如表5-26
所示),因為在β 相區固溶處理所得到的粗大魏氏體組織雖具有持久強度高和斷
裂韌性高的優點,但拉伸塑性和疲勞強度均很低,而在α+β 相區固溶處理則無此
缺點.
規 范
類 型
溫 度(℃) 時間(min) 冷 卻 方 式
消除應力退火 550~650 30~240 空 冷
再結晶退火 750~800 60~120 空冷或隨爐冷卻至590℃後空冷
真空退火 790~815
固溶處理 850~950 30~60 水 淬
時效處理 480~560 4~8h 空 冷
時效處理是將固溶處理後的TC4 加熱到中等溫度,保持一定時間,隨後空冷.
時效處理的目的是消除固溶處理所產生的對綜合性能不利的α』相.固溶處理所產
生的淬火馬氏體α』,在時效過程中發生迅速分解(相變相當復雜),使強度升高,
對此有兩種看法:
1.認為由於α』分解出α+β,分解產物的彌散強化作用使TC4 強度升高.
2.認為在時效過程中,β 相分解形成ω 相,造成TC4 強化.
隨著時效的進行,強度降低,對此現象也有兩種不同的觀點:
1.β 相的聚集使強度降低(與上述1 對應).
2.ω 相的分解為一軟化過程(與上述2 對應).
時效溫度和時間的選擇要以獲得最好的綜合性能為准.在推薦的固溶及時效
范圍內,最好通過時效硬化曲線來確定最佳工藝(如圖5-28 所示.此曲線為TC4
經850℃固溶處理後,在不同溫度下的時效硬化曲線).低溫時效(480-560℃)
要比大於700℃的高溫時效好.因為在高溫時的拉伸強度、持久和蠕變強度、斷
裂韌性以及缺口拉伸性能等各方面,低溫時效都比高溫時效的好.
經固溶處理的TC4 綜合性能比750-800℃ 退火處理後的綜合性能要好.
需要指出的是,TC4 合金的加工態原始組織對熱處理後的顯微組織和力學性
能有較大的影響.對於高於相變溫度,經過不同變形而形成的網蘭狀組織來說,
是不能被熱處理所改變,在750~800℃退火後,基本保持原來的組織狀態;對於
在相變溫度以下進行加工而得到的α 及β 相組織,在750-800℃退火後,則能得
到等軸初生α相及轉變的β相.前者的拉伸延性和斷面收縮率都較後者低;但耐
高溫性能和斷裂韌性、抗熱鹽應力腐蝕都較高.
四.Ti-32Mo-2.5Nb 的熱處理
Ti-32Mo-2.5Nb 是穩定β 型單相固溶合金,只需進行消除應力退火處理,
退火溫度為750~800℃,保溫一小時,冷卻方式採用空冷、爐冷均可.
五.熱處理中的幾個問題
(一)污染問題
鈦有極高的化學活性,幾乎能與所有的元素作用.在室溫下能與空氣中的氧
起反應,生成一層極薄的氧化膜,氧化速率很小.但在高的溫度下,除了氧化速
率加快並向金屬晶格內擴散外,鈦還與空氣中的氫、氮、碳等起激烈的反應,也
能與氣體化合物CO、CO2、H2O、NH4 及許多揮發性有機物反應.熱處理金屬元
素與工件表面的鈦發生反應,使鈦表面的化學成分發生變化,其中一些間隙元素
還能透過金屬點陣,形成間隙固溶體.況且除氫以外,其他元素與鈦的反應是不
可逆的.即使是氫,也不允許在最終熱處理後,進行高溫去除.間隙元素不僅影
響鈦和鈦合金的力學性能,而且還影響α+β/β 轉變溫度和一些相變過程,因此,
對於間隙元素,尤其是氣體雜質元素對鈦和鈦合金的污染問題,在熱處理中必須
引起重視.
(二)加熱爐的選擇
為在加熱過程中防止污染,必須對不同要求的工件採取不同的措施.若在最
後經磨削或其他機械加工能將工件表面的污染層去除時,可在任何類型的加熱爐
中進行加熱,爐內氣氛呈中性或微氧化性.為防止吸氫,爐內應絕對避免呈還原
性氣氛.當工件的最後加工工序為熱處理時,一定要採用真空爐(真空度要求在
1×10-4mmHg)或氬氣氣氛(氬氣純度在99.99%以上並且乾燥)的加熱爐中進行
加熱.熱處理完畢後,必要時用30%的硝酸加3%的氫氟酸其餘為水,在50℃溫
度下對工件進行酸洗,或輕微磨削,以除去表面污染層.
(四)加熱方法
在熱處理進行以前,首先要對加熱爐爐膛進行清理,爐內不應有其他金屬或
氧化皮;對於工件,則要求表面沒有油污、水和氧化皮.
用真空爐對鈦工件進行加熱是防止污染的一種有效方法,但由於目前條件所
限,許多工廠還是採用一般加熱爐.在一般加熱爐中加熱,根據需求的不同採用
不同的措施防止污染,比如:
1.根據工件的大小,可裝在封閉的低碳鋼容器中,抽真空後進行加熱.若無真
空泵可通入惰性氣體(氬氣或氦氣)進行保護,保護氣體要多次反復通入、
排出,把空氣完全排凈.
2.使用塗層也是熱處理中保護鈦免遭污染的措施之一,在國外已取得一定的經
驗.國內一些工廠也在採用高溫漆和玻璃塗料作塗層.有人認為,目前對鈦
所用的各種保護塗層,只能減少污染的深度,並不能完全免除污染.對每種
熱處理,必須考慮允許的污染深度,選擇合適有效的塗層,其中也包括熱處
理後的剝離.
3.若用火焰加熱,在加熱過程中切忌火焰直接噴射在鈦工件上,煤氣火焰是鈦
吸氫的主要根源之一.而用燃油加熱,如若不慎將會引起鈦工件過分氧化或
增碳.
(五) 冷卻
鈦和鈦合金熱處理的冷卻方式主要是空冷或爐冷,也有採用油冷或風扇冷卻
的.淬火介質可用低粘度油或含3%NaOH 的水溶液,但通常使用最廣泛的淬火
介質是水.
只要能滿足鈦和鈦合金對冷卻速度的要求.一般鋼的熱處理所採用的冷卻裝
置對鈦都適用.
❸ 電焊的焊接方法有幾種
焊接及相關工藝英文縮寫 AW——ARC WELDING——電弧焊 AHW——atomic hydrogen welding——原子氫焊 BMAW——bare metal arc welding——無保護金屬絲電弧焊 CAW——carbon arc welding——碳弧焊 CAW-G——gas carbon arc welding——氣保護碳弧焊 CAW-S——shielded carbon arc welding——有保護碳弧焊 CAW-T——twin carbon arc welding——雙碳極間電弧焊 EGW——electrogas welding——氣電立焊 FCAW——flux cored arc welding——葯芯焊絲電弧焊 FCW-G——gas-shielded flux cored arc welding——氣保護葯芯焊絲電弧焊 FCW-S——self-shielded flux cored arc welding——自保護葯芯焊絲電弧焊 GMAW——gas metal arc welding——熔化極氣體保護電弧焊 GMAW-P——pulsed arc——熔化極氣體保護脈沖電弧焊 GMAW-S——short circuiting arc——熔化極氣體保護短路過度電弧焊 GTAW——gas tungsten arc welding——鎢極氣體保護電弧焊 GTAW-P——pulsed arc——鎢極氣體保護脈沖電弧焊 MIAW——magnetically impelled arc welding——磁推力電弧焊 PAW——plasma arc welding——等離子弧焊 SMAW——shielded metal arc welding——焊條電弧焊 SW——stud arc welding——螺栓電弧焊 SAW——submerged arc welding——埋弧焊 SAW-S——series——橫列雙絲埋弧焊 RW——RWSISTANCE WELDING——電阻焊 FW——flash welding——閃光焊 RW-PC——pressure controlled resistance welding——壓力控制電阻焊 PW——projection welding——凸焊 RSEW——resistance seam welding——電阻縫焊 RSEW-HF——high-frequency seam welding——高頻電阻縫焊 RSEW-I——inction seam welding——感應電阻縫焊 RSEW-MS——mash seam welding——壓平縫焊 RSW——resistance spot welding——點焊 UW——upset welding——電阻對焊 UW-HF——high-frequency ——高頻電阻對焊 UW-I——inction——感應電阻對焊 SSW——SOLID STATE WELDING——固態焊 CEW——co-extrusion welding—— CW——cold welding——冷壓焊 DFW——diffusion welding——擴散焊 HIPW——hot isostatic pressure diffusion welding——熱等靜壓擴散焊 EXW——explosion welding——爆炸焊 FOW——forge welding——鍛焊 FRW——friction welding——摩擦焊 FRW-DD——direct drive friction welding——徑向摩擦焊 FSW——friction stir welding——攪拌摩擦焊 FRW-I——inertia friction welding——慣性摩擦焊 HPW——hot pressure welding——熱壓焊 ROW——roll welding——熱軋焊 USW——ultrasonic welding——超聲波焊 S——SOLDERING——軟釺焊 DS——dip soldering——浸沾釺焊 FS——furnace soldering——爐中釺焊 IS——inction soldering——感應釺焊 IRS——infrared soldering——紅外釺焊 INS——iron soldering——烙鐵釺焊 RS——resistance soldering——電阻釺焊 TS——torch soldering——火焰釺焊 UUS——ultrasonic soldering——超聲波釺焊 WS——wave soldering——波峰釺焊 B——BRAZING——軟釺焊 BB——block brazing——塊釺焊 DFB——diffusion brazing——擴散焊 DB——dip brazing——浸沾釺焊 EXB——exothermic brazing——反應釺焊 FB——furnace brazing——爐中釺焊 IB——inction brazing——感應釺焊 IRB——infrared brazing——紅外釺焊 RB——resistance brazing——電阻釺焊 TB——torch brazing——火焰釺焊 TCAB——twin carbon arc brazing——雙碳弧釺焊 OFW——OXYFUEL GAS WELDING——氣焊 AAW——air-acetylene welding——空氣乙炔焊 OAW——oxy-acetylene welding——氧乙炔焊 OHW——oxy-hydrogen welding——氫氧焊 PGW——pressure gas welding——氣壓焊 OTHER WELDING AND JOINING——其他焊接與連接方法 AB——adhesive bonding——粘接 BW——braze welding——釺接焊 ABW——arc braze welding——電弧釺焊 CABW——carbon arc braze welding——碳弧釺焊 EBBW——electron beam braze welding——電子束釺焊 EXBW——exothermic braze welding——熱反應釺焊 FLB——flow brazing——波峰釺焊 FLOW——flow welding——波峰焊 LBBW——laser beam braze welding——激光釺焊 EBW——electron beam welding——電子束焊 EBW-HV——high vacuum——高真空電子束焊 EBW-MV——medium vacuum——中真空電子束焊 EBW-NV——non vacuum——非真空電子束焊 ESW——electroslag welding——電渣焊 ESW-CG——consumable guide eletroslag welding——熔嘴電渣焊 IW——inction welding——感應焊 LBW——laser beam welding——激光焊 PEW——percussion welding——沖擊電阻焊 TW——thermit welding——熱劑焊 THSP——THERMAL SPRAYING——熱噴塗 ASP——arc spraying——電弧噴塗 FLSP——flame spraying——火焰噴塗 FLSP-W——wire flame spraying——絲材火焰噴塗 HVOF——high velocity oxyfuel spraying——高速氧燃氣噴塗 PSP——plasma spraying——等離子噴塗 VPSP-W——vacuum plasma spraying——真空等離子噴塗