導航:首頁 > 焊接工藝 > 焊接結構SN曲線如何求得

焊接結構SN曲線如何求得

發布時間:2024-09-18 22:02:09

Ⅰ 波峰焊無鉛焊接時透錫量達到75%以上所需的過孔的最小間隙是多少嗎好像與板的厚度有個對應的公式

最小間隙是5nm。透錫和板子的厚度關系不是很大,無鉛波峰焊接可完全達到安全可靠,亞洲也大規模這樣做也有了一段時間。

公式:克重X0.0015,知道厚度求克重:厚度/0.0015。厚度 物體上下相對兩面之間的距離。指物體之厚薄程度。符號「T」,單位為mm。

與表面安裝工藝和手工焊接作業相比,無鉛工藝中實行無鉛波峰焊接中需求更強烈些。對波峰焊各個方面內容扎實理解還有很長路要走。


(1)焊接結構SN曲線如何求得擴展閱讀:

通過重新熔化預先分配到印製板焊盤上的膏狀軟釺焊料,實現表面組裝元器件焊端或引腳與印製板焊盤之間機械與電氣連接的軟釺焊。

波峰焊隨著人們對環境保護意識的增強有了新的焊接工藝。以前的是採用錫鉛合金,但是鉛是重金屬對人體有很大的傷害。於是促生了無鉛工藝,採用*錫銀銅合金*和特殊的助焊劑,且焊接溫度的要求更高的預熱溫度。

在大多數不需要小型化和大功率的產品上仍然在使用穿孔(TH)或混和技術線路板,比如電視機、家庭音像設備以及數字機頂盒等,仍然都在用穿孔元件,因此需要用到波峰焊。從工藝角度上看,波峰焊機器只能提供很少一點最基本的設備運行參數調整。

Ⅱ 陽泉焊工考試題

中級焊工練習題01

一.判斷題.

1.奧氏體不銹鋼在加熱或冷卻過程中不發生相變,所以晶粒長大以後,不能通過熱處理方法細化.(×)

2.白口是灰鑄鐵焊接最容易產生的缺陷之一.(×)

3.超聲波顯示缺陷的靈敏度比射線探傷靈敏度高得多,故經過超聲波探傷的焊縫不必進行射線探傷. (×)

4.採用細絲熔化極氬弧焊時,熔滴過渡形式可選短路過渡.(√)

5等離子切割,應根據切割厚度來選擇氣體的種類. (√)

6.電位的大小是相對的,它隨參考點變化而變化. (√)

7.電渣焊要求液態熔渣密度比熔化金屬大些.(×)

8.發現有人觸電應立即切斷電源. (√)

9.光電跟蹤切割,必須在鋼板上劃線,才能進行跟蹤切割.(×)

10.焊縫縱向收縮不會引起彎曲變形.(×)

11.坡口間隙是為了保證根部焊透. (√)

12.加熱溫度高易使奧氏體晶粒長大,這是熱處理的一種缺陷.(×)

13.減少焊縫含氧量的主要措施是加強對焊縫區的保護.(×)

14.交流電焊機是靠動鐵芯獲得下降外特性的.(×)

15.角焊接時焊層越多變形越小.(×)

16.晶粒長大方嚮往往與熔池散熱方向一致.(×)

17.局部高溫回火較整體高溫回火消除應力徹底.(×)

18.空載電壓隨焊接電流減小而增大.(×)

19.梁、柱、管道等長焊縫焊後變形主要是彎曲變形. (√)

20.鋁合金手工電弧焊電源一律直流反接. (√)

21.馬氏體不銹鋼也有475℃脆性. (√)

22.密封性檢驗可附帶降低焊接接頭的應力. (×)

23生產技術管理是指生產作業部分管理工作. (×)

24.手弧焊採用長弧焊接. (×)

25.水壓試驗壓力應等於產品工作壓力值. (×)

26.酸性渣往往沒有鹼性渣脫氧效果好. (×)

27.鈦及合金焊接最簡單焊接方法是手弧焊.(×)

28.鐵素體不銹鋼晶間腐蝕傾向較小. (×)

29.同種材料焊絲,直徑越大,電阻越大,相對產生的電阻熱越大. (×)

30.彎曲鋼板彎曲線與輾壓紋路平行朔性就好. (×)

31.未焊透會降低接頭的機械性能. (√)

32.相同尺寸焊件剛度大的變形小. (√)

33.壓力容器嚴禁採用氣壓試驗. (×)

34.在磨床上使用不同的磨刀可以加工平面、階台、溝槽和成形面以及進行分度. (×)

35.珠光體耐熱鋼必須採用預熱、焊後熱處理工藝. (×)

二.選擇題.

1.( A )噴嘴適用於中小電流等離子弧焊槍.

A.單孔 B.多孔 C.雙錐度

2.( B )區是不易淬火鋼熱影響區中綜合性能最好的區域.

A.過熱 B.正火 C.部分相變 D.再結晶

3.( B )是專門用於非磁性材料焊縫表面缺陷進行探傷的方法.

A.煤油試驗 B.熒光法 C.氣密性試驗 D.磁粉檢驗

4.A1.A3.Acm三者之間的關系(C ).

A.A1>A3>Acm B.A3>Acm>A1 C. A3>A1. Acm>A1 D.Acm>A3>A1

5.CO2半自動焊( C )送絲增加送絲距離和操作靈活性,但送絲機構復雜.

A 推絲 B拉絲 C推拉絲

6.E4303焊條屬於(A )

A 鈦鈣礦型 B鈦型 C鈦鈣型

7.ZXG—300型硅整流弧焊機三相放大器作用(C )

A 降壓 B整流 C調節焊接電流

8.粗絲熔化極氬弧焊,電弧靜特性曲線是( B)

A 下降 B 水平 C 上升 D L型

9.電渣焊焊劑熔點過高,易在焊縫表面產生( A )

A 咬邊 B 裂紋 C 夾渣

10.當零件外形有平面和曲面時應選用 A 作裝配基準.

A 平面 B 曲面 C 凸曲線 D 凹曲線

11.等離子切割要求有 外特性的 電源 A

A 陡降.直流正接 B 陡降. 交流 C 上升.直流 D 陡降.交流

12.鋼中含鉻量大於 C 鋼稱為不銹鋼.

A 8% B 10% C 12% D 16%

13.根部焊縫金屬低於背面母材金屬表面現象叫 C

A 未焊透 B 咬邊 C 內凹 D 表面裂紋

14.構件厚度方向和長度方向不在同一平面上的變形是(D )

A 角變形 B 波浪變形 C 扭曲變形 D 錯邊變形

15.硅二極體導通低壓降是 B伏左右.

A 0.1 B 0.35 C 0.7 D 1.0.

16.含較多鐵素體相奧氏體不銹鋼焊接 C ℃時脆化最快.

A 350 B 400 C 475 D 500

17.焊縫角變形沿長度上分布不同和焊件縱向有錯邊,則往往會產生 D .

A 角變形 B 錯邊變形 C 波浪變形 D 扭曲變形

18.焊件表面堆焊時產生的應力是 B .

A 單向應力 B 平面應力 C 體積應力

19.機泵法蘭密封是靠墊片的 A 所需壓緊力來實現的.

A 彈性變形 B 朔性變形 C 剛性

20.檢驗表面缺陷宜用 A 檢驗法

A 磁粉 B X射線 C 著色

21.金屬0Cr18N9Ti 是 A 不銹鋼.

A 奧氏體 B 馬氏體 C 鐵素體

22.金屬HT10-26是 C 鑄鐵.

A 球墨鑄鐵 B 可鍛 C 灰口

23.金屬含碳量越高,板厚越大,其淬硬傾向 A

A 越大 B 越小 C 不變

24.埋弧焊主要以 D 方式進行合金化.

A 應用合金焊絲B 葯芯焊絲 C 陶質焊絲D 應用置換反應

25.母材(或焊絲)中含硫越高,越易產生 B

A 冷裂紋 B 熱裂紋 C 再熱裂紋

26.氣焊高碳鋼應採用 C 火焰焊接.

A 碳化焰B中性焰 C 微碳化焰 D氧化焰

27.氣保焊時保護氣成本最低是 B .

A Ar B CO2 C He D H2

28.熔池中 D 最先出現晶核.

A 焊趾上 B 焊根 C熱影響區 D 熔合線上

29.熔渣中同時具有脫S,P效果的是 B

A MnO B CaO C FeO D CaF2

30.Ti 及其合金氬弧焊氬氣純度必須達到 D %.

A 99 B 99.5 C 99.9 D 99.99

31.提高等離子弧切割厚度採用 A 方法最好.

A 提高切割電壓 B 增加切割電流 C 減小切割速度 D 增加空載電壓

32.鐵素體不銹鋼可採用 A 進行焊接.

A 手弧焊 B氬弧焊 C等離子弧焊

33.微束等離子弧焊應具有 D 外特性電電源.

A 上升 B陡降 C緩降 D 垂直陡降

34.用氧-乙炔焊厚大件應用 A 來加大火焰能率.

A 更換大焊嘴 B 高氧氣壓力 C 增大乙炔壓力

35.在焊縫長度方向上的收縮為 B 變形

A 橫向 B縱向 C 波浪

三.填空題.

1. 不銹鋼焊條容易發紅的原因是 (不銹鋼電阻率大,所以電阻熱也大).

2. 車床種類有普通車床,六角車床,立式車床,多刀車床,自動車床,半自動車床,數控車床等

3. 電弧產生和維持的條件是陰極電子發射和氣體電離.

4. 電離方式有熱電離 ,光電離 ,電場作用電離.

5. 根據加熱區形狀不同,火焰矯正有點狀加熱,線狀加熱 ,三角形加熱.

6. 功率因素是有功功率與視在功率之比.

7. 焊件在垂直於焊縫方向上應力和變形叫橫向應力和變形.

8. 焊接熔池結晶過程是開始結晶,晶粒長大,柱狀結晶,結晶結束.

9. 焊接熔池一次結晶由晶核形成和晶核長大兩個過程組成.

10. 焊接時,用強迫冷卻方法將焊接區熱量散走,從而達到減少變形的目的,這種方法叫散熱法.

11. 焊接胎夾具根據總體作用可分為裝配,焊接,裝配焊接復合胎夾具三大類.

12. 焊接性試驗是評定母材焊接性的試驗.

13. 焊中碳鋼,由於焊碳量較高,強度較高,在焊接熱影響區易產生低朔性的淬硬組織.

14. 焊絲H08Mn23SiA是CO2氣保焊用焊絲,其中H表示焊絲,08表示焊碳量,A表示優質.

15. 後角的主要作用是減少車刀後面與工件間摩擦,改善加工表面質量,防止震動,延長刀具壽命.

16. 火焰加熱矯正法是利用火焰局部加熱產生的朔性變形使較長金屬在冷卻後收縮,以達到矯正的變形目的.

17. 機加工中獲得的尺寸精度方法有試卻法,定尺寸刀具法,調整法,自動控製法等.

18. 機械校正是利用機械力的作用來矯正變形.

19. 鹼性渣的脫硫能力比酸性渣強.

20. 氣體離子受熱作用產生的電離叫熱電離,溫度越高,熱電離作用越大.

21. 刃傾角主要的作用是控制切屑的排出方向,進行微量切屑,改善刀尖強度和散熱條件.

22. 熔化極氬弧焊,引弧前應預送保護氣,停止時延遲關閉保護氣體.

23. 熔化極氬弧焊送絲控制包括焊絲送進,回抽和停止等內容.

24. 散熱法不適用焊接淬硬傾向較高的材料.

25. 生產中常把淬火加回火的復合熱處理叫調質.

26. 銅及其合金焊接方法有氣焊,手工電弧焊和鎢極氬弧焊等.

27. 外觀檢驗主要是為了發現焊接接頭表面質量.

28. 銑削加工是以銑刀旋轉作主運動,工件或銑刀作進給運動的切削加工方法.

29. 硬度試驗是為了測定焊接接頭各部位的硬度,以便了解區域偏析和近縫區淬硬傾向.

30. 在鋼板邊緣很快堆焊一道焊縫,則鋼板中間受拉應力,則兩側所受壓應力,鋼板產生彎曲變形,如焊接加熱時壓應力大於材料屈服極限,冷卻後鋼板中間產生壓應力,兩側產生拉應力.

四.名詞解釋.

1.沉澱脫氧:在熔池和熔滴中利用溶解在液態金屬中的脫氧劑,直接與熔於液態金屬中的FeO作用把鐵還原,使脫氧產物從熔滴和熔池中浮到熔渣中去.

2.電擊:電流流經人體內部組織和器官如神經,血液,呼吸系統造成的傷害.

3.二次結晶:一次結晶結束後,高溫金屬冷卻至室溫時所經過的一系列相變過程.

4.焊接變形:焊接過程中,焊件產生的變形叫焊接變形.

5.焊接線能量:在焊接過程中由焊接能源提供焊縫單位長度上的能量.

五.計算題.

1. 測得某電阻電感串聯電路阻抗5Q,電阻3Q,求感抗?

Z ²=Xl²+R² 得感抗為4Q

2. 電容C1為20uf,C2=10.5uf,C3=180uf並聯求總電容?

C=C1+C2+C3

3. 焊接5000M³平頂儲油罐,高20米,求直徑.

由V=S*H=∏r*h得D=[v/∏*h]開方*2=17.846

4. 焊直徑為20M²球罐,求總容積和表面積.

V=4/3 *∏r ³=4186

A=4∏r²=125

六.問答題.

1. 串聯電路特點:一串聯電路中流過每個電阻電流相等.

二串聯電路兩端總電壓=各電阻兩端電壓之和.

三串聯電路等效電阻等於各串聯電阻之和.

四串聯電阻兩端的電壓與其電阻的阻值成正比.

2. 管子水平對接全位置焊,選哪種焊接方法最理想?

一般來說由於管子壁薄實現全位置焊時,由於鐵水下流而惡化焊縫成形,此時比較理想的焊接方法是脈沖氬弧焊或熔化極氬弧焊,特別是前者目前工藝較成熟,其特點是焊接過程易實現自動化,降低了勞動強度和對焊工操作技能的要求,有利於實現單面焊雙面成形,焊接質量好,外表成形美觀.

3. 焊接輻射主要有一紅外線二紫外線三強可見光.

4. 灰鑄鐵冷焊法有何要求?

焊前不用預熱,故焊後變形小,成本低,生產率高,焊工勞動條件好,但冷焊法冷卻速度快,急易形成白口組織,裂紋等缺陷,焊後焊縫強度與顏色也與母材不同.

七.綜合題.

1. 簡述中碳鋼焊補應注意什麼?

① 選擇合適焊條,焊前應烘乾.

② 焊前預熱250-350℃以上,焊後650℃回火.

③ 用小電流慢速焊,還可錘擊焊縫減少焊接應力.

④ 盡量先在坡口上堆焊,然後再進行焊接.

2. 試述15CrMo耐熱鋼焊接工藝要點.

① 選用E5515-B2焊條

② 預熱250-300℃.

③ 焊接坡口形式及尺寸同低碳鋼焊接時基本相同.

④ 施焊時連續焊完,層間溫度不低於預熱溫度,焊後回火680-720℃.

3. 說明標注焊縫符號及尺寸的具體要求:

① 在焊縫符號左標注:鈍邊高P,坡口高H,焊角高K,焊縫余高h,熔深S,根部半徑R,焊縫寬C,焊點直徑d.

② 在焊縫符號右標注:焊縫長度L,間距e,相同焊縫數量n.

③ 在焊縫符號上邊標注:坡口角度α,對接間隙b

Ⅲ 靜力基樁載荷試驗

樁基工程屬隱蔽工程,樁基質量直接關繫到建築物安全,出現問題後的加固及處理難度大,因而,樁基檢測是樁基工程施工中的一個重要的環節。

基樁檢測大致可分為三種方法:

1.直接法

承載力檢測包括:單樁豎向抗壓(拔)靜載試驗和單樁水平靜載試驗。單樁豎向抗壓(拔)靜載試驗,用來確定單樁豎向抗壓(拔)極限承載力,判定工程樁豎向抗壓(拔)承載力是否滿足設計要求,同時可以在樁身或樁底埋設測量應力(應變)感測器,以測定樁側、樁端阻力;也可以通過埋設位移測量桿,測定樁身各截面位移量。單樁水平靜載試驗,除用來確定單樁水平臨界和極限承載力、判定工程樁水平承載力是否滿足設計要求外,還主要用於淺層地基土,求算其水平抗力系數,以便分析工程樁在水平荷載作用下的受力特性;當樁身埋設有應變測量感測器時,也可測量相應荷載作用下的樁身應力,並由此計算樁身彎矩。

2.半直接法

以樁的動態測量為主,在現場原型試驗基礎上,基於一些理論假設和工程實踐經驗,並加以綜合分析才能最終獲得檢測項目結果的檢測方法。主要包括以下兩種:

(1)低應變法。在樁頂面實施低能量的瞬態或穩態激振,使樁在彈性范圍內做彈性振動,並由此產生應力波的縱向傳播;同時利用波動和振動理論對樁身的完整性做出評價的一種檢測方法。有:反射波法、機械阻抗法、水電效應法等。

(2)高應變法。通過在樁頂實施重錘敲擊,使樁產生的動位移量級接近常規的靜載試樁的沉降量級,以便使樁周土阻力充分發揮,通過測量和計算,判定單樁豎向抗壓承載力是否滿足設計要求及對樁身完整性做出評價的一種檢測方法。有:錘擊貫入試樁法、波動方程法和靜動法等。其中,波動方程法是我國目前常用的高應變檢測方法。但這些方法在某些方面仍有較大的局限性,尚不能完全代替靜載試驗而作為確定單樁豎向抗壓極限承載力的設計依據。

3.間接法

依據直接法已取得的試驗成果,結合土的物理力學試驗或原位測試數據,通過統計分析,以一定的計算模式給出經驗公式或半理論、半經驗公式的估算方法。如根據地質勘察資料進行單樁承載力與變形的估算。由於地質條件和環境條件的復雜性,及其對邊界條件判斷有很大的不確定性,所以,本法只適用於工程初步設計的估算。

一、基樁在靜力載荷試驗中的典型破壞模式及其標准曲線特徵

在樁的靜力載荷試驗中,在相同的荷載條件下,由於不同的地質條件、施工工藝,可能表現出不同的破壞模式,如:在樁的豎向抗壓靜力載荷試驗中常見到以下幾種典型的荷載—位移(Q—S)曲線(圖2-14)。它們各自有著不同的含義。

圖2-14中的圖b、圖c樁端持力層為密實度和強度都較高的土層(如密實砂層、卵石層等),而樁周土為相對軟弱土層,此時端阻所佔比例大,Q—S曲線曲線呈緩變型,極限荷載下樁端呈整體剪切破壞或局部剪切破壞;圖a樁端與樁身為同類型的一般土層,端阻力不大,Q—S曲線呈陡降型,樁端呈刺入沖剪破壞;如軟弱土層中的摩擦樁的沖剪破壞,或者端承樁(尤其是長度較大的嵌岩樁)在極限荷載下由於樁身材料強度的破壞或樁身受壓彎曲產生的破壞;圖d、圖e樁端有虛土或沉渣,該部位樁端土的初始強度低,壓縮性高,當樁頂荷載達一定值後,樁底部土被壓密,強度提高,Q—S曲線呈台階狀;樁身特定缺陷也可表現為雙峰型Q—S曲線(如接樁時接頭開裂的預制樁、有水平裂縫的灌注樁等在一定試驗荷載作用下逐漸閉合)。

圖2-14 相同荷載條件、不同的地質條件和施工工藝導致的基樁不同破壞模式和力學特性

Q—單樁樁頂所受豎向荷載值(kN);S—在豎向荷載作用下,基樁的沉降量(mm);Z—地表以下深度(m);Qsu—單樁側阻極限值(kN);Qpu—單樁端阻極限值(kN)

典型的Q—S曲線應具有以下4個特徵(圖2-15):

(1)比例界限Qp(又稱第一拐點),是Q—S曲線上起始的近似直線段終點所對應的荷載;

(2)屈服荷載Qy,是曲線上曲率最大點所對應的荷載;

(3)極限荷載Qu,是曲線上某一極限位移Su所對應的荷載,也稱為工程上的極限荷載;

(4)破壞荷載Qf,是曲線的切線接近平行於S軸時所對應的荷載,是樁基失穩時的荷載。

在豎向拉、拔荷載作用下,常見的單樁破壞形式是沿樁-土界面間的剪切破壞。樁被拔出或者呈復合剪切面破壞,樁的下部沿樁-土界面破壞,而上部靠近地面附近,出現錐形剪切破壞,且錐形土體會同下面土體脫離並與樁身一起上移(圖2-22)。當樁身材料抗拉強度不足(或配筋不足)時,也可能出現樁身被拉斷現象。不同樁型的豎向抗拔力區別較大,如:為提高抗拔樁的豎向抗拔力,可採用人工擴底或機械擴底等施工方法,在樁端形成擴大頭,以發揮樁底部的擴頭抗拔阻力等。

水平荷載作用下的單樁,其工作性能主要體現在樁與土的相互作用上,當樁產生水平位移時,促使樁周土也產生相應的變形,產生的土抗力會阻止樁水平變形的進一步發展。在樁受荷初期,由靠近地面的地基土提供土抗力,土的變形處於彈性階段;隨荷載增大,樁水平變形量增加,表層土變形量隨之增大,地基土開始出現塑性屈服,土抗力逐漸由深部土層提供,且土體塑性區自上而下逐漸擴大,最大彎矩斷面隨之下移;當樁本身的截面抗矩無法承擔外部荷載產生的彎矩或樁側土強度時,樁身截面受拉而產生側開裂(折斷)破壞。

圖2-15 典型的Q—S曲線及其力學特徵點

二、單樁靜載荷試驗的適用范圍

在工程樁正式施工前,在地質條件具有代表性的場地上先施工幾根樁進行靜載試驗,以確定設計參數的合理性和施工工藝的可行性(需要時,也可在樁身埋設測量樁身應力、應變、位移、樁底反力的感測器或位移桿,以測定樁分層側阻力和端阻力)。若試樁直徑和樁長均較大,可採用中、小直徑樁模擬大直徑樁進行靜載荷試驗,以減少試驗成本。國家標准《建築地基基礎設計規范》(GB 50007—2002)規定:為保證樁基設計的可靠性,除地基基礎設計等級為丙級的建築物,可採用靜力觸探及標貫試驗參數來確定單樁豎向承載力特徵值外,其他建築物的單樁豎向承載力特徵值均應通過單樁豎向靜載荷試驗確定,且同一條件下的試樁數量,不宜少於總樁數的1%,且不應少於3根;為設計提供依據的靜載試驗應載入至破壞,試驗應進行到能判定單樁極限承載力為止。對於以樁身強度控制承載力的端承樁,可按設計要求的載入量進行試驗。檢測數量在同一條件下不應少於3根,且不宜少於總樁數的1%;當工程樁總數在50根以內時,不應少於2根。

為確保實際單樁豎向極限承載力標准值達到設計要求,應根據工程重要性、地質條件、設計要求及工程施工情況進行單樁靜載荷試驗。下列情況之一的樁基工程,應在施工前採用靜載試驗對工程樁單樁豎向承載力進行檢測:

(1)設計等級為甲級、乙級的建築樁基;

(2)地質條件復雜、施工質量可靠性低的建築樁基;

(3)本地區採用的新樁型或新工藝。

三、單樁抗壓靜載荷試驗方法

試驗方法主要有:壓重載荷台靜載試驗法;錨樁反力靜載試驗法;Osterberg法(國內稱自平衡法,見第九節)。

載荷台靜載試驗法(圖2-16,圖2-17)的測試裝置主要包括:加荷及反力裝置、樁頂沉降觀測裝置。荷載可由千斤頂、砂包、鋼筋混凝土構件、大型水箱、磚、鋼錠等壓重物提供,千斤頂的反力由錨樁及反力橫梁承擔,量測樁頂沉降的儀表有千分表或精密水準儀,千分表安裝在基準樑上,樁頂則相應設置沉降觀測標點。

錨樁橫梁反力裝置(俗稱錨樁法,圖2-16)是大直徑灌注樁靜載試驗最常用的載入反力系統,由試樁、錨樁、主梁、次梁、拉桿、錨籠(或掛板)、千斤頂等組成。錨樁、反力梁裝置提供的反力不應小於預估最大試驗荷載的1.2~1.5倍。當採用工程樁作錨樁時,錨樁數量不得少於4根;當試驗載入值較大時,有時需要6根甚至更多的錨樁。具體錨樁數量要通過驗算各錨樁的抗拔力來確定。錨樁的具體布置形式既要考慮現有試驗設備能力,也要考慮錨樁的抗拔力。

圖2-16 單樁抗壓靜力載荷試驗

當採用堆載時應遵守以下規定:

(1)堆載加於地基的壓應力,不宜超過地基承載力特徵值;

(2)堆載的限值可根據其對試樁和對基準樁的影響確定;

(3)堆載量大時,宜利用樁(可利用工程樁)作為堆載的支點;

(4)試驗反力裝置的最大抗拔或承重能力,應滿足試驗載入的要求。

當試樁的最大載入量超過錨樁的抗拔能力時,可採用錨樁壓重聯合反力裝置,在主梁和副樑上堆重或懸掛一定重物,由錨樁和重物共同承受千斤頂載入反力,以滿足試驗荷載要求。還可採用其他形式的反力裝置,如適用於較小直徑試樁的地錨反力裝置。採用地錨反力裝置應注意基準樁、錨桿、試驗樁之間的間距應符合規范規定(表2-10);對岩面淺的嵌岩樁,可利用岩錨提供反力;對於靜壓樁工程,可利用靜力壓樁機的自重作為反力進行靜載試驗,但不能直接利用靜力壓樁機的載入裝置,而應架設合適的主梁,採用千斤頂載入,基準樁的設置應符合規范。

圖2-17 國內、外單樁抗壓靜力載荷試驗現場工作圖

表2-10 試樁、錨樁(或壓重平台支墩邊)和基準樁之間的中心距離

註:1.D為試樁、錨樁或地錨的設計直徑或邊寬,取其較大者;2.如試樁或錨樁為擴底樁或多支盤樁時,試樁與錨樁的中心距不應小於2倍擴大端直徑;3.括弧內數值可用於工程樁驗收檢測時,多排樁設計樁中心距離小於4D的情況;4.軟土場地壓重平台堆載重量較大時,宜增加支墩邊與基準樁中心和試樁中心之間的距離、觀測基準樁的豎向位移。

沉降測量宜採用位移感測器或大量程千分表,對於機械式大量程(50mm)千分表,全程示值誤差和回程誤差分別應不超過40 μm和8 μm,相當於滿量程測量誤差不大於0.1%FS,分辨力優於或等於0.01mm。

試驗過程中,樁頭部位往往承受較高的豎向荷載和偏心荷載,為保證不因樁頭破壞而終止試驗,一般應對樁頭進行處理。其處理方法及解決方法是:

對預制方樁和預應力管樁,如果未進行截樁處理、樁頭質量正常且單樁設計承載力合理時,可不進行處理;對預應力管樁、尤其是進行了截樁處理的預應力管樁,可採用樁頭向下填芯處理,填芯高度一般為1~2m,也可在填芯時放置鋼筋(籠),以增加樁頭強度;填芯用的混凝土宜按C25~C30配製。

圖2-18 樁帽結構示意圖

還可以製作鋼卡箍或用鋼筋混凝土樁帽,套在樁頭上進行保護。樁帽(圖2-18)製作使用的具體方法如下:

混凝土樁樁頭處理:應先鑿掉樁頂部的鬆散破碎層和低強度混凝土,露出主筋後,沖洗干凈樁頭再澆注樁帽,並應符合下列規定:.

(1)樁帽頂面應水平、平整,樁帽中軸線與原樁身上部的中軸線嚴格對中,樁帽面積應大於或等於原樁身截面積,樁帽截面形狀可為圓形或方形;

(2)樁帽主筋應全部直通至樁帽混凝土保護層之下,如原樁身露出主筋長度不夠時,應通過焊接加長主筋;各主筋應在同一高度上,樁帽主筋應與原樁身主筋按規定焊接;

(3)距樁頂1倍樁徑范圍內,宜用3~5mm厚的鋼板圍裹,或距樁頂1.5倍樁徑范圍內設置箍筋,間距不宜大於150mm。樁帽應設置水平鋼筋網片3~5層,間距80~150mm。以增加其整體強度;

(4)樁帽混凝土強度等級宜比樁身混凝土提高1~2級,且不得低於C30。

單樁靜載荷試驗開始時間的規定:預制樁打入地基後,如為砂土,需7d後進行;如為粘性土,需視土的強度恢復情況而定,一般不得少於15d;對於飽和軟粘性土,不得少於25d;灌注樁應在樁身混凝土達到設計強度後,才能進行。

四、單樁靜力載荷試驗過程及其成果

在所有試驗設備安裝完畢之後,應進行一次全面檢查。先對試樁施加一較小的荷載進行預壓,目的是消除整個量測系統和被檢樁本身由於安裝、樁頭處理等人為因素造成的間隙而引起的非樁身沉降;排除千斤頂和管路中之空氣;檢查管路接頭、閥門等是否漏液等。一切正常後再卸載歸零,待千分表讀數穩定後記錄千分表初始讀數並做記錄,便可開始進行正式載入試驗。

樁的靜載試驗一般採用維持荷載法。我國靜載試驗的傳統做法是採用慢速維持荷載法,但在工程樁驗收檢測中,也允許採用快速維持荷載法。1985年ISSMFE(International Society for Soil Mechanics and Foundation Engineering,國際土壤力學與基礎工程學會)根據世界各國的靜載試驗有關規定,在推薦的試驗方法中,建議快速維持荷載法載入為每小時一級,穩定標准為0.1mm/20min。常用試驗記錄表格見表2-11。根據所進行的測試內容不同(抗壓、抗拉、水平載荷試驗),規范也對維持荷載法的具體方法作了相應規定。

下面介紹幾種常見的單樁抗壓靜載荷承載力試驗方法。

單樁抗壓靜載荷承載力試驗方法:

(1)慢速維持荷載法:具體做法是,按一定要求將荷載分級加到試樁上,每級荷載維持不變直到樁頂下沉量達到某一規定的相對穩定標准(每小時的沉降不超過0.1mm,並連續出現2次),然後繼續加下一級荷載。當達到規定的終止試驗條件時,停止加荷,再分級卸荷直到零載,試驗周期3~7d。

表2-11 單樁抗壓靜載荷試驗記錄表

(2)快速維持荷載法:試驗載入不要求每級的下沉量達到相對穩定,而以等時間間隔、連續載入。終止載入條件為:出現可判定極限荷載的陡降段或樁頂產生不停下沉,無法繼續載入。

(3)等貫入速率法:試驗以保持樁頂等速貫入土中,連續載入,按荷載-下沉量曲線確定極限荷載。

(4)循環載入卸載試驗法:有的在慢速維持荷載中,在部分荷載區間進行載入卸載循環,有的在每一級荷載達到穩定後,重復載入卸載循環;也有以快速維持荷載法為基礎對每一級荷載進行重復載入卸載循環。

1.慢速維持荷載法

按下列規定進行載入卸載和豎向變形觀測:

(1)載入分級:載入應該分級進行,採用逐級等量載入。分級荷載量宜為最大載入量或預估極限承載力的1/10,其中第一級可取分級荷載的2倍。修訂後的《建築地基基礎設計規范》(GB 50007—2002)規定載入分級不應小於8級。分級荷載宜為預估極限承載力的1/8~1/10;《建築樁基技術規范》(JGJ 94—94)規定,分級荷載為預估極限承載力的1/10~1/15。顯然,不同規范、不同行業標准對分級荷載的取值規定是不同的。

其他的特殊規定和要求:①樁底支承在堅硬岩(土)層上,樁的沉降量很小時,最大載入量不應小於設計荷載的2倍。②濕陷性黃土地區單樁豎向承載力靜載荷浸水試驗的載入有著特殊要求:

在進行單樁豎向承載力靜載荷浸水試驗加荷前,應確認該地基是否充分浸水。要求載入前和載入至單樁豎向承載力的預估值後,向試坑內晝夜浸水,以使樁身周圍和樁底端持力層內的土均達到飽和狀態。否則,單樁豎向靜載荷試驗測得的承載力偏大,且不安全。

(2)變形觀測:每級載入後,間隔5min、10min、15min各測讀一次,以後每隔15min測讀一次,累計1h後每隔30min測讀一次,並記錄樁身外露部分裂縫開裂情況。

(3)卸載觀測:每級卸載值為載入值的2倍。卸載時,每級荷載維持1h,按第15min、30min、60min測讀樁頂沉降量後,即可卸下一級荷載;卸載至零後,應測讀樁頂殘余沉降量,維持時間為3h,測讀時間為第15min、30min,以後每隔30min測讀一次。

(4)變形相對穩定標准:連續2h每小時內的變形值都不超過0.1mm,認為已達到相對穩定,可加下一級荷載。

(5)終止載入條件:當出現下列情況之一時,即可終止載入:①當荷載—沉降(Q—S)曲線上有可判定極限承載力的陡降段,且樁頂總沉降量超過40mm;②用快速法時,在某級荷載作用下,樁頂沉降量大於前一級荷載作用下沉降量的5倍;③用慢速法時,在某級荷載作用下,樁頂沉降量大於前一級荷載作用下沉降量的2倍(即:ΔSn+1/ΔSn≥2;ΔSn為第n級荷載的沉降增量;ΔSn+1為第n+1級荷載的沉降增量)且經24h尚未達到穩定;④已達到反力裝置的最大載入量;⑤已達到設計要求的最大載入量;⑥當荷載—沉降曲線呈緩變型時,可載入至樁頂總沉降量60~80mm,特殊情況下可根據具體要求載入至樁頂累計沉降量超過80mm。非嵌岩的長(超長)樁和大直徑(擴底)樁的Q—S曲線,一般呈緩變型。由於非嵌岩的長(超長)樁的長細比大、樁身較柔,彈性壓縮量大,樁頂沉降較大時,樁端位移還很小;而大直徑(擴底)樁雖樁端位移較大,但尚不足以使端阻力充分發揮,在樁頂沉降達到40mm時,樁端阻力一般不能充分發揮。國際上普遍認為:當沉降量達到樁徑的10%時,才可能達到破壞荷載;⑦當工程樁作錨樁時,錨樁上拔量已達到允許值;⑧ 樁頂荷載為樁受拉鋼筋總極限承載力的0.9倍時。

2.快速維持荷載法

按下列規定進行觀測:

(1)每級荷載施加後,按第5min、15min、30min測讀樁頂沉降量,以後每隔15min測讀一次;

(2)試樁沉降相對穩定標准:載入時每級荷載維持時間不少於1h,最後以15min時間間隔的樁頂沉降增量小於相鄰15min時間間隔的樁頂沉降增量;

(3)當樁頂沉降速率達到相對穩定標准時,再施加下一級荷載;

(4)卸載時,每級荷載維持15min,在第5min、15min測讀樁頂沉降量後,即可卸下一級荷載;卸載至零後,應測讀樁頂殘余沉降量,測讀時間為第5min、10min、15min、30min,以後每隔30min測讀一次,總維持時間為2h。

五、單樁豎向極限承載力確定方法

(1)作荷載—沉降(Q—S)曲線、S—lgt曲線和其他輔助分析所需的曲線;

(2)當陡降段明顯時,取相應於陡降段起點的荷載值為單樁豎向極限承載力;

(3)如果在某級荷載作用下,樁頂沉降量大於前一級荷載作用下沉降量的2倍,且經24h尚未達到穩定標准,單樁豎向抗壓極限承載力值取前一級荷載值;

(4)Q—S曲線呈緩變型時,取樁頂總沉降量S=40mm所對應的荷載值為單樁豎向極限承載力,當樁長大於40m時,宜考慮樁身的彈性壓縮。根據沉降量確定極限承載力的基本原則是,盡可能挖掘樁的極限承載力而又保證有足夠的安全儲備。對直徑D大於或等於800mm的樁,可取Q—S曲線上S=0.05 D對應的荷載值;

(5)單樁豎向抗壓極限承載力,取S—lgt曲線尾部出現明顯向下彎曲的前一級荷載值;

(6)如果因為已達載入反力裝置或設計要求的最大載入量,或錨樁上拔量已超出允許值而終止載入時,若樁的總沉降量不大,樁的豎向抗壓極限承載力取值為不小於實際最大試驗荷載值;

(7)參加統計的試樁,當滿足其極差不超過平均值的30%時,可取其平均值作為單樁豎向極限承載力。極差超過平均值的30%時,宜增加試樁數量並分析離差過大的原因,並結合工程具體情況,確定極限承載力(對樁數為3根及3根以下的柱下樁台,取最小值);

(8)以外推法求樁的豎向抗壓極限承載力:在許多情況下,樁的靜載試驗載入往往達不到極限荷載而終止試驗;對工程樁的試驗也不允許將樁壓至極限破壞狀態,這給判定樁的極限承載力造成一定困難。根據研究和大量經驗對比,已經建立了一些擬合數學模型和應用實測Q—S曲線的作圖方法,用來推測終止試驗後的Q—S曲線,並確定樁的極限承載力。

1.作圖法

在Q—S曲線段上,選取曲率變化較大的一段曲線,在該曲線段兩側取兩點(如圖2-19中M1,M6),把這2點對應的樁頂沉降等分成若干相等的沉降量ΔS(一般不少於四等分),過各等分點作Q軸平行線與Q— S曲線相交得點M2、M3、M4……,過上述各交點作S軸的平行線與Q軸相交,得P1、P2、P3、P4……,過上述各點作與Q軸成45 度的斜線P1A、P2B、P3C、P4D……,P1A 與 M2P2的上延長線交於A點、P2B與M3P3的上延長線交於B點、P3C與M4P4的上延長線交於C點……,作一條過上述各點的直線AG,上述各點大致落在一條直線上,該直線與Q軸的交點F對應的Q值,即為單樁豎向抗壓極限承載值Qu,如圖2-19所示。

圖2-19 作圖法求單樁豎向抗壓極限承載值Qu

2.雙曲線法

雙曲線法又稱斜率倒數法。假設樁的靜載試驗Q—S曲線為一雙曲線,其方程可寫成:

土體原位測試與工程勘察

式中:M,C為待定參數。其確定方法是:在Q—S曲線的已知段選取兩個點(Q1,S1),(Q2,S2),按式(2-32)、式(2-33)求得待定參數M,C為:

土體原位測試與工程勘察

土體原位測試與工程勘察

3.最小二乘法

用最小二乘法對實測Q—S數據進行擬合,則有:

土體原位測試與工程勘察

土體原位測試與工程勘察

土體原位測試與工程勘察

式中:Si為樁測點處樁身沉降量(mm);Qi為測點處的樁身軸力(kPa)。

在數學意義上,樁的極限承載力值Qf為:

土體原位測試與工程勘察

工程中,樁的極限承載力值Qu為:

土體原位測試與工程勘察

也可取沉降量等於40mm所對應的荷載做為樁的極限承載力值:

土體原位測試與工程勘察

4.指數方乘法

假設Q—S曲線為指數曲線時,則有如下的方程式:Q=Qu(1-e-αs),經數學變換後得:

土體原位測試與工程勘察

式中:Q為樁所受軸向靜荷載(kPa);Qu同上;α為擬合系數,取值詳見國家標准 GB/T19496-2004《鑽心檢測離心高強混凝土抗壓強度試驗方法》。

圖2-20 用指數方乘法求樁的極限承載力值

S-lg(1-Q/Qu)為一直線,根據Qu可能的大概范圍,可假設若干個Qu,再根據靜載試驗結果(Qi,Si),計算出lg(1-Q/Qu),用S-lg(1 Q/Qu)法可以繪出若干根指數曲線。若Qu小於真實值時,曲線向上彎曲;若Qu大於真實值時,曲線向下彎曲。在上彎與下彎曲線之間必可得一根近似直線,對應於該近似直線的Qu,即為樁的極限荷載(圖2-20)。

六、單樁豎向抗壓承載力特徵值Ra的確定

無論載入速率的快慢,應按參加統計的試樁數取試驗值的平均值,並要求其極差不得超過平均值的30%。取此平均值的一半作為單樁豎向抗壓承載力特徵值Ra

《建築地基基礎設計規范》(GB 50007—2002)規定,單樁豎向抗壓承載力特徵值Ra為單樁豎向抗壓極限承載力統計值的1/2(即:單樁豎向抗壓極限承載力統計值除以安全系數2)。

七、多年凍土地基單樁豎向靜載荷試驗

多年凍土中試樁施工後,應待凍土地溫恢復正常後再進行載荷試驗。試驗樁宜經過一個冬期後再進行試驗。試樁時間宜選在夏末、冬初,地溫出現最高值的一段時間內進行。

單樁靜載荷試驗視試驗條件和試驗要求不同,可選用:慢速維持荷載法或快速維持荷載法進行試驗:

A.採用慢速維持荷載法時,應符合下列要求:

載入級數不應少於6級,第一級荷載應為預估極限荷載的1/4倍,以後各級荷載可為極限荷載的0.15倍,累計試驗荷載不得小於設計荷載的2倍;

在某級荷載作用下,樁在最後24h內的下沉量不大於0.5mm時,應視為下沉已穩定,方可施加下一級荷載;在某級荷載作用下,連續10d達不到穩定時,應視為樁-地基系統已遭破壞,可終止載入;

試驗的測讀時間,應符合下列規定:

a)沉降:載入前讀一次,載入後讀一次,此後每2h讀一次。在高載下,當樁下沉加快時,觀測次數應增加,縮短間隔時間;

b)地溫:每24h觀測一次。

卸載時的每級荷載值為載入值的兩倍。卸載後應立即測讀樁的變位,此後每2h測讀一次,每級荷載的延續時間為12h,卸載期間應照常觀測地溫。

B.採用快速維持荷載法時,應符合下列要求:

快速加荷時每級荷載的間隔時間,應視樁周凍土類型和凍土條件確定,一般不得小於24h,且每級荷載的間隔時間應相等;

載入的級數一般不得少於6~7級,荷載級差可採用預估極限荷載的0.15倍。當樁在某級荷載作用下產生迅速下沉時,或樁頭總下沉量超過40mm時,即可終止試驗;

快速載入時,樁頂下沉和地溫的觀測要求,應與上述慢速載入時相同。

C.多年凍土地基單樁豎向極限承載力的確定,應符合下列規定:

慢速載入時,破壞荷載的前一級荷載,即為樁的極限荷載;

快速載入時,找出每級荷載下樁的穩定下沉速度(即穩定蠕變速率),並繪制樁的流變曲線圖(圖2-21),曲線延長線與橫坐標的交點F應作為樁的極限長期承載力。

圖2-21 樁的流變曲線示意圖

多年凍土地基單樁豎向靜載荷試驗設計值的取值,應符合下列規定:

慢速載入時,應按參加統計的試樁數,取試驗值的平均值,並要求其極差不得超過平均值的30%,取此平均值的一半作為單樁承載力的設計值。

快速載入時,應按參加統計的試樁數取試驗值的平均值,並要求其極差不得超過平均值的30%,取此平均值的一半作為單樁承載力的設計值。

Ⅳ SMT迴流焊曲線怎麼看.詳細一點哈,多少溫度需要多少時間8溫區的

八溫區溫度及時間:溫區一:148度;溫區二:180度;溫區三:183度;溫區四:168度;溫區五:174度;溫區六:198度;溫區七:240度;溫區八:252度;運輸速度:0.6m/min;超溫報警設置10度。

迴流焊整體上講只有四大溫區預熱區、恆溫區、迴流焊接區、冷卻區。不管迴流焊是多少個溫區的迴流焊,它們的溫度設置都是根據這四大溫區的作用原理來設置的。市場上一般八溫區迴流焊比較多些。

迴流焊實際測量溫度和迴流焊設置溫度是有一定溫差的。實際上無鉛迴流焊高焊接溫度是245度。迴流焊的溫度設置好根據錫膏廠提供的溫度曲線和實際的焊接產品來設置。

十二溫區迴流焊:

1、預熱區:PCB與材料(元器件)預熱,針對迴流焊爐說的是前一到兩個加熱區間的加熱作用.更高預熱,使被焊接材質達到熱均衡,錫膏開始活動,助焊劑等成分受到溫度上升而開始適量的揮發,此針對迴流焊爐說的是第三到四個加熱區間的加熱作用。

2、恆溫區: 除去表面氧化物,一些氣流開始蒸發(開始焊接)溫度達到焊膏熔點(此時焊膏處在將溶未溶狀態),此針對迴流焊爐的是第五六七三個加熱區間的加熱作用。

3、焊接區:從焊料熔點至峰值再降至熔點, 焊料熔溶的過程,PAD與焊料形成焊接,此針對迴流焊爐的是第八、九、十、三個加區間的加熱作用。

4、冷卻區:從焊料熔點降至50度左右, 合金焊點的形成過程,此針對迴流焊爐的是第十一、十二兩個冷卻區間的冷卻作用。

(4)焊接結構SN曲線如何求得擴展閱讀:

迴流焊四大溫區作用原理:

1、預熱區的工作原理:預熱是為了使焊膏活性化,及避免浸錫時進行急劇高溫加熱引起部品不良所進行的加熱行為;

2、恆溫區的工作原理:保溫階段的主要目的是使迴流焊爐膛內各元件的溫度趨於穩定,盡量減少溫差。在這個區域里給予足夠的時間使較大元件的溫度趕上較小元件,並保證焊膏中的助焊劑得到充分揮發;

3、迴流焊接區的工作原理:當PCB進入迴流區時,溫度迅速上升使焊膏達到熔化狀態。有鉛焊膏63sn37pb的熔點是183℃,無鉛焊膏96.5Sn3Ag0.5Cu的熔點是217℃。

4、冷卻區工作原理:在此階段,溫度冷卻到固相溫度以下,使焊點凝固。冷卻速率將對焊點的強度產生影響。冷卻速率過慢,將導致過量共晶金屬化合物產生,以及在焊接點處易發生大的晶粒結構,使焊接點強度變低,冷卻區降溫速率般在4℃/S左右,冷卻75℃即可。

Ⅳ 如何設定迴流焊溫度曲線

迴流焊溫度曲線各環節的一般技術要求: 一般而言,迴流焊溫度曲線可分為三個階段:預熱階段、恆溫階段、迴流階段、冷卻階段。x0dx0a 第一、迴流焊預熱階段溫度曲線的設置: x0dx0a預熱是指為了使錫水活性化為目的和為了避免浸錫時進行急劇高溫加熱引起部品不具合為目的所進行的加熱行為。 預熱溫度:依使用錫膏的種類及廠商推薦的條件設定。一般設定在80~160℃范圍內使其慢慢升溫(最佳曲線);而對於傳統曲線恆溫區在140~160℃間,注意溫度高則氧化速度會加快很多(在高溫區會線性增大,在150℃左右的預熱溫度下,氧化速度是常溫下的數倍,銅板溫度與氧化速度的關系見附圖)預熱溫度太低則助焊劑活性化不充分。 •預熱時間視PCB板上熱容量最大的部品、PCB面積、PCB厚度以及所用錫膏性能而定。一般在80~160℃預熱段內時間為60~120sec,由此有效除去焊膏中易揮發的溶劑,減少對元件的熱沖擊,同時使助焊劑充分活化,並且使溫度差變得較小。 •預熱段溫度上升率:就加熱階段而言,溫度范圍在室溫與溶點溫度之間慢的上升率可望減少大部分的缺陷。對最佳曲線而言推薦以0.5~1℃/sec的慢上升率,對傳統曲線而言要求在3~4℃/sec以下進行升溫較好。x0dx0a第二迴流焊在恆溫階段的溫度曲線設置x0dx0a迴流焊的恆溫階段是指溫度從120度~150度升至焊膏熔點的區域。保溫段的主要目的是使SMA內各元件的溫度x0dx0a趨於穩定,盡量減少溫差。在這個區域_給予足夠的時間使較大元件的溫度趕上較小元件,並保證焊膏中的助x0dx0a焊劑得到充分揮發。到保溫段結束,焊盤、焊料球及元件引腳上的氧化物被除去,整個電路板的溫度達到平衡x0dx0a。應注意的是SMA上所有元件在這一段結束時應具有相同的溫度,否則進入到迴流段將會因為各部分溫度不均x0dx0a產生各種不良焊接現象。x0dx0a第三、迴流焊在迴流階段的溫度曲線設置: x0dx0a迴流曲線的峰值溫度通常是由焊錫的熔點溫度、組裝基板和元件的耐熱溫度決定的。一般最小峰值溫度大約在焊錫熔點以上30℃左右(對於目前Sn63 - pb焊錫,183℃熔融點,則最低峰值溫度約210℃左右)。峰值溫度過低就易產生冷接點及潤濕不夠,熔融不足而致生半田, 一般最高溫度約235℃,過高則環氧樹脂基板和塑膠部分焦化和脫層易發生,再者超額的共界金屬化合物將形成,並導致脆的焊接點(焊接強度影響)。 •超過焊錫溶點以上的時間:由於共界金屬化合物形成率、焊錫內鹽基金屬的分解率等因素,其產生及濾出不僅與溫度成正比,且與超過焊錫溶點溫度以上的時間成正比,為減少共界金屬化合物的產生及濾出則超過熔點溫度以上的時間必須減少,一般設定在45~90秒之間,此時間限制需要使用一個快速溫升率,從熔點溫度快速上升到峰值溫度,同時考慮元件承受熱應力因素,上升率須介於2.5~3.5℃/see之間,且最大改變率不可超過4℃/sec。x0dx0a第四、迴流焊在冷卻階段的溫度曲線設置: x0dx0a高於焊錫熔點溫度以上的慢冷卻率將導致過量共界金屬化合物產生,以及在焊接點處易發生大的晶粒結構,使焊接點強度變低,此現象一般發生在熔點溫度和低於熔點溫度一點的溫度范圍內。快速冷卻將導致元件和基板間太高的溫度梯度,產生熱膨脹的不匹配,導致焊接點與焊盤的分裂及基板的變形,一般情況下可容許的最大冷卻率是由元件對熱沖擊的容忍度決定的。綜合以上因素,冷卻區降溫速率一般在4℃/S左右,冷卻至75℃即可。

Ⅵ 重金屬的檢測有哪些方法

重金屬檢測方法及應用
一、重金屬的危害特性
(一)自然性:
長期生活在自然環境中的人類,對於自然物質有較強的適應能力。有人分析了人體中60多種常見元素的分布規律,發現其中絕大多數元素在人體血液中的百分含量與它們在地殼中的百分含量極為相似。但是,人類對人工合成的化學物質,其耐受力則要小得多。所以區別污染物的自然或人工屬性,有助於估計它們對人類的危害程度。鉛、鎘、汞、砷等重金屬,是由於工業活動的發展,引起在人類周圍環境中的富集,通過大氣、水、食品等進入人體,在人體某些器官內積累,造成慢性中毒,危害人體健康。
(二)毒性:
決定污染物毒性強弱的主要因素是其物質性質、含量和存在形態。例如鉻有二價、三價和六價三種形式,其中六價鉻的毒性很強,而三價鉻是人體新陳代謝的重要元素之一。在天然水體中一般重金屬產生毒性的范圍大約在1~10mg/L之間,而汞,鎘等產生毒性的范圍在0.01~0.001mg/L之間。
(三)時空分布性:
污染物進入環境後,隨著水和空氣的流動,被稀釋擴散,可能造成點源到面源更大范圍的污染,而且在不同空間的位置上,污染物的濃度和強度分布隨著時間的變化而不同。
(四)活性和持久性:
活性和持久性表明污染物在環境中的穩定程度。活性高的污染物質,在環境中或在處理過程中易發生化學反應,毒性降低,但也可能生成比原來毒性更強的污染物,構成二次污染。如汞可轉化成甲基汞,毒性更強。與活性相反,持久性則表示有些污染物質能長期地保持其危害性,如重金屬鉛、鎘等都具有毒性且在自然界難以降解,並可產生生物蓄積,長期威脅人類的健康和生存。
(五)生物可分解性:
有些污染物能被生物所吸收、利用並分解,最後生成無害的穩定物質。大多數有機物都有被生物分解的可能性,而大多數重金屬都不易被生物分解,因此重金屬污染一但發生,治理更難,危害更大。
(六)生物累積性:
生物累積性包括兩個方面:一是污染物在環境中通過食物鏈和化學物理作用而累積。二是污染物在人體某些器官組織中由於長期攝入的累積。如鎘可在人體的肝、腎等器官組織中蓄積,造成各器官組織的損傷。又如1953年至1961年,發生在日本的水俁病事件,無機汞在海水中轉化成甲基汞,被魚類、貝類攝入累積,經過食物鏈的生物放大作用,當地居民食用後中毒。
(七)對生物體作用的加和性:
多種污染物質同時存在,對生物體相互作用。污染物對生物體的作用加和性有兩類:一類是協同作用,混合污染物使其對環境的危害比污染物質的簡單相加更為嚴重;另一類是拮抗作用,污染物共存時使危害互相削弱。
二、重金屬的定量檢測技術
通常認可的重金伍數毀屬分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子熒光法(AFS)、電感耦合等離子體法(ICP)、X熒光光譜(XRF)、電感耦合等離子質譜法(ICP-MS)。除上述方法外,更引入光譜法來畢茄進行檢測,精密度更高,更為准確!
日本和歐盟國家有的採用電感耦合等離子質譜法(ICP-MS)分析,但對國內用戶而言,儀器成腔備本高。也有的採用X熒光光譜(XRF)分析,優點是無損檢測,可直接分析成品,但檢測精度和重復性不如光譜法。最新流行的檢測方法--陽極溶出法,檢測速度快,數值准確,可用於現場等環境應急檢測。
(一)原子吸收光譜法(AAS)
原子吸收光譜法是20世紀50年代創立的一種新型儀器分析方法,它與主要用於無機元素定性分析的原子發射光譜法相輔相成,已成為對無機化合物進行元素定量分析的主要手段。
原子吸收分析過程如下:1、將樣品製成溶液(同時做空白);2、制備一系列已知濃度的分析元素的校正溶液(標樣);3、依次測出空白及標樣的相應值;4、依據上述相應值繪出校正曲線;5、測出未知樣品的相應值;6、依據校正曲線及未知樣品的相應值得出樣品的濃度值。
現在由於計算機技術、化學計量學的發展和多種新型元器件的出現,使原子吸收光譜儀的精密度、准確度和自動化程度大大提高。用微處理機控制的原子吸收光譜儀,簡化了操作程序,節約了分析時間。現在已研製出氣相色譜—原子吸收光譜(GC-AAS)的聯用儀器,進一步拓展了原子吸收光譜法的應用領域。
(二)紫外可見分光光度法(UV)
其檢測原理是:重金屬與顯色劑—通常為有機化合物,可於重金屬發生絡合反應,生成有色分子團,溶液顏色深淺與濃度成正比。在特定波長下,比色檢測。
分光光度分析有兩種,一種是利用物質本身對紫外及可見光的吸收進行測定;另一種是生成有色化合物,即「顯色」,然後測定。雖然不少無機離子在紫外和可見光區有吸收,但因一般強度較弱,所以直接用於定量分析的較少。加入顯色劑使待測物質轉化為在紫外和可見光區有吸收的化合物來進行光度測定,這是目前應用最廣泛的測試手段。顯色劑分為無機顯色劑和有機顯色劑,而以有機顯色劑使用較多。大多當數有機顯色劑本身為有色化合物,與金屬離子反應生成的化合物一般是穩定的螯合物。顯色反應的選擇性和靈敏度都較高。有些有色螯合物易溶於有機溶劑,可進行萃取浸提後比色檢測。近年來形成多元配合物的顯色體系受到關注。多元配合物的指三個或三個以上組分形成的配合物。利用多元配合物的形成可提高分光光度測定的靈敏度,改善分析特性。顯色劑在前處理萃取和檢測比色方面的選擇和使用是近年來分光光度法的重要研究課題。
(三)原子熒光法(AFS)
原子熒光光譜法是通過測量待測元素的原子蒸氣在特定頻率輻射能激以下所產生的熒光發射強度,以此來測定待測元素含量的方法。
原子熒光光譜法雖是一種發射光譜法,但它和原子吸收光譜法密切相關,兼有原子發射和原子吸收兩種分析方法的優點,又克服了兩種方法的不足。原子熒光光譜具有發射譜線簡單,靈敏度高於原子吸收光譜法,線性范圍較寬干擾少的特點,能夠進行多元素同時測定。原子熒光光譜儀可用於分析汞、砷、銻、鉍、硒、碲、鉛、錫、鍺、鎘鋅等11種元素。現已廣泛用環境監測、醫葯、地質、農業、飲用水等領域。在國標中,食品中砷、汞等元素的測定標准中已將原子熒光光譜法定為第一法。
氣態自由原子吸收特徵波長輻射後,原子的外層電子從基態或低能態會躍遷到高能態,同時發射出與原激發波長相同或不同的能量輻射,即原子熒光。原子熒光的發射強度If與原子化器中單位體積中該元素的基態原子數N成正比。當原子化效率和熒光量子效率固定時,原子熒光強度與試樣濃度成正比。
現已研製出可對多元素同時測定的原子熒光光譜儀,它以多個高強度空心陰極燈為光源,以具有很高溫度的電感耦合等離子體(ICP)作為原子化器,可使多種元素同時實現原子化。多元素分析系統以ICP原子化器為中心,在周圍安裝多個檢測單元,與空心陰極燈一一成直角對應,產生的熒光用光電倍增管檢測。光電轉換後的電信號經放大後,由計算機處理就獲得各元素分析結果。
(四)電化學法—陽極溶出伏安法
電化學法是近年來發展較快的一種方法,它以經典極譜法為依託,在此基礎上又衍生出示波極譜、陽極溶出伏安法等方法。電化學法的檢測限較低,測試靈敏度較高,值得推廣應用。如國標中鉛的測定方法中的第五法和鉻的測定方法的第二法均為示波極譜法。
陽極溶出伏安法是將恆電位電解富集與伏安法測定相結合的一種電化學分析方法。這種方法一次可連續測定多種金屬離子,而且靈敏度很高,能測定10-7-10-9mol/L的金屬離子。此法所用儀器比較簡單,操作方便,是一種很好的痕量分析手段。我國已經頒布了適用於化學試劑中金屬雜質測定的陽極溶出伏安法國家標准。
陽極溶出伏安法測定分兩個步驟。第一步為「電析」,即在一個恆電位下,將被測離子電解沉積,富集在工作電極上與電極上汞生成汞齊。對給定的金屬離子來說,如果攪拌速度恆定,預電解時間固定,則m=Kc,即電積的金屬量與被測金屬離了的濃度成正比。第二步為「溶出」,即在富集結束後,一般靜止30s或60s後,在工作電極上施加一個反向電壓,由負向正掃描,將汞齊中金屬重新氧化為離子回歸溶液中,產生氧化電流,記錄電壓-電流曲線,即伏安曲線。曲線呈峰形,峰值電流與溶液中被測離了的濃度成正比,可作為定量分析的依據,峰值電位可作為定性分析的依據。
示波極譜法又稱「單掃描極譜分析法」。一種極譜分析新力一法。它是一種快速加入電解電壓的極譜法。常在滴汞電極每一汞滴成長後期,在電解池的兩極上,迅速加入一鋸齒形脈沖電壓,在幾秒鍾內得出一次極譜圖,為了快速記錄極譜圖,通常用示波管的熒光屏作顯示工具,因此稱為示波極譜法。其優點:快速、靈敏。
(五)X射線熒光光譜法(XRF)
X射線熒光光譜法是利用樣品對x射線的吸收隨樣品中的成分及其多少變化而變化來定性或定量測定樣品中成分的一種方法。它具有分析迅速、樣品前處理簡單、可分析元素范圍廣、譜線簡單,光譜干擾少,試樣形態多樣性及測定時的非破壞性等特點。它不僅用於常量元素的定性和定量分析,而且也可進行微量元素的測定,其檢出限多數可達10-6。與分離、富集等手段相結合,可達10-8。測量的元素范圍包括周期表中從F-U的所有元素。多道分析儀,在幾分鍾之內可同時測定20多種元素的含量。
x射線熒光法不僅可以分析塊狀樣品,還可對多層鍍膜的各層鍍膜分別進行成分和膜厚的分析。
當試樣受到x射線,高能粒子束,紫外光等照射時,由於高能粒子或光子與試樣原子碰撞,將原子內層電子逐出形成空穴,使原子處於激發態,這種激發態離子壽命很短,當外層電子向內層空穴躍遷時,多餘的能量即以x射線的形式放出,並在教外層產生新的空穴和產生新的x射線發射,這樣便產生一系列的特徵x射線。特徵x射線是各種元素固有的,它與元素的原子系數有關。所以只要測出了特徵x射線的波長λ,就可以求出產生該波長的元素。即可做定性分析。在樣品組成均勻,表面光滑平整,元素間無相互激發的條件下,當用x射線(一次x射線)做激發原照射試樣,使試樣中元素產生特徵x射線(熒光x射線)時,若元素和實驗條件一樣,熒光x射線強度與分析元素含量之間存在線性關系。根據譜線的強度可以進行定量分析
(六)電感耦合等離子體質譜法(ICP-MS)
ICP-MS的檢出限給人極深刻的印象,其溶液的檢出限大部份為ppt級,實際的檢出限不可能優於你實驗室的清潔條件。必須指出,ICP-MS的ppt級檢出限是針對溶液中溶解物質很少的單純溶液而言的,若涉及固體中濃度的檢出限,由於ICP-MS的耐鹽量較差,ICP-MS檢出限的優點會變差多達50倍,一些普通的輕元素(如S、 Ca、Fe 、K、 Se)在ICP-MS中有嚴重的干擾,也將惡化其檢出限。
ICP-MS由作為離子源ICP焰炬,介面裝置和作為檢測器的質譜儀三部分組成。
ICP-MS所用電離源是感應耦合等離子體(ICP),其主體是一個由三層石英套管組成的炬管,炬管上端繞有負載線圈,三層管從里到外分別通載氣,輔助氣和冷卻氣,負載線圈由高頻電源耦合供電,產生垂直於線圈平面的磁場。如果通過高頻裝置使氬氣電離,則氬離子和電子在電磁場作用下又會與其它氬原子碰撞產生更多的離子和電子,形成渦流。強大的電流產生高溫,瞬間使氬氣形成溫度可達10000k的等離子焰炬。被分析樣品通常以水溶液的氣溶膠形式引入氬氣流中,然後進入由射頻能量激發的處於大氣壓下的氬等離子體中心區,等離子體的高溫使樣品去溶劑化,汽化解離和電離。部分等離子體經過不同的壓力區進入真空系統,在真空系統內,正離子被拉出並按照其質荷比分離。在負載線圈上面約10mm處,焰炬溫度大約為8000K,在這么高的溫度下,電離能低於7eV的元素完全電離,電離能低於10.5ev的元素電離度大於20%。由於大部分重要的元素電離能都低於10.5eV,因此都有很高的靈敏度,少數電離能較高的元素,如C,O,Cl,Br等也能檢測,只是靈敏度較低。

Ⅶ 表面裝貼技術

無鉛焊接
考慮到環境和健康的因素,歐盟已通過立法將在2008年停止使用含鉛釺料,美國和日本也正積極考慮通過立法來減少和禁止鉛等有害元素的使用。 鉛的毒害目前全球電子行業用釺料每年消耗的鉛約為20000t,大約佔世界鉛年總產量的5%。鉛和鉛的化合物已被環境保護機構(EPA)列入前17種對人體和環境危害最大的化學物質之一。 無鉛釺料 目前常用的含鉛合金焊料粉末有錫一鉛(Sn-Pb)、錫一鉛一銀(Sn-Pb-Ag)、錫一鉛一鉍(Sn-Pb-Bi)等,常用的合金成分為63%Sn/37%Pb以及62%Sn/36%Pb/2%Ag。不同合金比例有不同的熔化溫度。對於標準的Sn63和Sn62焊料合金來說,迴流溫度曲線的峰值溫度在203到230度之間。然而,大部分的無鉛焊膏的熔點比Sn63合金高出30至45度,因此, 無鉛釺料的基本要求目前國際上公認的無鉛釺料定義是:以Sn為基體,添加了Ag、Cu、Sb、In其它合金元素,而Pb的質量分數在0.2%以下的主要用於電子組裝的軟釺料合金。無鉛釺料不是新技術,但今天的無鉛釺料研究是要尋求年使用量為5~6萬噸的Sn-Pb釺料的替代產品。因此,替代合金應該滿足以下要求:

(1)其全球儲量足夠滿足市場需求。某些元素,如銦和鉍,儲量較小,因此只能作為無鉛釺料中的微量添加成分;
(2)無毒性。某些在考慮范圍內的替代元素,如鎘、碲是有毒的。而某些元素,如銻,如果改變毒性標準的話,也可以認為是有毒的;
(3)能被加工成需要的所有形式,包括用於手工焊和修補的焊絲;用於釺料膏的焊料粉;用於波峰焊的焊料棒等。不是所有的合金能夠被加工成所有形式,如鉍的含量增加將導致合金變脆而不能拉拔成絲狀;
(4)相變溫度(固/液相線溫度)與Sn-Pb釺料相近;
(5)合適的物理性能,特別是電導率、熱導率、熱膨脹系數;
(6)與現有元件基板/引線及PCB材料在金屬學性能上兼容;
(7)足夠的力學性能:剪切強度、蠕變抗力、等溫疲勞抗力、熱機疲勞抗力、金屬學組織的穩定性;
(8)良好的潤濕性;
(9)可接受的成本價格。

新型無鉛釺料的成本應低於 22.2/kg,因此其中In的質量分數應小於1.5%,Bi含量應小於2.0%。 早期的研發計劃集中於確定新型合金成分、多元相圖研究和潤濕性、強度等基本性能考察。後期的研發計劃主要集中於五種合金系列:SnCu、SnAg、SnAgCu、SnAgCuSb和SnAgBi。並深入探討其疲勞性能、生產行為和工藝優化。 表2.3 NCMS美國國家製造科學中心提出的無鉛釺料性能評價標准 IPC也於2000年6月發布了研究報告「A guide line for assembly of lead-free electronics」。

目前國際上關於無鉛釺料的主要結論如下:現在已經有很多種無鉛釺料面世沒有一種能夠為SnPb釺料的直接替代提供全面的解決方案。

(1)對於某些特殊的工藝過程,某些特定的無鉛釺料可以實現直接替代;
(2)目前而言,最吸引人的無鉛釺料是Sn-Ag-Cu系列。其他有潛力的組合包括Sn-0.7Cu、Sn-3.5Ag和Sn-Ag-Bi;
(3)目前還沒有合適的高鉛高熔點釺料的無鉛替代品;
(4)目前看來,釺劑的化學系統不需要進行大的變動;
(5)無鉛釺料形成焊點的可靠性優於SnPb合金。

幾種無鉛釺料的對比

(1)SnCu:價格最便宜;熔點最高;力學性能最差。
(2)SnAg:力學性能良好,可焊性良好,熱疲勞可靠性良好,共晶成分時熔點為221℃。SnAg和SnAgCu組合之間的差異很小,其選擇主要取決於價格、供貨等其他因素。
(3)SnAgCu(Sb):直到最近幾年才知道Sn-Ag-Cu之間存在三元共晶,且其熔點低於Sn-Ag共晶,當然該三元共晶的准確成分還存在爭議。與Sn-Ag和Sn-Cu相比,該組合的可靠性和可焊性更好。而且加入0.5%Sb後還可以進一步提高其高溫可靠性。
(4)SnAgBi(Cu)(Ge):熔點較低,200~210℃;可靠性良好;在所有無鉛釺料中可焊性最好,已得到Matsushita確認;加入Cu或Ge可進一步提高強度;缺點是含Bi帶來潤濕角上升缺陷的問題。
(5)SnZnBi:熔點最接近於Sn-Pb共晶;但含Zn帶來很多問題,如釺料膏保存期限、大量活性釺劑殘渣、氧化問題、潛在腐蝕性問題。目前不推薦使用。 2.2 選擇合金 由上,本次迴流工藝設計焊料合金採用Sn/Ag/Cu合金(Sn/Ag3.0/Cu0.5),因為該合金被認為是國際工業中的首選並且得到了工業和研究公會成員的推薦。因為雖然一些公會還提議並且研究了另一種合金Sn/0.7Cu(質量百分比),一些企業在生產中也有採用這種合金。但是相對Sn/Cu合金的可靠性和可濕性,另外考慮到在迴流焊和波峰焊中採用同種合金,Sn/Ag/Cu合金便成為工藝發展試驗最好的選擇。 Sn/Ag3.0/Cu0.5合金性能: 溶解溫度:固相線217℃/液相線220℃;成本:0.10美元/cm3 與Sn/Cu焊料價格比:2.7 機械強度:48kg/mm2 延伸率:75% 濕潤性:良 由Sn/Ag/Cu合金性能可知:焊料合金熔融溫度比原Sn/Pb合金高出36℃,形成商品化後的價格也比原來提高。工藝焊接溫度採用日本對此合金焊料的推薦工藝曲線,見圖2.1。
日本推薦的無鉛迴流焊典型工藝曲線 說明:推薦的工藝曲線上有三個重要點:

(1) 預熱區升溫速度要盡量慢一些(選擇數值2~3℃/s),以便控制由焊膏的塌邊而造成焊點的橋接、焊錫球等。
(2) 預熱要求必須在(45~90sec、120~160℃)范圍內,以控制由PCB基板的溫差及焊劑性能變化等因素而發生迴流焊時的不良。
(3) 焊接的最高溫度在230℃以上,保持20~30sec,以保證焊接的濕潤性。 冷卻速度選擇-4℃/s 6 迴流焊中出現的缺陷及其解決方案 焊接缺陷可以分為主要缺陷、次要缺陷和表面缺陷。凡使SMA功能失效的缺陷稱為主要缺陷;次要缺陷是指焊點之間潤濕尚好,不會引起SMA功能喪失,但有影響產品壽命的可能的缺陷;表面缺陷是指不影響產品的功能和壽命。它受許多參數的影響,如焊膏、基板、元器件可焊性、印刷、貼裝精度以及焊接工藝等。我們在進行SMT工藝研究和生產中,深知合理的表面組裝工藝技術在控制和提高SMT生產質量中起著至關重要的作用。

迴流焊中的錫珠

(1) 迴流焊中錫珠形成的機理 迴流焊中出現的錫珠(或稱焊料球),常常藏於矩形片式元件兩焊端之間的側面或細間距引腳之間,如圖6.1、6.2。在元件貼裝過程中,焊膏被置於片式元件的引腳與焊盤之間,隨著印製板穿過迴流焊爐,焊膏熔化變成液體,如果與焊盤和器件引腳等潤濕不良,液態焊料會因收縮而使焊縫填充不充分,所有焊料顆粒不能聚合成一個焊點。部分液態焊料會從焊縫流出,形成錫珠。因此,焊料與焊盤和器件引腳的潤濕性差是導致錫珠形成的根本原因。 圖6.1 片式元件一例有粒度稍大的錫球 圖6.2 比引腳四周有分散的錫球 錫膏在印刷工藝中,由於模板與焊盤對中偏移,若偏移過大則會導致鍋膏漫流到焊盤外,加熱後容易出現錫珠。貼片過程中Z軸的壓力是引起錫珠的一項重要原因,往往不被人們歷注意,部分貼片機由於Z鈾頭是依據元件的厚度來定位.故會引起元件貼到PCB上一瞬間將錫蕾擠壓到焊盤外的現象,這部分組喜明顯會引起錫珠。這種情況下產生的錫珠尺寸稍大,通常只要重新調節Z鈾高度,就能防止錫珠的產生。

(2) 原因分析與控制方法 造成焊料潤濕性差的原因很多,以下主要分析與相關工藝有關的原因及解決措施:

(1) 迴流溫度曲線設置不當。焊膏的迴流與溫度和時間有關,如果未到達足夠的溫度或時間,焊膏就不會迴流。預熱區溫度上升速度過快,時間過短,使焊膏內部的水分和溶劑未完全揮發出來,到達迴流焊溫區時,引起水分、溶劑沸騰,濺出錫珠。實踐證明,將預熱區溫度的上升速度控制在1~4℃/s是較理想的。

(2) 如果總在同一位置上出現錫珠,就有必要檢查金屬模板設計結構。模板開口尺寸腐蝕精度達不到要求,焊盤尺寸偏大,以及表面材質較軟(如銅模板),會造成印刷焊膏的外形輪廓不清晰,互相橋接,這種情況多出現在對細間距器件的焊盤印刷時,迴流焊後必然造成引腳間大量錫珠的產生。因此,應針對焊盤圖形的不同形狀和中心距,選擇適宜的模板材料及模板製作工藝來保證焊膏印刷質量。

(3) 如果從貼片至迴流焊的時間過長,則因焊膏中焊料粒子的氧化,焊劑變質、活性降低,會導致焊膏不迴流,產生錫珠。選用工作壽命長一些的焊膏(我們認為至少4h),則會減輕這種影響。

(4) 另外,焊膏錯印的印製板清洗不充分,會使焊膏殘留於印製板表面及通孔中。迴流焊之前,貼放元器件時,使印刷焊膏變形。這些也是造成錫珠的原因。因此應加強操作者和工藝人員在生產過程中的責任心,嚴格遵照工藝要求和操作規程進行生產,加強工藝過程的質量控制。 6.2 立片問題(曼哈頓現象) 形片式元件的一端焊接在焊盤上,而另一端則翹立,這種現象就稱為曼哈頓現象,見圖6.5。引起這種現象的主要原因是元件兩端受熱不均勻,焊膏熔化有先後所致。在以下情況會造成元件兩端受熱不均勻: 圖6.5 立片現象 圖6.6 元件偏離焊盤故兩側受力不平衡產生立片現象 。

(1)元件排列方向設計不正確。我們設想在迴流焊爐中有一條橫跨爐子寬度的迴流焊限線,一旦焊膏通過它就會立即熔化,如圖6.7所示。片式矩形元件的一個端頭先通過迴流焊限線,焊膏先熔化,完全浸潤元件端頭的金屬表面,具有液態表面張力;而另一端未達到183℃液相溫度,焊膏未熔化,只有焊劑的粘接力,該力遠小於迴流焊焊膏的表面張力,因而,使未熔化端的元件端頭向上直立。因此,應保持元件兩端同時進入迴流焊限線,使兩端焊盤上的焊膏同時熔化,形成均衡的液態表面張力,保持元件位置不變。 圖6.7 焊盤一側錫青末熔化.兩焊盤張力不平衡就會出現立碑。

(2)在進行汽相焊接時印製電路組件預熱不充分。汽相焊是利用惰性液體蒸汽冷凝在元件引腳和PCB焊盤上時,釋放出熱量而熔化焊膏。汽相焊分平衡區和飽和蒸汽區,在飽和蒸汽區焊接溫度高達217℃,在生產過程中我們發現,如果被焊組件預熱不充分,經受100℃以上的溫差變化,汽相焊的汽化力很容易將小於1206封裝尺寸的片式元件浮起,從而產生立片現象。我們通過將被焊組件在高低溫箱內145~150℃的溫度下預熱1~2min,然後在汽相焊的平衡區內再預熱1min左右,最後緩慢進入飽和蒸汽區焊接,消除了立片現象。

(3)焊盤設計質量的影響。若片式元件的一對焊盤尺寸不同或不對稱,也會引起印刷的焊膏量不一致,小焊盤對溫度響應快,其上的焊膏易熔化,大焊盤則相反,所以,當小焊盤上的焊膏熔化後,在焊膏表面張力作用下,將元件拉直豎起。焊盤的寬度或間隙過大,也都可能出現立片現象。嚴格按標准規范進行焊盤設計是解決該缺陷的先決條件。 6.3 橋接 橋接也是SMT生產中常見的缺陷之一,它會引起元件之間的短路,遇到橋接必須返修。橋接這發生的過程。

(1)焊膏質量問題 錫膏中金屬含量偏高,特別是印刷時間過久後.易出現金屬含量增高;焊膏黏度低,預熱後漫流到焊盤外;焊膏塌落度差,預熱後漢漫到焊盤外,均會導致IC引腳橋接。 解決辦法是調整錫膏。

(2)印刷系統 印刷機重復精度差,對位不齊,錫膏印刷到銀條外,這種情況多見於細間距QFP生產;鋼板對位不好和PCB對位不好以及鋼板窗口尺寸/厚度設計不對與PCB焊盤設計合金鍍層不均勻,導致的錫膏量偏多,均會造成橋接。 解決方法是調整印刷機,改善PCB焊盤塗覆層。

(3)貼放 貼放壓力過大,錫膏受壓後浸沉是生產中多見的原因,應調整Z軸高度。若有貼片精度不夠,元件出現移位及IC引腳變形,則應針對原因改進。

(4)預熱 升溫速度過快,錫膏中溶劑來不及揮發。 6.4 吸料/芯吸現象 芯吸現象又稱抽芯現象是常見焊接缺陷之一如圖6.8,多見於汽相迴流焊中。芯吸現象是焊料脫離焊盤沿引腳上行到引腳與晶元本體之間,會形成嚴重的虛焊現象。 圖6.8 芯吸現象 產生的原因通常認為是元件引腳的導熱率大.升溫迅速,以致焊料優先潤濕引腳,焊料與引腳之間的潤濕力遠大於焊料與焊盤之間的潤濕力,引腳的上翹更會加劇芯吸現象的發生。在紅外迴流焊中,PCB基材與焊料中的有機助焊劑是紅外線的優良吸收介質,而引腳卻能部分反射紅外線,相比而言,焊料優先熔化,它與焊盤的潤濕力大於它與引腳之間的潤濕力,故焊料不會沿引腳上升,發生芯吸現象的概率就小很多。 解決辦法是:在汽相迴流焊時應首先將SMA充分預熱後再放入汽相爐中;應認真檢查和保證PCB板焊盤的可焊性,可焊性不好的PCB不應用於生產;元件的共面性不可忽視,對共面性不良的器件不應用於生產。 6.5 焊接後印製板阻焊膜起泡 印製板組件在焊接後,會在個別焊點周圍出現淺綠色的小泡,嚴重時還會出現指甲蓋大小的泡狀物,不僅影響外觀質量,嚴重時還會影響性能,是焊接工藝中經常出現的問題之一。 阻焊膜起泡的根本原因,在於阻焊膜與陽基材之間存在氣體/水蒸氣。微量的氣體/水蒸氣會夾帶到不同的工藝過程,當遇到高溫時,氣體膨脹,導致阻焊膜與陽基材的分層。焊接,焊盤溫度相對較高,故氣泡首先出現在焊盤周圍。 現在加工過程經常需要清洗,乾燥後再做下道工序,如腐刻後,應乾燥後再貼阻焊膜,此時若乾燥溫度不夠,就會夾帶水汽進入下道工序。PCB加工前存放環境不好,濕度過高,焊接時又沒有及時乾燥處理;在波峰焊工藝中,經常使用含水的助焊劑,若PCB預熱溫度不夠,助焊劑中的水汽會沿通孔的孔壁進入到PCB基板的內部,焊盤周圍首先進入水汽,遇到焊接高溫後這些情況都會產生氣泡。 解決辦法是; (1)應嚴格控制各個環節,購進的PCB應檢驗後入庫.通常標准情況下,不應出現起泡現象; (2)PCB應存放在通風乾燥環境下,存放期不超過6個月; (3)PCB在焊接前應放在烘箱中預烘105℃/4h~6h; 6.6 PCB扭曲 PCB扭曲問題是SMT大生產中經常出現的問題,它會對裝配及測試帶來相當大的影響,因此在生產中應盡量避免這個問題的出現,PCB扭曲的原因有如下幾種: (1) PCB本身原材料選用不當,PCB的Tg低,特別是紙基PCB,其加工溫度過高,會使PCB變彎曲。 (2) PCB設計不合理,元件分布不均會造成PCB熱應力過大,外形較大的連接器和插座也會影響PCB的膨脹和收縮,乃至出現永久性的扭曲。 (3)雙面PCB,若一面的銅箔保留過大(如地線),而另一面銅箔過少,會造成兩面收縮不均勻而出現變形。 (4)迴流焊中溫度過高也會造成PCB的扭曲。 針對上述原因,其解決辦法如下:在價格和空間容許的情況下,選用Tg高的PCB或增加PCB的厚度,以取得最佳長寬比;合理設計PCB,雙面的鋼箔面積應均衡,在沒有電路的地方布滿鋼層,並以網路形式出現,以增加PCB的剛度,在貼片前對PCB進行預熱,其條件是105℃/4h;調整夾具或夾持距離,保證PCB受熱膨脹的空間;焊接工藝溫度盡可能調低;已經出現輕度扭曲時,可以放在定位夾具中,升溫復位,以釋放應力,一般會取得滿意的效果。 6.7 IC引腳焊接後引腳開路/虛焊 IC引腳焊接後出現部分引腳虛焊,是常見的焊接缺陷,產生的原因很多,主要原因,一是共面性差,特別是QFP器件.由於保管不當,造成引腳變形,有時不易被發現(部分貼片機沒有檢查共面性的功能),產生的過程如圖6.9所示。 圖6.9 共面性差的元件焊接後出現需焊 因此應注意器件的保管,不要隨便拿取元件或打開包裝。二是引腳可焊性不好。IC存放時間長,引腳發黃,可焊性不好也會引起虛焊,生產中應檢查元器件的可焊性,特別注意比存放期不應過長(製造日期起一年內),保管時應不受高溫、高濕,不隨便打開包裝袋。三是錫膏質量差,金屬含量低,可焊性差,通常用於QFP器件的焊接用錫膏,金屬含量應不低於90%。四是預熱溫度過高,易引起IC引腳氧化,使可焊性變差。五是模板窗口尺寸小,以致錫膏量不夠。通常在模板製造後,應仔細檢查模板窗口尺寸,不應太大也不應太小,並且注意與PCB焊盤尺寸相配套。 6.8片式元器件開裂 在SMC生產中,片式元件的開裂常見於多層片式電容器(MLCC),其原因主要是效應力與機械應力所致。 (1)對於MLCC類電容來講,其結構上存在著很大的脆弱性,通常MLCC是由多層陶瓷電容疊加而成,強度低,極不耐受熱與機械力的沖擊。 (2)貼片過程中,貼片機z軸的吸放高度,特別是一些不具備z軸軟著陸功能的貼片機,吸放高度由片式元件的厚度而不是由壓力感測器來決定,故元件厚度的公差會造成開裂。 (3)PCB的曲翹應力,特別是焊接後,曲翹應力容易造成元件的開裂。 (4)一些拼板的PCB在分割時,會損壞元件。 預防辦法是:認真調節焊接工藝曲線,特別是預熱區溫度不能過低;貼片時應認真調節貼片機z軸的吸放高度;應注意拼板的刮刀形狀;PCB的曲翹度.特別是焊接後的曲翹度,應有針對性的校正,如是PCB板材質量問題,需另重點考慮。 6.9其他常見焊接缺陷 (1)差的潤濕性 差的潤濕性,表現在PCB焊盤吃錫不好或元件引腳吃錫不好。 產生的原因:元件引腳PCB焊盤已氧化/污染;過高的迴流焊溫度;錫膏的質量差。均會導致潤濕性差,嚴重時會出現虛焊。 (2)錫量很少 錫量很少,表現在焊點不飽滿,IC引腳根彎月面小。 產生原因:印刷模板窗口小;燈芯現象(溫度曲線差);錫膏金屬含量低。這些均會導致錫量小,焊點強度不夠。 (3)引腳受損 引腳受損,表現在器件引腳共面性不好或彎曲,直接影響焊接質量。 產生原因:運輸/取放時碰壞。為此應小心地保管元器件,特別是FQFP。 (4)污染物覆蓋了焊盤 污染物覆蓋了焊盤,生產中時有發生。 產生原因:來自現場的紙片;來自卷帶的異物;人手觸摸PCB焊盤或元器件;字元圖位置不對。因而生產時應注意生產現場的清潔,工藝應規范。 (5)錫膏量不足 錫膏量不足,生產中經常發生的現象。 產生原因:第一塊PCB印刷/機器停止後的印刷;印刷工藝參數改變;鋼板窗口堵塞;錫膏品質變壞。上述原因之一,均會引起錫音量不足,應針對性解決問題。 (6)錫膏呈角狀 錫膏呈角狀,生產中經常發生,且不易發現、嚴重時會連焊。 產生原因:印刷機的抬網速度過快;模板孔壁不光滑,易使錫膏呈元寶狀。 7 總結 目前國內外已經對無鉛焊接技術進行了大量的研究,對提出的多種無鉛焊料包括Sn-Cu系列、Sn-Ag-Cu系列、Sn-Ag-Bi-Cu系列、Sn-Bi系列、Sn-Sb系列等都有較為深入的研究。國際工業研究會等電子行業協會對典型的合金材料例如Sn-Ag-Cu系列的幾種合金比例也有推薦的工藝參數;一些有實力的企業更是在此研究成果的基礎上進行反復試驗研究對工藝參數不斷優化,盡可能取得最大程度上的效益。本課題參照國內外文獻資料和有關期刊,選擇適當參數;並選定SMT相關網站中登出市場上符合工藝要求的迴流焊設備組成無鉛迴流焊的工藝過程。最後對焊接過程中可能出現的焊接缺陷作出理論分析,並提出相對的解決方案。 本課題是工藝的理論研究,由於設備欠缺、更因為本人SMT方面知識的淺薄不全面,出現謬誤在所難免。望各位批評指正,不勝感激。

Ⅷ 有鉛和無鉛的焊接時推拉力

傳統的錫鉛焊料在電子裝聯中已經應用了近一個世紀。Sn63/Pb37共晶焊料的導電性、穩定性、抗蝕性、抗拉和抗疲勞、機械強度、工藝性都是非常優秀的,而且資源豐富,價格便宜。是一種極為理想的電子焊接材料。
但由於鉛污染人類的生活環境。據統計,某些地區地下水的含鉛量已超標30倍(允許標准
一、 無鉛焊接技術的現狀
無鉛焊料合金成分的標准化目前還沒有明確的規定。IPC等大多數商業協會的意見:鉛含量<0.1-0.2WT%(傾向<0.1%,並且不含任何其它有毒元素的合金稱為無鉛焊料合金。
1、 無鉛焊料合金
無鉛化的核心和首要任務是無鉛焊料。據統計全球范圍內共研製出焊膏、焊絲、波峰焊棒材100多種無鉛焊料,但真正公認能用的只有幾種。
(1) 目前最有可能替代Sn/Pb焊料的合金材料
最有可能替代Sn/Pb焊料的無毒合金是Sn基合金。以Sn為主,添加Ag、Cu、Zn、Bi、In、Sb等金屬元素,構成二元、三元或多元合金,通過添加金屬元素來改善合金性能,提高可焊性、可靠性。主要有:Sn-Bi系焊料合金,Sn-Ag共晶合金,Sn-Ag-Cu三元合金,Sn-Cu系焊料合金,Sn-Zn系焊料合金(僅日本開發應用),Sn-Bi系焊料合金,Sn-In和Sn-Pb 系合金。
(2) 目前應用最多的無鉛焊料合金三元共晶形式的Sn95.8\Ag3.5\Cu0.7(美國)和三元近共晶形式的Sn96.5\Ag3.0\Cu0.5(日本)是目前應用最多的用於再流焊的無鉛焊料。其熔點為216-220℃左右。
由於Sn95.8\Ag3.5\Cu0.7無鉛焊料美國已經有了專利權,另外由於Ag含量為3.0WT%的焊料沒有專利權,價格較便宜,焊點質量較好,因此IPC推薦採用Ag含量為3.0WT%(重量百分比)的Sn-Ag-Cu焊料。
Sn-0.7Cu-Ni焊料合金用於波峰焊。其熔點為227℃。
雖然Sn基無鉛合金已經被較廣泛應用,與Sn63\Pb37共晶焊料相比無鉛合金焊料較仍然有以下問題:
(A)熔點高34℃左右。
(B)表面張力大、潤濕性差。
(C)價格高
2、PCB焊盤表面鍍層材料
無鉛焊接要求PCB焊盤表面鍍層材料也要無鉛化,PCB焊盤表面鍍層的無鉛化相對於元器件焊端表面的無鉛化容易一些。目前主要有用非鉛金屬或無鉛焊料合金取代Pb-Sn熱風整平(HASL)、化學鍍Ni和浸鍍金(ENIC)、Cu表面塗覆OSP、浸銀(I-Ag)和浸錫(I-Sn)。
目前無鉛標准還沒有完善,因此無鉛元器件焊端表面鍍層的種類很多。美國和台灣省鍍純Sn和Sn/Ag/Cu的比較多,而日本的元件焊端鍍層種類比較多,各家公司有所不同,除了鍍純Sn和/Sn/Ag/Cu外,還有鍍Sn/Cu、Sn/Bi等合金層的。由於鍍Sn的成本比較低,因此採用鍍Sn工藝比較多,但由於Sn表面容易氧化形成很薄的氧化層、加電後產生壓力、有不均勻處會把Sn推出來,形成Sn須。Sn須在窄間距的QFP等元件處容易造成短路,影響可靠性。對於低端產品以及壽命要求小於5年的元器件可以鍍純Sn,對於高可靠產品以及壽命要求大於5年的元器件採用先鍍一層厚度約為1µm以上的Ni,然後再鍍2-3µm厚的Sn。
3、 目前無鉛焊接工藝技術處於過渡和起步階段
雖然國際國內都在不同程度的應用無鉛技術,但目前還處於過渡和起步階段,從理論到應用都還不成熟。沒有統一的標准,對無鉛焊接的焊點可靠性還沒有統一的認識,因此無論國際國內無鉛應用技術非常混亂,大多企業雖然焊接材料無鉛化了,但元器件焊端仍然有鉛。究竟哪一種無鉛焊料更好?哪一種PCB焊盤鍍層對無鉛焊更有利?哪一種元器件焊端材料對無鉛焊接焊點可靠性更有利?什麼樣的溫度曲線最合理?無鉛焊對印刷、焊接、檢測等設備究竟有什麼要求。。。。都沒有明確的說法。總之,對無鉛焊接技術眾說紛紜,各有一套說法、各有一套做法。這種狀態對無鉛焊接產品的可靠性非常不利。因此目前迫切需要加快對無鉛焊接技術從理論到應用的研究。
二、 無鉛焊接的特點和對策
1、 無鉛焊接和焊點的主要特點
(1) 無鉛焊接的主要特點
(A)高溫、熔點比傳統有鉛共晶焊料高34℃左右。
(B)表面張力大、潤濕性差。
(C)工藝窗口小,質量控制難度大。
(2) 無鉛焊點的特點
(A)浸潤性差,擴展性差。
(B)無鉛焊點外觀粗糙。傳統的檢驗標准與AOI需要升級。
(C)無鉛焊點中氣孔較多,尤其有鉛焊端與無鉛焊料混用時,焊端(球)上的有鉛焊料先熔,覆蓋焊盤,助焊劑排不出去,造成氣孔。但氣孔不影響機械強度。
(D)缺陷多-由於浸潤性差,使自定位效應減弱。
無鉛焊點外觀粗糙、氣孔多、潤濕角大、沒有半月形,由於無鉛焊點外觀與有鉛焊點有較明顯的不同,如果有原來有鉛的檢驗標准衡量,甚至可以認為是不合格的,但對於一般要求的民用電子產品這些不影響使用質量。因此要說服客戶理解,這是因為無鉛焊接潤濕性差造成的。隨著無鉛技術的深入和發展,由於助焊劑的改進以及工藝的進步,無鉛焊點的粗糙外觀已經有了一些改觀,相信以後會有更好的進步。
2、 無鉛波峰焊特點及對策
無鉛波峰焊接的主要特點也是高溫、潤濕性差、工藝窗口小。質量控制難度比再流焊更大。
(1) 用對波峰焊的焊料通常採用Sn-0.7Cu或Sn-0.7Cu-0.05Ni,熔點227℃,焊接溫度250-260℃。Sn-Cu焊料中加入少量的Ni可增加流動性和延伸率。波峰焊也可以使用Sn/Ag/Cu,一般不推薦用Sn/Ag/Cu焊料,除了因為Sn/Ag/Cu焊料的成本比較高,另外Ag也會腐蝕Sn鍋,而且腐蝕作用比Sn更嚴重。
(2) 無鉛波峰焊接Sn鍋中焊料溫度高達250-260℃,Sn在高溫下有溶蝕Sn鍋的現象,溫度越高熔蝕性越嚴重,而且無鉛焊料中Sn成分佔99%,比有鉛焊料多40%,如果採用傳統的不銹鋼鍋膽進行無鉛焊,大約三個月就會發生漏鍋現象。因此要求波峰焊設備的Sn鍋,噴嘴耐高溫、耐腐蝕,目前一般採用鈦合金鋼鍋膽,
由於無鉛焊料的浸潤性差,工藝窗口小,焊接時為了減小PCB表面的溫度差,要求Sn鍋溫度均勻,
(3) 由於高熔點,PCB預熱溫度也要相應提高,一般為100-130℃。為了PCB內外溫度均勻,預熱區要加長。使緩慢升溫。焊接時間3-4s。兩個波之間的距離要短一些。
(4) 對於大尺寸的PCB,為了預防PCB變形,傳輸導軌增加中間支撐。
(5) 由於高溫,為了防止焊點冷卻疑固時間過長造成焊點結晶顆粒長大,波峰焊設備應增加冷卻裝置,使焊點快速降溫。但是冷卻速度過快又可能對陶瓷體結構的CHIP元件傷害,有可能會使無件產生開裂,因此還要控制不要過快冷卻。另外對Sn鍋吹風會影響焊接溫度,因此還要考慮採用適當的冷卻手段。
(6) 由於高溫和浸潤性差,要提高助焊劑的活化溫度和活性,工藝上可增加一些助劑塗覆蓋。
(7) 要密切關注Sn-Cu焊料中Cu的比例,Cu的成分達0.2%,液相溫度改變多達6℃。這樣的改變可能導致動力學的改變以及焊接質量的改變。Cu比例超過1%,必須換新焊料。由於Cu隨工作時間不斷增多,因此一般選擇低Cu合金。
(8) 波峰焊時通孔元件插裝孔內上錫高度可能達不到75%(傳統Sn\Pb要求75%),因此要求從PCB孔徑比的設計、助焊劑活性與塗覆量、波峰溫度、波峰高度、導軌的傾斜角度等方面綜合考慮。
(9) 由於高溫,Sn會加速氧化,因此無鉛波峰焊工藝還有一個很大的缺點是產生大量的殘渣,充氮氣(N2)可以減少焊Sn渣的形成。當然也可以不充N2,或者加入無鉛錫渣還原粉,將產生大量的殘渣還原後重復利用,但一定要比有鉛焊接更注意每天的清理和日常維護。
(10) 波峰焊後分層LIFT-OFF(剝離、裂紋)現象較嚴重。
三、 從有鉛向無鉛焊接過渡的特殊階段存在的問題
1、 無鉛工藝對元器件的挑戰
(1) 耐高溫
要考慮高溫對元器件封裝的影響。由於傳統表面貼裝元器件的封裝材料只要能夠耐240℃高溫就能滿足有鉛焊料的焊接溫度了,而無鉛焊接時對於復雜的產品焊接溫度高達260℃,因此元器件封裝能否耐高溫是必須考慮的問題了。
另外還要考慮高溫對器件內部連接的影響。IC的內部連接方法有金絲球焊、超聲壓焊,還有倒裝焊等方法,特別是BGA、CSP和組合式復合元器件、模塊等新型的元器件,它們的內部連接用的材料也是與表面組裝用的相同的焊料,也是用的再流焊工藝。因此無鉛元器件的內連接材料也要符合無鉛焊接的要求。
(2) 焊端無鉛化
有鉛元器件的焊端絕大多數是Sn/Pb鍍層,而無鉛元器件焊端表面鍍層的種類很多。究竟哪一種鍍層最好,目前還沒有結論,因此還有待無鉛元器件標準的完善。
2、 無鉛工藝對PCB的挑戰
無鉛工藝要求PCB耐熱性好,較高的玻璃化轉變溫度Tg,低熱膨脹系數,低成本。
(1) 無鉛工藝要求較高的玻璃化轉變溫度Tg
Tg是聚合物特有的性能,是決定材料性能的臨界溫度。在SMT焊接過程中,焊接溫度遠遠高於PCB基板的Tg,無鉛焊接溫度比有鉛高34℃,更容易PCB的熱變形,冷卻時損壞元器件。應適當選擇Tg較高的基PCB材料。
(2) 要求低熱膨脹系數(CTE)
當焊接溫度增加時,多層結構PCB的Z軸與XY方向的層壓材料、玻璃纖維、以及Cu之間的CTE不匹配,將在Cu上產生很大的應力,嚴重時會造成金屬化孔鍍層斷裂而失效。這是一個相當復雜的問題,因為它取決於很多變數,如PCB層數、厚度、層壓材料、焊接曲線、以及Cu的分布、過孔的幾何形狀(如縱橫比)等。
克服多層板金屬化孔斷裂的措施:
凹蝕工藝一-電鍍前在孔內側除掉樹脂/玻璃纖維。
以強金屬化孔壁與多層板的結合力。
凹蝕深度為13-20µm。
(3) 高耐熱性
FR-4基材PCB的極限溫度為240℃,對於簡單產品,峰值溫度235-240℃可以滿足要求,但是對於復雜產品,可能需要260℃才能焊好。因此厚板和復雜產品需要採用耐高溫的FR-5。
(4) 低成本
由於FR-5的成本比較高,對於一般消費類產品可以採用復合基CEMn來替代FR-4基材,CEMn是表面和芯部由不同材料構成的剛性復合基覆銅箔層壓板,簡稱CEMn代表不同型號。
四、 無鉛工藝對助焊劑的挑戰
(1) 無鉛工藝對助焊劑的要求
(A)由於焊劑與合金錶面之間有化學反應,因此不同合金成分要選擇不同的助焊劑。
(B)由於無鉛合金的浸潤性差,要求助焊劑活性高。
(C)提高助焊劑的活化溫度,要適應無鉛高溫焊接溫度。
(D)焊後殘留物少,並且無腐蝕性,滿足ICT探針能力和電遷移。
(2) 焊膏印刷性、可焊性的關鍵在於助焊劑。
確定了無鉛合金後,關鍵在於助焊劑。例如有8家焊膏公司給某公司提供相同合金成份的無鉛焊膏進行試驗,試驗結果差別很大。潤濕性好的焊膏後不立碑,潤濕性差的濕膏焊上後電阻、電容移位比較多。因此,選擇焊膏要做工藝試驗,看看印刷性能否滿足要求,焊後質量如何。例如印刷時焊膏的滾動性、填充性、脫膜性是否好,間隔1個小時觀察印刷質量有無變化、測1-8小時的黏度變化等等。總之要選擇適合自己產品和工藝的焊膏。
(3) 無鉛焊劑必須專門配製焊膏中的助焊劑是凈化焊接表面,提高潤濕性,防止焊料氧化和確保焊膏質量以及優良工藝性的關鍵材料。高溫下助焊劑對PCB的焊盤,元器件端頭和引腳表面的氧化層起到清洗作用,同時對金屬表面產生活化作用。
免清洗Sn-Pb焊膏已經使用了多年,而且已是成熟的技術。早期無鉛焊膏的做法是簡單地將Sn-Pb焊料免清洗焊劑和無鉛合金混合,結果很糟糕。焊膏中助焊劑和焊料合金間的化學反應影響了焊膏的流變特性,流變性對印刷性能至關重要。
由於無鉛合金的浸潤性差,要求助焊提高活性,提高活化溫度的道理,下面再進一步分析:無論有鉛焊接還是無鉛焊接,助焊劑浸潤區是控制焊接接的關鍵區域,助焊酸在常溫下不能和Cu20起反應,就是分解反應,在分解反應時會發出熱量,釋放激活能。有鉛焊接時,助焊劑的活性反應恰好在焊料的熔點183℃之前,對金屬表面進行清洗,焊料熔化時使金屬表面獲得激活能,從而能夠起到降低熔融焊料的黏度和表面張力,提高浸潤性的作用,有利於擴散、溶解形成金屬間合金層。但是無鉛焊接時,熔點為217℃,比有鉛高34℃,而無鉛助焊劑的主要成份也是松香脂,如果使用傳統的助焊劑,在183℃焊料熔化前焊膏中的助焊劑已經結束化反應,再從183℃上升到217℃,由於助焊劑長時間處在高溫下,不僅起不到清洗耳恭聽和活化作用,還可能造成助焊劑碳化,嚴重時會使PCB焊盤,元件引腳和焊膏中的焊料合金在高溫下重新氧化而造成焊接不良。
因此無鉛焊劑必須專門配製,隨著無鉛進程的深入,由於焊料廠商的努力,他們在活化劑等添加劑上採取措施來提高助焊劑的活性和活化溫度,使無鉛焊膏質量得到了改善。目前的無鉛焊點從外觀上看已經比前幾年有了改善。
(4) 波峰焊中無VOC免清洗耳恭聽焊劑也需要特殊配製。無鉛焊膏和波峰焊的水溶性焊劑對某些產品也是需要的。
4、關於過度時期無鉛焊接可靠性的討論
關於無鉛焊接可靠性問題是製造商和用戶都十分關心的問題。尤其是當前正處在從有鉛向無鉛焊接過渡的特殊階段,無鉛材料、印刷板、元器件、檢測等方面都沒有標准,甚至可靠性的測試方法也沒有標準的情況下,可靠性是非常讓人們擔憂的。現階段的無鉛工藝,特別是在國內處於比較混亂的階段,由於有鉛和無鉛混用時,特別是當無鉛焊端的元器件採用有鉛焊料和有鉛工藝時發生嚴重的可靠性問題,這些問題不僅是當前過渡階段無鉛焊接要注意,而且對於過渡階段的有鉛焊接也是要注意的問題。
(1)焊點機械是比較軟的,容易變形,因此無鉛焊點的硬度比Sn-Pb高,無鉛焊點的強度也比Sn-Pb高,無鉛焊點的變形比Sn-Pb焊點小,但是這些並不等於無鉛的可靠性好。由於無鉛焊料的潤濕性差,因此空洞、移位、立碑等焊接缺陷比較多,另外由於熔點高,如果助焊劑的活化溫度不能配合高熔點,正如前面分析的那樣,由於助焊劑浸潤區的溫度、時間長,會使焊接面在高溫下重新氧化而不能發生浸潤和擴散,不能形成良好的界面合金層,其結果導致焊面結合強度(抗拉強度)差而降低可靠性。
據美國偉創立,AGILENT等公司的可靠性試驗,例如推力試驗,彎曲試驗,振動試驗,跌落試驗,經過潮熱,高低溫度循環等可靠性試驗結果,大體上都有一個比較相近的結論:大多數民用、通信等領域,由於使用環境沒有太大的應力,無鉛焊點的機械強度甚至比有鉛的要求還高;便在使用應力高的地方,例如軍事,高低溫,低氣壓等惡劣環境下,由於無鉛蠕變大,因此無鉛比有鉛的可靠性差很多。
關於無鉛焊點的可靠性(包括測試方法)還在初期的研究階段。
(2)錫須問題
SN在壓縮狀態會生長晶須(WHISKER),嚴重時會造成短路,要特別關注窄間距QFP封裝元件。晶須是直徑為1-10µm,長度為數µm-數+µm的針狀形單晶體,易發生在Sn、Zn、Cd、Qg等低熔點金屬表面。
Sn須增長的根本原因是在Sn鍍層上產生應力,室溫下1.5個月晶須長度達1.5µm。
在Sn中加一些雜質可避免生長Sn須。
(3)分層LIFT-OFF(剝離、裂紋)現象
無鉛和有鉛混用時,如果焊接中混入的鉛超過標准>5%時,焊接後在焊占與焊端交界處會加劇公層LIFT-OFF(剝離、裂紋)現象。LIFT-OFF現象在有鉛元件採用無鉛波峰焊的工藝中比較多,嚴重時甚至會把PCB焊盤一起剝離開。因此過渡階段波峰焊的焊盤設計可採用SMD(阻焊定義焊盤)方式,用阻焊膜壓住焊盤四周,這樣可以減輕或避免PCB焊盤剝離現象。
關於分層LIFT-OFF(剝離、裂紋)現象的機理還要繼續研究。當焊料、元件、PCB全部無鉛化後是否不會產生LIFT-OFF會現象了,也要繼續研究。
元件的Sn-Pb鍍層發生的LIFT-OFF
(4) 鉛和有鉛混用時可靠性討論
① 無鉛焊料中的鉛對長期可靠性的影響是一個課題,需要更進一步研究。初步的研究顯示;焊點中鉛含量的不同對可靠性的影響是不同的,當含量在某一個中間范圍時,影響最大,這是因為在最後凝固形成結晶時,在Sn權界面處,有偏析金相形成,這些偏析金相在循環負載下開始形成裂紋並不斷擴大。例如:2%-5%的鉛可以決定無鉛焊料的疲勞壽命,但與Sn-Pb焊料相比,可靠性相差不大。無鉛焊料與有鉛焊端混有時要控制焊點中鉛含量<0.05%。
目前正處在無鉛和有鉛焊接的過度轉變時期,大部分無鉛工藝是無鉛焊料與有鉛引腳的元件混用。在「無鉛」焊點中,鉛的含量可能來源於元件的焊端、引腳或BGA的焊球。
無鉛焊料與有鉛焊端混用時氣孔多,這是因為有鉛焊端與無鉛焊料混用時,焊端(球)上的有鉛焊料先熔,覆蓋焊盤,當無鉛焊料合金熔化時,焊膏中的助焊劑排不出去造成氣孔。對於波峰焊,由於元件引腳脖子Sn-Pb電鍍層不斷融解,焊點中鉛的含量需要進行監測。
② 有鉛焊接與無鉛焊端混用的質量最差
有鉛焊料與無鉛焊端混用時如果採用有鉛焊料的溫度曲線,有鉛焊料先熔,而無鉛焊端(球)不能完全熔化,使元件一側的界面不能生成金屬間合金層,BGA、CSP-側原來的結構被破壞而造成失效,因此有鉛焊料與無鉛焊端混用時質量最差。BGA、CSP無鉛焊球是不能用到有鉛工藝中的。
(5) 高溫對元件的不利影響
陶瓷電阻和特殊的電容對溫度曲線的斜率(溫度的變化速率)非常敏感,由於陶瓷體與PCB的熱膨脹系數CTE相差大(陶瓷:3-5,PCB:17左右),在焊點冷卻時容易造成元件體和焊點裂紋,元件開裂現象與CTE的差異、溫度、元件的尺寸大小成正比。0201、0402、0603小元件一般很少開裂,而以上的大元件發生開裂失效的機會較多。
鋁電解電容對清晰度極其敏感。
連接器和其他塑料封裝元件(如QFP、PBGA)在高溫時失效明顯增加。主要是分層、爆米花、變形等、粗略統計,溫度每提高10℃,潮濕敏感元件(MSL)的可靠性降1級。解決措施是盡量降低峰值溫度;對潮濕敏感元件進行去潮烘烤處理。
(6) 高溫對PCB的不利影響
高溫對PCB的不利影響在第三節中已經做了分析,高溫容易PCB的熱變形、因樹脂老化變質而降低強度和絕緣電阻值,由於PCB的Z軸與XY方向的CTE不匹配造成金屬化孔鍍層斷裂而失效等可靠性問題。
解決措施是盡量降低峰值溫度,一般簡單的消費類產品可以採用FR-4基材,厚板和復雜產品需要採用耐高溫的FR-5或CEMn來替代FR-4基材。
(7) 電氣可靠性
迴流焊、波峰焊、返修形成的助焊劑殘留物,在潮濕環境和一定電壓下,導電體之間可能會發生電化學反應,導致表面絕緣電阻(SIR)的下降。如果有電遷移和枝狀結晶(錫須)生長的出現,將發生導線間的短路,造成電遷移(俗稱「漏電」)的風險。為了保證電氣可靠性,需要對不同免清洗助焊劑的性能進行評估。
(8) 關於無鉛返修
① 無鉛焊料的返修相當困難,主要原因:
(A)無鉛焊料合金潤濕性差。
(B)溫度高(簡單PCB235℃,復雜PCB260℃)。
(C)工藝窗口小。
② 無鉛返修注意事項:
(A)選擇適當的返修設備和工具。
(B)正確作用返修設備和工具。
(C)正確選擇焊膏、焊劑、焊錫絲等材料。
(D)正確設置焊接參數。
除了要適應無鉛焊料的高熔點和低潤濕性。同時返修過程中一定要小心,將任何潛在的對元件和PCB的可靠性產生不利影響的因素降至最低。
(9) 關於過度時期無鉛和有鉛混用情況總結。
(A)無鉛焊料和無鉛焊端――效果最好。
(B)無鉛焊料和有鉛焊端――目前普通使用,可以應用,但必須控制Pb,Cu等的含量,要配製相應的助焊劑,還要嚴格控制溫度曲線等工藝參數,否則會造成可靠性問題。
(C)有鉛焊料和無鉛焊端――效果最差,BGA、CSP無鉛焊球是不能用到有鉛工藝中的,不建議採用。
五、 過渡階段有鉛、無鉛混用應注意的問題
1、 問題舉例
(1) 有鉛工藝也遇到了無鉛元器件有的SMT加工廠,雖然還沒有啟動無鉛工藝,但是也遇到了無鉛元器件,特別是BGA/CSP和LLP。有的元件廠已經不生產有鉛的器件了,因此采購不到有鉛器件了,這種知道采購的器件是無鉛的情況還不可怕,因為可以通過提高焊接溫度,一般提高到230-235℃就可以。還有一種措施可以採用無鉛焊料和無鉛工藝,因為目前過度階段普遍情況是無鉛焊料和有鉛焊端混用,其可靠性還是可以被接受的。但是最糟糕的是無意中遇到了無鉛元器件,生產前沒有發現,生產中還是採用有鉛焊料和有鉛工藝,結果非常糟糕,因為有鉛焊料和無鉛焊端混用效果最差。
(2) 有鉛工藝也遇到純Sn熱風整平的PCB。
這種情況也是在無意中發生過,結果由於焊接溫度不夠造成質量問題。
(3) 波峰焊問題
波峰焊問題比較多,例如目前有鉛工藝遇到無鉛元器件;無鉛工藝的插裝孔,導通孔不上錫;分層LIFT-OFF現象較嚴重;橋接、漏焊等缺陷多;錫鍋表面氧化物多。。。。。
2、 解決措施
(1) 備料
備料要注意元器件的焊端材料是否無鉛,如果是無鉛元器件,一定要弄清楚是什麼鍍層材料,特別是BGA/CSP和新型封裝的器件,例如LLP等(有鉛工藝也要注意)。
目前無鉛標准還沒有完善,因此無鉛無器件焊端表面鍍層的種類很多,例如日本的元件焊端鍍Sn/Bi層,如果焊料中含有鉛,當鉛含量<4WT%,Bi會與Pb形成93℃的低熔點,影響產品可靠性,因此鍍Sn/Bi的元件只能在無鉛焊料中使用。
(2) 物料管理
對於有鉛、無鉛兩種工藝並存的企業,務必注意製造嚴格的物料管理制度,千萬不能把有鉛、無鉛的焊膏和元器件混淆。
(3) 無鉛印刷要提高印刷精度
加大模板開口尺寸:寬厚比>1.6,面積比>0.71
(4) 提高貼片精度
(5) 嚴格控制溫度曲線,盡量降低峰值溫度;
對潮濕敏感元件進行去潮烘烤。
(6) 復雜和高可靠產品採用耐高溫的PCB材料(FR5或其它)
(7) 在N2中焊接比在空氣中焊接的質量好,尤其波峰焊採用N2可以減少高溫焊料氧化,減少殘渣,節省焊料。或者加入無鉛錫渣還原粉,將產生大量的殘渣還原後重復利用,但一定要比有鉛焊接更注意每天的清理和日常維護。
六、有鉛向無鉛製程轉換過程中成本控制
在有鉛向無製程轉換過程中成本控制主要從機器成本和製程材料消耗成本兩方面考慮。
目前相當多的企業已購置有鉛焊接工藝所使用的機器(波峰焊)在各種性能及操作性方面已經接近無鉛焊接的工藝要求,將現在所使用的機器關鍵部分的部件材質及尺寸作出對應的改造即可繼續使用在要求不是十分高的電子產品加工工藝當中。
普通波峰焊機改無鉛波峰焊機可行性分析
普通錫和無鉛錫的焊接溫度區別:
a普通錫的焊接溫度245℃
b無鉛錫的焊接溫度270℃
普通錫和無鉛錫的焊接用助焊劑預熱溫度區別
a普通錫的焊接用助焊劑預熱溫度90℃
b無鉛錫的焊接用助焊劑預熱溫度110℃
普通錫和無鉛錫的金屬成分區別
a普通錫的金屬成分Sn/Pb
b無鉛錫的金屬成分主要是Sn/Ag/Cu或者Sn/Cu
普通錫和無鉛錫的焊接設備要求區別
:
普通錫的焊接設備要求
無特別要求:
無鉛錫的焊接設備要求
a要求機器當中與錫接觸部分本身不能含有鉛的成分.
b要求無鉛錫的熔爐能夠耐腐蝕的性能較好.
c要求機器的冷卻速度較快
綜合以上要求其對應措施如下
1.機器的材料採用鈦合金材料
2.機器的預熱區長度和機器使用的速度成一定比例
3.和無鉛助焊劑有接觸的部分採用不含鉛成分材料製成
4.將機器的冷卻部分改為冷氣機或將冷卻風扇的數量加多
錫爐改造後效果
a完全滿足無鉛工藝製程各方面的要求
b生產速度和改造之前基本相同
結論
將原來的普通波峰焊機改造成無鉛波峰焊機是完全可行而且是節約成本的兩全之策
.
材料消耗方面
目前無鉛工藝當中採用的釺焊料相對比原來的焊料成分方面錫的含量增大很多,其合金成分相對有很大的提升。在生產加工過程中,其錫渣的產生量比原來普通焊料的產生量也有很大幅度的提高。如果能將錫渣的產生量降低則對於材料消耗方面的成本控制是有益的。
錫渣主要是錫在高溫環境下和氧氣發生反應產生的氧化物,通過物理高溫攪拌可以將大部分的錫氧分離(即錫渣還原),將分離的錫重新使用,也可利用化學置換還原反應將錫渣中的氧分子置換後還原成純錫而重復使用。

閱讀全文

與焊接結構SN曲線如何求得相關的資料

熱點內容
鋼筋yl是什麼牌子 瀏覽:676
不銹鋼盤子使用前怎麼處理 瀏覽:774
氣缸缸體怎麼焊接 瀏覽:502
合金結如何解開視頻 瀏覽:76
廣東誠浩不銹鋼廚具怎麼樣 瀏覽:625
哪裡有噴泉不銹鋼雕塑廠 瀏覽:67
不銹鋼菜碟糊了怎麼清洗 瀏覽:105
螺紋鋼期貨一手可以賺多少錢 瀏覽:974
鋼鐵是怎麼煉成讀後感350字 瀏覽:569
購買鋼筋增值稅怎麼扣除 瀏覽:878
灰鐵250材質用什麼焊接好 瀏覽:777
鋼板厚40怎麼對焊 瀏覽:546
普通玻璃鋼化後尺寸變化 瀏覽:392
做鋼材電話銷售怎麼樣 瀏覽:917
鋼材建材屬於什麼行業 瀏覽:332
廣西柳州鋼材廠電話多少錢 瀏覽:604
建房模具價格是多少 瀏覽:154
鋁合金防水灌膠如何清洗 瀏覽:714
小豬料槽模具多少錢 瀏覽:325
內塑料外鋼管套什麼定額 瀏覽:738