❶ 氣焊的工藝參數
氣焊是一種廣泛應用的焊接技術,它的工藝參數包括氣體種類、壓力、流量、噴嘴直徑等,這些參數的選擇直接影響焊接效果。常見的氣體種類有乙炔、氧氣和氮氣,它們的使用需要根據具體的焊接材料和工件類型來決定。壓力和流量的選擇也需要考慮焊接材料的特性,以確保氣體供應充足且穩定。噴嘴直徑的選擇則依據焊接件的厚度和材質,以達到最佳的焊接效果。
此外,焊接電流和電壓也是關鍵參數,它們的選擇取決於焊接材料的熔點和導電性,以確保材料能夠均勻受熱並熔化。焊接速度同樣重要,它需要根據焊接材料的特性和具體需求來設定,以保證焊接質量。通過合理調節這些工藝參數,可以實現高質量的氣焊焊接,確保焊接部位的強度和美觀性。
在實際操作中,操作人員需要根據具體情況進行調整,以適應不同的焊接環境和材料。例如,在焊接較厚的工件時,可能需要選擇較大的噴嘴直徑和較高的焊接電流,以確保熱量能夠深入材料內部。而在焊接較薄的材料時,則需要降低電流並適當減慢焊接速度,以避免過熱導致材料變形或損壞。
綜上所述,氣焊的工藝參數選擇是一個綜合考量的過程,需要根據焊接材料、工件類型和焊接要求來進行。通過科學合理的參數設置,可以有效提高焊接質量,確保焊接作業的順利進行。
❷ 氣焊參數包括哪些應如何選擇
氣焊規范參數主要有焊絲直徑、火焰成分、火焰能率、焊嘴傾角、焊接速度等。
(1)焊絲直徑:焊絲的直徑要根據焊件的厚度來決定。焊絲的直徑也取決於焊接方式(左向焊和右向焊),一般右向焊時所選用的焊絲直徑要比左向焊時大些。表2-7是焊絲直徑和工件厚度的對應關系。
氣焊規范參數有哪些?應如何選擇?
(2)火焰成分:氣焊火焰內混合氣體的成分與焊接質量有著密切的關系。混合氣體內乙炔量過多時,會引起焊縫金屬碳化而呈現硬脆性,有時也會引起焊縫的多孔性。混合氣體內氧氣量過多時,會引起焊縫金屬的氧化而呈脆性和多孔性,使焊縫的強度和塑性大大降低。在氣焊各種金屬時,需要應用各種不同成分的火焰。
(3)火焰能率:氣焊火焰能率是以每小時混合氣體的消耗量(Vh)來表示。火焰能率的粗調靠更換焊嘴,細調靠調節氣體開關閥。火焰能率的大小要根據工件的厚度、金屬材料的性質(熔點及導熱性等)以及焊件的空間位置來選擇。如焊接厚度較大、熔點較高、導熱性好的工件時,要選用較大的火焰能率。如焊接小件、薄件,或立焊、仰焊等,火焰能率要適當減小。
(4)焊嘴傾角:焊嘴傾角是指焊嘴與焊件間的夾角。焊嘴傾角的變化,能改變火焰對工件的加熱狀況。傾角大時,火焰集中,熱量損失小,工件受熱量大,因此升溫就快;反之,則因工作受熱量小而升溫慢。根據以上規律,在焊接厚度較大、熔點較高、熱導性好的工件時,焊嘴傾角就要大些;反之,在焊接厚度較小、熔點較低、熱導性較差的工件時,焊嘴的傾角就要相應減小。
(5)焊接速度:焊接速度是一項直接影響生產率和產品質量的規范參數。根據焊工操作的熟練程度,在保證焊接質量的前提下,應盡量提高焊接速度。
❸ 焊接工藝規程 熱輸入和焊接速度是不是必須要有的,
這個根據實際情況確定。
焊接工藝規程,是否必須要有熱輸入和焊接速度。首先我們分焊接方法(具體的可以參照)。
不同的焊接方法,要求不一樣的。另外,我們必須清楚熱輸入的概念,根據ASME以及NBT47014甚至EN/ISO標准。熱輸入的計算都離不開焊接電弧電壓、焊接電流、焊接速度。但是還有一種方式,就是通過焊縫金屬體積來控制(詳見SAME IX中文版的57頁第QW-409.1(b))或者使用瞬間能量計算。不過瞬間能量計算還是需要焊接電弧電壓、焊接電流、焊接速度。
ASME IX 和AWSD1.1中,熱輸入(J/mm)= U(V)×I(A)×60/V(mm/min),
EN1011-1中,熱輸入(KJ/mm)=K× U(V)×I(A)×60×0.001/V(mm/s)。本公式中的k值根據不同的焊接方法進行取值(在一般情況下,除了121焊接取值為1.0,141、15焊接方法取值為0.6,其餘的焊接方法如111,114,131,135,136,137,138,139取0.8)。焊條電弧焊時擺動幅度不得超過焊芯直徑的3倍
以下是摘自各個標准中針對電特性改變,將按照以下情況進行分別進行處理。
1.1. NBT47014-2011(JB/T4708)承壓設備焊接工藝評定
1.1.1. 對於螺柱焊焊接電流浮動范圍超出±10%,作為重要因素,需要重新進行評定的。
1.1.2. 改變電流范圍,除焊條電弧焊(SMAW)、鎢極氣體保護焊(GTAW)外改變電弧電壓范圍外的其他焊接方法如埋弧焊(SAW)、熔化極氣體保護焊(GMAW和FCAW)、等離子弧焊(PAW)、氣電立焊(EGW)、螺柱電弧焊(SW)將作為次要因素,不需要進行重新評定,但必須重新編制與焊接工藝規程。
1.1.3. 如果在這些焊接方法中,如焊條電弧焊(SMAW)、埋弧焊(SAW)、熔化極氣體保護焊(GMAW和FCAW)、等離子弧焊(PAW)、氣電立焊(EGW)增加了線能量或者單位長度焊道的熔敷金屬體積超過評定合格值(但經過高於上轉變溫度的焊後熱處理或者奧氏體母材焊後經過固溶處理時不作為不叫因素)時,將作為補加因素,增焊沖擊韌性用試件進行試驗。
1.2. SYT 0452-2012 石油天然氣金屬管道焊接工藝評定
1.2.1. 焊條電弧焊(SMAW)、鎢極氣體保護焊(GTAW)埋弧焊(SAW)、熔化極氣體保護焊(GMAW和FCAW)增加熱輸入值或者單位長度焊道內熔敷金屬體積超過評定值,將作為補加因素,在其他各項要求均能滿足時採用同樣的重要變數,增做一個試件進行缺口沖擊試驗。
1.2.2. 焊條電弧焊(SMAW)、鎢極氣體保護焊(GTAW)埋弧焊(SAW)、熔化極氣體保護焊(GMAW和FCAW)電流值或者電壓值改變較小,將作為次要因素,不需要進行重新評定,但必須重新編制與焊接工藝規程。。
1.3. ASME Ⅸ焊接和釺接評定【2010中文版】
1.3.1. 電流和電壓值超過以下規定值時將作為重要變數,需要重新評定。
1.3.1.1. 螺柱焊的電流值(.10)(重要變素)改變(Ø)>±10%;
1.3.1.2. 電渣焊(ESW)的電流值和電壓值(.5)(重要變素)波動(Ø)達到±15%時;
1.3.1.3. 焊條電弧焊的表面加硬層堆焊(.22)、耐蝕層堆焊(.22)第一層的電流(重要變素)增加(>)超過10%;
1.3.1.4. 等離子弧(PAW)表面加硬層堆焊(.25)、耐蝕層堆焊(.25)、熔化噴塗表面加硬層(.23)的電流或電壓值(重要變素)比PQR上記錄值改變(Ø)超過10%;
1.3.2. 熱輸入值(.1)超過或者單位焊縫長度內熔敷金屬體積的增量超過評定值,將作為附加重要變數,在其他各項要求均能滿足時採用同樣的重要變數,增做一個試件進行缺口沖擊試驗。
1.3.2.1. 焊條電弧焊(SMAW);
1.3.2.2. 埋弧焊(SAW);
1.3.2.3. 熔化極氣體保護焊(GMAW和FCAW);
1.3.2.4. 鎢極氣體保護焊(GTAW);
1.3.2.5. 等離子弧(PAW);
1.3.2.6. 氣電立焊(EGW)。
1.3.3. 以下焊接方法的表面加硬層堆焊(.26)、耐蝕層堆焊(.26)的第一層熱輸入(.1)超過(>)10%,將作為重要變數,需要重新評定。
1.3.3.1. 埋弧焊(SAW);
1.3.3.2. 熔化極氣體保護焊(GMAW和FCAW);
1.3.3.3. 鎢極氣體保護焊(GTAW);
1.3.3.4. 電渣焊(ESW)。
1.4. AWS D1.1/D1.1M:2008《鋼結構焊接規范》中以下情況需要重新進行評定
1.4.1. 焊條電弧焊的電流值超出製造商的推薦范圍;
1.4.2. 埋弧焊(SAW)、熔化極氣體保護焊(GMAW和FCAW)電流增加或者減少10%;
1.4.3. 鎢極氣體保護焊(GTAW)電流增加或者減少25%;
1.4.4. 電渣焊(ESW)或氣電焊(EGW)電流值增加或減少>20%
1.4.5. 埋弧焊(SAW)焊接速度變化增加或者減少15%;
1.4.6. 電渣焊(ESW)或氣電焊(EGW)送絲速度值增大或減少>40%
1.4.7. 熔化極氣體保護焊(GMAW和FCAW)焊接速度變化增加或者減少25%
1.4.8. 鎢極氣體保護焊(GTAW)焊接速度變化增加或者減少50%;
1.4.9. 埋弧焊、熔化極氣體保護焊(GMAW和FCAW)每一種焊絲直徑的送絲速度、每一種焊絲直徑的電壓增加或降低超過7%;
1.4.10.電渣焊(ESW)或氣電焊(EGW)焊接速度增大或減少(如果無弧長或熔敷速度自動控制功能)>20%(因接頭間隙變化而必須補償者除外)
1.4.11.電渣焊(ESW)或氣電焊(EGW)電壓值增加或減少>10%
1.5. 僅僅在RCC-M中S3318 S3218 焊接工藝和參數中描述:對於要求檢驗第一道焊縫硬度的鋼,與評定試驗時確定的平均熱輸入相比較,其平均熱輸入的變化超過15 %時,則焊接工藝評定無效。這里的15%也是指線能量。
1.6. 在ISO 15614中,8.4.8熱輸入
有沖擊試驗要求時,認可的熱輸入上限可比試件焊接使用的熱輸入大25%。
有硬度試驗要求時,認可的熱輸入下限可比試件焊接使用的熱輸入小25%。
1.7. TB 10212-2009 鐵路鋼橋製造規范
焊接電流、焊接電壓,焊接速度改變超過±10%,將重新進行工藝評定。
1.8. GB 50661-2011 鋼結構焊接規范
1.8.1. 焊條電弧焊時焊接實際採用焊接電流、焊接電壓值的變化超出產品說明的推薦范圍,將重新進行工藝評定。
1.8.2. 熔化極氣體保護焊,焊接實際採用的電流值、電壓值和焊接速度的變化分別超過評定合格值的10%,7%和10%;
1.8.3. 非熔化極氣體保護焊,焊接實際採用的電流值和焊接速度的變化分別超過評定合格值的25%和50%;
1.8.4. 埋弧焊時,焊接實際採用的電流值、電壓值和焊接速度的變化分別超過評定合格值的10%,7%和15%;
1.8.5. 電渣焊時,焊接實際採用的電流值、電壓值、送絲速度、垂直提升速度變化分別超過評定合格值的20%,10%、40%和20%;
1.8.6. 氣電立焊時,焊接實際採用的電流值、電壓值、送絲速度變化分別超過評定合格值的20%,30%和10%;
1.8.7. 銷釘焊時,焊接實際採用的提升高度、伸出長度、焊接時間、電流值、電壓值的變化超過評定合格值的±5%;
❹ 氣保焊的焊接速度怎麼求
氣保焊的焊接速度:
1、CO2氣體保護焊時,焊接電流與送絲速度的關系:送絲速度越快,焊接電流越大。
2、二氧化碳氣體保護焊是焊接方法中的一種,是以二氧化碳氣為保護氣體,進行焊接的方法。在應用方面操作簡單,適合自動焊和全方位焊接。在焊接時不能有風,適合室內作業。
3、焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。
❺ 氣焊工藝參數包括哪些
氣焊主要工藝參數
氣焊的焊接工藝參數包括焊絲的牌號和直徑、熔劑、火焰種類、火焰能率、焊炬型號和焊嘴的號碼、焊嘴傾角和焊接速度等。由於焊件的材質、氣焊的工作條件、焊件的形狀尺寸和焊接位置、氣焊工的操作習慣和氣焊設備等的不同,所選用的氣焊焊接工藝參數不盡相同。